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Abstract Measurement is an integral part of modern science, providing the fun-
damental means for evaluation, comparison, and prediction. In the context of vi-
sualization, several different types of measures have been proposed, ranging from
approaches that evaluate particular aspects of individual visualization techniques,
their perceptual characteristics, and even economic factors. Furthermore, there are
approaches that attempt to provide means for measuring general properties of the
visualization process as a whole. Measures can be quantitative or qualitative, and
one of the primary goals is to provide objective means for reasoning about visual-
izations and their effectiveness. As such, they play a central role in the development
of scientific theories for visualization. In this chapter, we provide an overview of
the current state of the art, survey and classify different types of visualization mea-
sures, characterize their strengths and drawbacks, and provide an outline of open
challenges for future research.
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3.1 Introduction

Considering the vast amounts of data involved in many scientific disciplines, it is
essential to provide effective and efficient means for forming a mental model of
the underlying phenomena. Visualization seeks to provide these means through in-
teractive computer-generated graphical representations, taking advantage of the ex-
traordinary capability of the human brain to process visual information. Specifically,
the term ”visualization” refers to the process of extracting meaningful information
from data and constructing a visual representation of this information. This process
is composed of three basic stages [27]

1. making data displayable by a computer,
2. transmitting visual representations to human viewers, and
3. forming a mental picture about the data.

Significant effort has been devoted to the formulation of taxonomies and cat-
egorizations of this general process. For instance, Shneiderman [50] introduced a
task-by-data taxonomy, while Tory and Möller [54] focused on the classification
of visualization algorithms. In an influential contribution, Munzner [39] proposed
a nested model for designing and developing visualization pipelines, that has in-
spired a considerable amount of subsequent work. Wang et al. [61], for instance,
proposed a two-stage framework for designing visual analytics systems, while Ren
et al. [43] proposed a multi-level interaction model of goal, behavior, and operation
to facilitate system development with formal descriptions. The multi-level typology
of Brehmer and Munzner [8] distinguishes between the basic questions of why, how,
and what, in order to classify abstract visualization tasks. These types of classifica-
tions are highly valuable resources for visualization practitioners and researchers to
steer the design process and to compare competing approaches.

Ultimately, however, in order to assess the effectiveness of visualization, it is cru-
cial to know whether or not the mental picture of the data established by a human
viewer is consistent with the original data, and whether or not one specific visualiza-
tion technique or parameter setting is more effective than another. Displaying and
analyzing data is of ever-increasing importance in almost all research disciplines.
Consequently, the field of visualization is constantly growing and reliable visualiza-
tions are of more and more importance for domain experts to gain authentic insights.
This progress comes along with a steady growth in diversity and complexity of vi-
sualization methods, making judgment of their effectiveness and suitability for a
certain task difficult. Figure 1 for instance, which shows 240 different techniques to
visualize tree data taken from a visual bibliography on the topic [49], illustrates the
challenges in selecting appropriate visualization techniques.

Traditionally, visualization techniques and their parameter settings are evalu-
ated by carrying out user studies which measure their performance for particular
sets of tasks. However, such studies require considerable effort and their design is
non-trivial [39]. Their specialized nature also makes it difficult to generalize the
outcomes. Furthermore, when developing new visualization techniques, frequently
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Fig. 1 240 different tree visualization techniques [49] – which one should be used?

only a small number of initial users is available, making it difficult to obtain sta-
tistically significant results. The alternative of solely relying on the visualization
creator’s judgment, is also scientifically questionable because it often reflects per-
sonal preference and may include bias. Hence, it is highly desirable to support a
visualization process by enabling visualization creators to conduct an evaluation
using objective measures.

In principle, such quality measures could then be used to automatically select
and/or parameterize a visualization from a set of choices according to these mea-
sures by using an appropriate optimization process. Moreover, measures may also
inform us about the structure of the visualization space itself, i.e., they may lead us
to deeper insights into how the phenomenon of visualization works and hence could
be of utility beyond a descriptive or evaluative usage. Hence, questions related to
visualization measures are tightly connected to the bigger effort of specifying a the-
ory of visualization. In this paper, we survey approaches that seek to enable the
systematic analysis of visualization algorithms and their properties with respect to
the underlying data characteristics and their perceptual qualities. While we cover
the significant body of research that has been devoted to various types of visual-
ization measures, we also specifically look at approaches that regard the interplay
between data, algorithms and their parameters, and visual perception and cognition
as a phenomenon that deserves study in its own right.

In many disciplines of science, hypotheses are formulated based on empirical
data, and then subsequently developed into models and complete theories of the
phenomenon under investigation. The predictions of these models and theories are
then continuously validated and, once they are supported by sufficient data, are gen-
erally accepted as scientific ”facts”1. Importantly, the consequences of these theories
can lead to the discovery of new relationships and insights due to their predictions.
Theoretical physics, for instance, heavily relies on the mathematical structure of ex-
isting well-validated theories in the development of more comprehensive models of
our universe. There are many instances – for example within the standard model
of particle physics – where subsequent discoveries have been predicted based on
structural and mathematical aspects such as symmetries of the underlying theory.

1 While a scientific theory can never be proven ”true” in a mathematical sense, there are many
examples of well-established theories such as evolution, quantum mechanics, general relativity,
etc., that form the basis of modern science and that are rarely questioned on a principle level.
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For instance, the famous Higgs mechanism and one of its important predictions,
the Higgs boson, were already described in the 1960s, but strong evidence for its
existence only became available in 2013.

The formulation of measures forms an important first step in the development of
such theories, as they are often the fundamental building blocks from which more
complex relationships can be derived. Thus, measures play a central role in the
ongoing search for a more comprehensive theory of visualization.

3.2 Measurement in Science

In philosophy, the topic of measurement in science has been illuminated from many
different points of view. Tal [53] gives a comprehensive account of the different
schools of thought and here we will only briefly summarize his considerations in
order to provide additional background. In principle, he distinguishes between the
following perspectives:

1. Mathematical theories of measurement regard measurement as the mapping
of qualitative empirical relations to relations among numbers or other mathemat-
ical entities. Measurement theory aims to identify the assumptions related to the
use of different mathematical structures for describing aspects of the empirical
world. In particular, it attempts to make statements about the adequacy and lim-
its related to the use of these structures. One of the key insights of measurement
theory is that mathematical structures used for measurement should mirror rel-
evant relations among the real-world objects being measured. For instance, we
could mistakenly assume that an object measured at a temperature of 60 degrees
Celsius is twice as hot as one measured at 30 degrees. However, when expressed
using the Fahrenheit scale, the temperatures of these objects are 86 and 140, re-
spectively. This is because the zero points of these two scales are arbitrary and
do not correspond to the absence of temperature.

2. Realist views consider measurement as the estimation of mind-independent
properties and/or relations. A measurement is regarded as the empirical estima-
tion of an objective property or relation. The term ”objective”, in this context, is
meant to signify that these properties are independent of the conventions and be-
liefs of the humans conducting the measurement and of the methods used in their
execution. The values of measurements are regarded as approximations of true
values, and measurement itself is aimed at obtaining knowledge about properties
and relations, rather than the assignment of values to objects themselves. For in-
stance, a realist about length measurement would say that the ratio of the length
of an object to the standard meter has a definite objective value, irrespective of
how it is measured. The measurement itself is merely an approximation of this
value.

3. Operationalist views are concerned with the meaning and use of quantity terms.
A realist would argue that these terms refer to sets of properties that exist in-
dependently of being measured. The operationalist point of view, on the other
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hand, is that the meaning of quantity concepts is solely determined by the set of
operations used for their measurement. They view measurement as a set of op-
erations that shape the meaning and/or regulate the use of a quantity-term. For
example, length could be defined as the result of concatenating rigid rods, but
it could also be defined by timing electromagnetic pulses. A strict operationalist
would distinguish these two into distinct quantity concepts such as ”length-1”
and ”length-2”.

4. Information-theoretic accounts view measurement as the gathering and inter-
pretation of information about a system. Measuring instruments are regarded as
”information machines” that interact with an object in a given state, encode that
state into a signal, and convert this signal into an output. The accuracy of a mea-
surement is dependent on the instrument as well as the level of noise in the en-
vironment. Information-theoretic accounts of measurement were originally de-
veloped by metrologists, and hence are practically oriented and tailored towards
evaluating and improving the accuracy of measurement standards. As such, their
connection to more philosophical considerations is less explored.

5. Model-based accounts view measurement as the coherent assignment of values
to parameters in a theoretical and/or statistical model of a process. According to
model-based views, measurement consists of two levels: (1) a process involving
interactions between an object of interest, an instrument, and the environment;
and (2) a theoretical and/or statistical model (i.e., an abstract representations
based on simplifying assumptions) that describes this process. Hence, the cen-
tral goal of measurement is to assign values to the parameters of these models
such that they satisfy certain criteria such as coherence and consistency.

While these considerations are important and relevant lines of philosophical in-
vestigation, for the purposes of the discussion here we will largely gloss over these
partially subtle distinctions. Nevertheless, we will see that some of these views are
more prominent in the visualization domain than others. Many of the visualization
quality measures are constructed in an operationalist manner, providing different
means to measure the same property of a visualization. Several phenomena in visu-
alization have been described by applying communication models from information
theory, and several theoretical models try to explain, e.g., perceptual processes in the
human visual system or the visualization process as a whole. Mathematical theories
of measurement and realist views have received less attention in visualization re-
search. As this topic gains more attention, we expect a more explicit exploration of
the philosophical underpinnings of different approaches. In the following sections,
we will describe different types of measurements in visualization and how they can
be combined to build a better understanding of visualization as a research field in
the future.
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3.3 Types of Visualization Measures

There are numerous different aspects of the visualization process that one can set
out to quantify. Partially, the boundaries between different types of measures can be
fuzzy, but in the following we will attempt to characterize some principal categories
of measures that have been investigated.

3.3.1 Measures of Perceptual Characteristics

The measurement of perceptual characteristics of visualizations aims to mimic low-
level processing of visual stimuli in the human perceptual system. Essentially, the
idea is that by – at least partially – modeling and simulating the early processing
stages of the perception pipeline, we can predict how particular visual elements
influence the interpretation of a particular visualization by a human observer.

Significant efforts have been devoted to understanding the effectiveness of dif-
ferent visual variables for encoding quantitative and qualitative data in the visual-
ization literature. For example, Cleveland and McGill [16] ran a well-known series
of graphical perception experiments to measure accuracy in comparing values and
to derive the rankings of encoding variables that still form the basis for many vi-
sualization design decisions. Similar types of experiments have also been used to
compare different types of charts and their results have been employed to aid the
automatic construction of visualizations [36, 37].

A major early contribution to the study of visual perception was made by the
Gestalt School of Psychology. Developed in the early 20th century, the intent was to
understand the principles behind how humans acquire and maintain meaningful per-
ceptions of the world given its complex and chaotic nature. The main idea maintains
that the human perceptual system employs a notion of ”gestalt” (German for shape
or form) that it uses to organize and interpret its inputs. By further investigating this
basic thought, psychologists were able to establish a series of Gestalt principles of
perception, which are still respected today as accurate descriptions of visual behav-
ior. Since then, several works have set out to describe these and related observations
and their effects in a more formal manner.

At the most basic level, we can look at physiologically-based models which typ-
ically idealize neural behavior using mathematical functions. The response of reti-
nal ganglion cells, which have a center-surround behavior, can be described by a
difference-of-Gaussians function which contains a narrow excitatory center within
a larger inhibitory surround [44]. A Gabor function, mathematically defined as a 1D
sinoid within a 2D Gaussian envelope, has been shown to be a good approxima-
tion of the edge patterns which the primary visual cortex (V1) neurons are sensitive
to [18]. Li [34] presented a model of contour perception in the primary visual cortex.
While it does not include retinal processing or edge pattern recognition, it focuses
on lateral connections in the visual cortex and how they can give rise to contour
integration phenomena. Grossberg and Williamson [63] proposed a more detailed
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physiologically-based model which includes center-surround processing and Gabor-
like pattern matching of neurons. It divides the primary visual cortex into several
layers associated with particular behaviors such as contour enhancement and con-
vergence of neural activity. Pineo and Ware [40] combine aspects of the models by
Li and Grossberg and Williamson. They realize a difference-of-Gaussians retinal
response and a V1 Gabor response. Furthermore, their approach is specifically tai-
lored towards the viewing of data visualizations, which – they argue – tend to be
viewed in an exploratory manner. Hence, they seek to model perception in the mo-
ments after viewing, before steady-state activity is reached. This also allows them
to make the computational evaluation of the model sufficiently fast to be embedded
in an optimization loop. Thus, in addition to their model of low-level perception,
Pineo and Ware [40] also present an application of their perceptual model for 2D
flow visualization. They argue that the brain generates its high-level understanding
of a visualization from the activity of low-level neurons, and erroneous low-level
perception thus has a degrading effect on this high-level understanding. Based on
this reasonable assumption, they propose a predictor for the perceived direction at
a point in visual space from the activity of edge selective neurons that surround it.
Likewise, they predict the perceived speed of flow from the activity of blue-yellow
neurons (which correspond to their chosen color mapping) weighted by the distance
of the receptive field to the point being predicted. These measures are then used in
a hill climbing optimization process to adjust the parameters of a streaklet-based
visualization.

Such perceptual measures focus on the low-level processing of visual stimuli
in the human perceptual system such as preattentive processing [23]. Hence, they
are primarily concerned with how basic visual encoding variables, such as position,
length, area, shape, and color, and the interaction of the variables (e.g., integrable
or separable), influence the efficiency of low-level perceptual features such as vi-
sual search, change detection, and magnitude estimation [4]. While physiological
models taking into account neural response are scientifically attractive due to their
”first-principles” nature, an obvious challenge is to scale them up to more informa-
tive aspects of higher-level perception. As is the case in many areas of science, it
is far from trivial to connect multiple scales in a meaningful manner while preserv-
ing important practical aspects such as computational feasibility. For this reason,
the modeling of higher-level phenomena often ignores some of the more detailed
aspects. In the context of perceptual measures, the concept of saliency [25] is a
prominent example for this.

In general, visual saliency models assess the features of an image to predict which
areas of that image will draw a viewer’s attention. While they are typically inspired
by the structure and function of the human visual cortex and are designed to be ”bi-
ologically plausible”, most approaches make a number of simplifying assumptions.
Several practical saliency models have been proposed that, while inspired by basic
principles such as the center-surround mechanism, forego more detailed modeling of
the neural response and instead take a more phenomenological approach. Saliency
models can be categorized as models of bottom-up visual attention. Bottom-up vi-
sual attention is drawn to regions that are distinct from their surroundings with re-
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spect to their basic visual features such as contrast, color, or motion. Top-down
visual attention, on the other hand, is driven by the viewer’s goals, expectations, and
experience. It is hence allocated voluntarily based on the viewer’s task and prior
knowledge [17, 41]. This makes saliency an attractive basic task-agnostic measure
for investigating how viewers read a visualization in principle and thus saliency-
based measures have garnered the interest of visualization researchers.

Kim and Varshney [29], for instance, presented a method that enhances the
saliency of selected regions in volumetric data which they validated using an eye-
tracking study. Lee et al. [33] applied the concept of saliency to surface meshes and
showed how the measure can be used for targeted simplification as well as viewpoint
selection. Jänicke and Chen [26] proposed an approach which uses a saliency-based
metric to measure the mismatch between data-space feature maps and the visual
representation of the data. While most types of saliency models are tailored towards
natural scenes, Matzen et al. [38] developed a method specifically targeted at ab-
stract data visualizations.

Overall, perceptual measures are a useful tool for determining and/or predicting
which parts of a visualization will be most prominently seen by a user. Combined
with an appropriate way to characterize relevant features in the data, they can be
utilized to detect potential mismatches between the importance of regions in data
space and their perceptual prominence in the final image. However, at present only
low-level perceptual processing can be feasibly taken into account and higher-level
aspects or even cognition are still beyond the reach of current approaches.

3.3.2 Task-Oriented Quality Measures

In contrast to lower-level perceptual measures, the goal of quality measures is to in-
form about the performance of a visualization technique with respect to a particular
well-defined task assumed to be important for the overall goal of the visualization.
As discussed in the survey by Behrisch et al. [4], a particular characteristic of such
measures is that they do not explicitly consider the user. Instead, they often attempt
to heuristically quantify the presence and/or extent of an ”anti-pattern”, i.e., an as-
sumed known defect or undesirable characteristic of a visualization. These types of
measures are commonly referred to as ”quality metrics” in the visualization litera-
ture. However, as pointed out by Behrisch et al. [4], this is a somewhat misleading
term as ”metric” has a precise meaning in mathematics with well-defined properties
(i.e., non-negativity, identity of indiscernibles, symmetry, and the triangle inequal-
ity) which need not necessarily hold in all cases. Thus, we adopt the more neutral
term ”measure” which does not have these implications.

As the recent state-of-the-art report by Behrisch et al. [4] focuses on these types
of measures (classified as ”mid-level perceptual quality metrics” in their work), we
will only briefly summarize well-known approaches and refer the reader to their
comprehensive survey for further details. Given their specialized nature, it makes
sense to discuss task-oriented quality measures according to the type of visualiza-
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Fig. 2 Behrisch et al. [4] analyzed and categorized quality measures from around 250 papers
in visualization. These mid-level measures are mostly specific to the underlying data, task, and
visualization technique.

tion they are designed for, as shown in Figure 2. For instance, in scatterplots and
scatterplot matrices ”scagnostics” – based on an idea by Tukey and Tukey [57] –
have been introduced as an approach to identify anomalies based on attributes of
their shape and appearance. These measures themselves form a multi-dimensional
space which can be explored in a scatterplot matrix in order to identify outliers in
the form of unusual scatterplots. Wilkinson et al. [62] later presented graph-theoretic
methods to implement the same approach using a set of measure categories (outliers,
shape, trend, density, and coherence), each composed of multiple numerical mea-
sures. For example, the shape of scattered points in a plot can be described by the
following measures: convexity, skinniness, stringiness, and straightness. Bertini and
Santucci [5, 6] proposed a model for visual clutter in scatterplots based on an es-
timate of colliding points vs. available space. They subsequently derived a quality
measure that aims to quantify whether the relative data density is preserved when
considering the represented density in the plot. It is also common for quality mea-
sures to be defined implicitly, for example as part of a layout algorithm. For instance,
Byron and Wattenberg [11] presented an approach to optimize the appearance of
stacked graphs by using measures such as deviation and wiggle.

Task-oriented quality measures have arguably received the most attention in the
field of visualization, as they often tend to encode – with varying degree of fidelity –
known best practices or common shortcomings specific to a particular class of visu-
alizations. In essence, they can be seen as (partial) formalizations of design recom-
mendations, and thus tend to be quite practically oriented. Typically being grounded
in well-established principles in visualization makes these types of measures seman-
tically meaningful and expressive, providing a sound basis for optimization as well
as for the comparison of different but related algorithms. A potential downside of
this applied nature of task-oriented quality measures is their limited generalizability.

For instance, when rendering streamlines in flow visualizations, there exist differ-
ent seeding strategies to define the starting points and number of streamlines. The
overall goal is to display all features in the flow without introducing clutter. This
goal introduces a trade-off between increasing the number of streamlines to cover



10

all features, but decreasing it for better clarity. While this optimization is crucial for
streamline visualizations, it is so specific that it can hardly be applied to any other
type of visualization. This is true for many task-specific quality metrics. As a con-
sequence, whenever a new visualization technique is discovered, new task-oriented
quality measures need to be developed to optimize the specific aspects of this visu-
alization. It would be desirable to define general measures that express the quality
of a visualization independent of its type and allow for their comparison.

As an example, edge crossings can be optimized for multiple visualizations, i.e.,
graphs, parallel coordinates, and storylines. This is because all of these techniques
utilize edges (or links) as a visual encoding for aspects of the underlying data. The
user’s ability to read a chart is influenced by the number of edge crossings as well as
the angle at which they cross, and there seem to be higher-level perceptual aspects of
such visual embeddings that increase the cognitive load on the user. If we manage
to define these aspects instead of task-specific features, then we might be able to
form a more general theory about the perception of visualizations. This would not
only allow us to compare different techniques on an equal basis, but further enable
the prediction of how new visualization techniques will perform given their defined
visual mapping.

3.3.3 Structure-Oriented Measures

In contrast to task-oriented measures, this class attempts to quantify general struc-
tural elements of the visualization process. More specifically, structure-oriented
measures aim to express in a – at least in principle – measurable form fundamental
characteristics of the visualization process itself. Classical examples for these types
of measures are Tufte’s data-to-ink ratio, as well as his lie factor [56]. The former
describes the proportion between the amount of pixels used to present data and the
total amount of pixels, whereas the latter describes the ratio between the size of a
data value and the size of its corresponding visual element. Both express desirable
relationships between the data and its visual representation, but are not tied to any
particular visual encoding. On the contrary, they aim to describe general qualities of
visualizations, and thus play a particularly important role in considerations towards
a theory of visualization.

Mackinlay [36] was one of the first to discusss the expressiveness and effec-
tiveness of visualizations as general means to compare and choose different visual
designs. He describes expressiveness as the ability to encode all facts of a dataset
without introducing additional facts that are not in the data. Effectiveness, on the
other hand, further depends on the user’s capabilities to read a certain visualization.
Having the user introduced as a deciding factor for the effectiveness of a visual-
ization requires a detailed understanding of the human visual system and, although
a lot of research has been contributed towards this goal, we still do not possess a
sufficiently complete model that would allow us to predict this on a general level.
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We are therefore further reliant on empirical results of user studies to describe the
perceptual capabilities of visualization users.

Demiralp et al. [19] evaluated visual mappings in general by assessing how well
the input data is represented by visual elements. They describe visualization as a
function that maps from a domain of data points to a range of visual primitives.
They further argue that the same measures that can be found in data, like symmetry
and distance, should be reflected in the visual elements. In this sense, we could
encode pairwise difference in data space as pairwise perceptual difference in color,
shape, size, or others. One problem with this approach is that perceptual distance is
not given in most visual spaces and needs to be estimated empirically. Additionally,
we often utilize several visual encodings at the same time, and it is unclear how they
interact and potentially interfere. The authors argue that when two visual spaces are
combined, a measure for that space can be constructed from the individual measures.
When acquiring perceptual measures for all kinds of visual spaces, we could then
create a standard library to validate the pairwise distances between elements in all
kinds of visualizations.

Inspired by these considerations, Kindlmann and Scheidegger [30] argue that dis-
tance functions and metrics have limits, since for example partial orders are not sym-
metric. They instead developed an algebraic framework for describing symmetries
between manipulations in data space and their resulting consequences in visualiza-
tion space. From this, they derived three principles that should be true for a mapping
from data to visualization, i.e., unambiguous data depiction, representation invari-
ance, and visual-data correspondence. In short, the visual mapping should make sure
that a change in the data is reflected by a corresponding change in the visualization,
while changes in the data representation (e.g., the specific data structures used in
the implementation) do not affect the visualization, and significant changes in data
should result in noticeable changes in the visualization. Given some examples, it
becomes clear that not always all of these principles can be met. The visualization
designer needs to be aware of certain shortcomings and make sure that the right
principle is respected given the task at hand. In this work, the authors introduced
a uniform description of different design choices. They adhered to a mathematical
model that describes the process of visualization based on its structural properties.
They further mention that user studies can be utilized to test perceptual distinguisha-
bility and thereby complement mathematical models. The conjunction of evaluated
visualizations and mathematical models can help to make statements about visual-
izations which are not yet evaluated through user studies. While this approach still
relies on some notion of perceptual distance, it is notable as it does lead to measur-
able predictions that in principle can be verified without reliance on user studies.
For instance, it can be tested without user involvement whether a significant change
in the data leads to no change in the visualization. This opens up the door for a set
of ”unit tests” for visualization, which could verify at least some objective charac-
teristics fully automatically.

Information theory has been a major influence in the search for solid theoretical
foundations in visualization. Silver [51] employed the concept of object orientation
to conceptualize the visualization process, arguing that the definition and abstrac-
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tion of features into objects, and their interactions in local regions, allows for a better
measurability of phenomena and understanding of their evolution. Abstracting the
features of a scientific domain into such a concept allows for generally applicable
measurements such as volume, diameter, and curvature and provides a basis for ob-
jective comparison. Jankun-Kelly et al. [28] proposed the P-Set model to describe a
user’s interactions as choosing a parameter based on a previous parameter set, and
applying the new set to derive a transformed visualization result. As demonstrated
by Liu et al. [35], distributed cognition can be utilized as a theoretical framework in
visualization. Purchase et al. [42] analyzed which existing theoretical models can be
applied to visualization and provided suggestions for their integration. In particular
they considered visualization under the light of data-centric predictive theory, infor-
mation theory, and scientific modeling. Chen and Jänicke [14] applied information
theory to describe phenomena in visualization with communication models. They
argued that many problems and features in visualization can be explained by similar
phenomena from information theory which can be applied to evaluate visualizations
on a more general level. Xu et al. [64] followed a similar idea to evaluate visualiza-
tions by measuring the amount of information that is transported through the vi-
sual channels and applied this framework to flow visualization examples. Wang and
Shen [60] complemented this work by additional principles with a particular focus
on scientific visualization. Category theory and semiotics were employed by Vick-
ers et al. [59] to facilitate an improved understanding of visualizations in practice
and to describe a well-formed visualization process. The conceptual framework of
visual multiplexing by Chen et al. [15] facilitates the study of different mechanisms
for integrating and overlaying multiple pieces of visual information.

Based on these information-theoretic considerations, Chen and Golan [12] in-
troduced a comprehensive cost-benefit model of visualization, defining cost as the
search space for answers. They utilized the big O notation to classify tasks accord-
ingly. Presenting a fact or piece of information has cost O(1), observations as in
”What happened?” require the user to read all data points, which has a complexity
of O(n). When looking into correlations, causes, and other complex relationships,
we must consider a broader spectrum of relations, ending up at O(nk). And, finally,
when we want to derive a model for visualization, taking into account all parame-
ters and algorithmic steps, the complexity might be O(n!). They further introduced
a cost function, which can be derived from energy, time, or monetary measurements
necessary to find the answer. They defined benefit as a gain in certainty about the in-
formation. Based on these definitions, they derived an incremental cost-benefit ratio
that describes the amount of effort required to compress the information towards the
point that the user’s initial question can be answered and a decision can be made.
Based on this formulation, it is in principle possible to use an optimization process
to discover the best visualization method.

Bruckner et al. [10] proposed a model to analyze the directness of interaction
techniques in visualization. They considered the different mappings involved in the
visualization process, i.e., the mapping from data space via the visualization space
to the output space (e.g., a monitor or a head mounted display), as well as the sub-
sequent perceptual and cognitive processes involved in generating the user’s mental
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model. They then investigated the parallel process of interaction, starting from an
intended action (based on the user’s mental model) via the manipulation space (i.e.,
a physical interaction device such as a computer mouse) to the interaction space and
finally back to the data space. Based on this model, they introduced a measure for the
degree of indirectness of an interactive visualization setup based on how invertible
the involved mappings are and demonstrated how this measure can be practically
realized.

Compared to task-specific quality metrics, describing visualizations on a general
level not only provides us with a better understanding of visualization as a scientific
research field, but further allows us to make predictions about non-evaluated, or
even not yet developed visualization techniques. For instance, when the interaction
with the visualization does not coincide with gathered knowledge about interaction
directness, the user is likely to experience a discrepancy between their intended
and executed manipulation. One major question is how the sheer number of theo-
retical frameworks and models can be combined and integrated into one coherent
knowledge base. Similar to other research fields like physics, where theories about
electricity and magnetism have been combined into a larger theory of electromag-
netism, visualization could gather greater insights by combining existing theoretical
frameworks, leading to a fundamental strengthening of the research field as a whole.

3.3.4 Meta-Perceptual Process Measures

So far we have primarily examined well-established and generally accepted mea-
sures and models to evaluate visualization with the goal of optimizing task execu-
tion time, easing data exploration, or increasing the gained insight. But when visu-
alization is utilized as a knowledge source for the general public, we can formulate
other equally important goals for visualization design. In education, we might be
interested in creating memorable knowledge or engage students in working with a
visualization. In commercial scenarios, aspects such as aesthetics and impact, or
even the profitability of a visualization can be the main goals of a specific design.
We summarize these higher-level aspects as meta-perceptual process measures that
aim to characterize additional qualities that go beyond what are typically consid-
ered to be primary desired properties of a visualization in the research community.
In some sense, such measures aim to capture the attributes of a visualization from
the point of view of other domains, such as art or economics.

For instance, Healey et al. [24] conducted experiments to evaluate how hue and
orientation allow users to accurately estimate features in visualizations through
preattentive processing. The question was if a short glimpse at a visualization can
convey the general message, and if it can, which factors influence this capability.
While Skau et al. [52] showed that even small visual embellishments increase the
error rate when reading bar charts, Bateman et al. [3] found that visually embel-
lished visualizations are more memorable than plain charts. Figure 3 shows two
visual mappings for bar charts, as well as their embellished counterparts. Borkin et
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Fig. 3 Comparison of plain and embellished bar charts [52]. Even small visual modifications,
like using triangular instead of rectangular bar charts, will increase the error rate. Embellished
representations can increase the memorability of the visualization.

al. [7] investigated which elements of visualizations make them memorable. They
showed, for example, that color, human recognizable objects, high visual density,
and unique design improve the ability of humans to remember a visualization. Fur-
thermore, memorability was independent of subjects’ context and biases.

Aesthetics of a visualization are hard to measure and in most cases subjective.
Tractinsky et al. [55] found a strong correlation between aesthetics and usability,
which suggests it as an important factor for designing and evaluating visualizations.
Lau and Moere [32] proposed a model for aesthetics in information visualization,
seeing aesthetics as the degree of artistic influence on the data mapping, rather than
as a measure of appeal. Filonik et al [21] summarized several possible measures
of aesthetics for information visualization from the literature and concluded that
many aspects of this phenomenon remain unexplored. Harrison et al. [22] ran a
user study and found correlations between certain measurable visual features and
visually appealing aesthetics. They found that colorfulness and visual complexity
have a positive correlation to perceived aesthetics, but depend on gender, age, and
level of education.

Saket et al. [46] summarized and reviewed several of these meta-perceptual cri-
teria in the field of visualization. They described engagement as the amount of time
spent with the visualization, proposed a model for measuring enjoyment [48], and
found that pictorial representations and embellished visualizations increase enjoy-
ment [47]. Their work concluded that memorability, engagement, and enjoyment
are complex aspects of visualizations that are hard to quantify, and require further
study. It is, for example, not yet clear how interactions affect these measures, and
many more factors that influence a user’s experience might exist.

A somewhat different class of measures is related to non-cognitive aspects of
visualization. For instance, van Wijk [58] proposed a model to measure the ”prof-
itability” of a visualization in an economic sense. In this model, the cost of a visu-
alization (e.g., development cost and users’ time to understand the visualization) is
considered in relation to the return on investment in the form of knowledge gain.
The value of a visualization can thus be increased if many people use it regularly,
obtain valuable knowledge, and spend less time or money to make a decision. Un-
fortunately, knowledge gain is a rather broad and vague concept, so more precise
notions are needed to quantify this aspect more accurately.
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Compared to previously discussed approaches, meta-perceptual process mea-
sures have so far mostly been evaluated in rather narrow scenarios, providing guide-
lines for visualization design. More quantitative measures that would allow for the
comparison of different visualizations with respect to the outlined qualities have
not been explored extensively. Furthermore, the fact that some qualities like aes-
thetics are not necessarily directly related to common visualization goals such as
the generation of insight, may have lead some visualization researchers to discard
them as irrelevant. However, we believe that it is important to also consider the im-
pact of visualization in a broader context, and hence find that the measurement of
such properties is an important and worthwhile endeavor. Parallels may be drawn
to other fields – for instance, organizational performance was once mostly viewed
in terms of its economic characteristics, but organizational psychology has shown
that measures of occupational health and well-being such as job satisfaction can be
important predictors for the financial success of a company.

3.4 Towards a ”Bigger Picture”

As can be seen from previous examples, there is still a long way to go towards
quantitative statements about visualizations in general. Figure 4 provides a high-
level overview of the discussed measure categories with respect to their practicality
as well as their ability to describe general phenomena. Many of the presented qual-
ity measures are specific to a certain type of visualization, like wiggle in stream-
graphs, or scagnostics for scatterplots. Counting the number of edge crossings in
a visualization is an example that can be applied to several different visualization
techniques, like graphs, streamgraphs, and parallel coordinate plots, but is still spe-
cific to visualizations that utilize visual links for their layout. It could be argued,
that a meter can measure width, height, and length in the real world, because ev-
ery object has to have these properties, given their underlying molecular structure.
Visualizations, on the other hand, utilize a number of visual properties to encode
varying information, even encoding semantically similar information with different
visual encodings. From this point of view, it is no surprise that different subareas in
visualization have developed vastly varying quality measures. Kosara [31] looks at
many of the best practices followed in visualization and encourages researchers to
build a better, well justified basis for knowledge about visualizations.

Some properties, like clutter, empty space, and overplotting are more general and
can be used to characterize visualizations on a more fundamental level. But their ef-
fect on the users’ perception varies and is therefore often evaluated through user
studies. Several examples, as for instance discussed by Harrison et al. [22], have
shown that measures which by themselves do not make a statement about quality
(e.g., colorfulness and visual complexity) can be transformed into quality measures,
when evaluated with a user study. The users’ perception can be measured or quan-
tified and thereby operate as an indicator for quality. The fact that this type of eval-
uation can be performed for visualizations in general means that there might be a
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Fig. 4 Overview of visualization measures regarding their ease of being measured and their ca-
pability of describing visualizations as a whole. While quality metrics are easy to measure, they
are in most cases too specific to find applicability in generalized observations. Meta-perceptual
measurements try to capture more general, higher-level phenomena, but require user studies to be
quantified. Although they are applicable to a large range of visualization techniques, their gener-
ated insight follows specific intents (like making a visualization memorable). Perceptual studies try
to understand the human visual system and could, if fully understood, explain many phenomena
in the analysis of visualizations. At present, however, where only the low-level visual processing
is well understood, their applicability is limited to rankings of visual channels and encodings for
rather isolated situations. Theories about visualization are among the most general and descriptive
approaches for describing visualizations. Although some of them propose varying measures for the
quality of a visualization and allow for their comparison, they are in many cases still too abstract
to be applied in practical use cases.

common ground that allows for comparability. While Behrisch et al. [4] provided an
excellent summary of task-dependent quality measures, a survey of existing studies
would be able to provide an overview of what these studies have in common and on
how specific they are to their individual task and visualization types.

In order to compare not only different visual encodings, but visualization types,
we would require a standardized way of evaluating common properties. For in-
stance, different visualizations might apply the same color map and when asking
users of different visualizations the same questions we would acquire comparable
answers. One major problem of this approach is that visualizations are, among other
things, data-, task-, and user-dependent. While a given dataset might create clutter
in one visualization, it might not in another, and the opposite can be true for yet
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another dataset. Some visualizations are better in giving an overview, while others
provide detailed insights, and the questions asked in user studies are often task-
dependent to investigate exactly these specific strengths or weaknesses. When ask-
ing task-independent questions in order to keep the results comparable, insight on
these specific differences might get lost. Lastly, visualizations can be targeted to-
wards a certain audience, being more specific for experts, or more intuitive for the
broader public. For this reason, participants of a user study are often chosen from
the specific audience, introducing a bias towards the background and knowledge the
participants have. If the goal is to create comparable results, the distribution of par-
ticipants would need to be as general as possible, introducing additional problems
like participants not having the background knowledge required to, e.g., benefit from
a visualization in the medical domain. Independent of the mentioned shortcomings,
we might be able to come up with some general statements that provide insight
into the users’ mental model and opinion about the visualization given their data
and purpose they operate on, similar to the System Usability Score introduced by
Brooke [9]. The interpretation of such a score, as in this case demonstrated by Ban-
gor et al. [2], can lead to a description of the general performance of a visualization,
and bring us closer to a common basis for comparability across fields.

Perceptual studies in particular provide more general means by analyzing the
human vision and ranking different visual channels based on their capability of pre-
senting information. They build a fundamental understanding of the basic principles
of visualization and are applicable to all kinds of visualization types. So far, we
merely understand low-level perceptual processes. This fact limits the applicability
of perceptual studies to make general statements about visualizations and predict
their usability. Meta-perceptual metrics, on the other hand, try to evaluate higher-
level features independent of the specific visual encoding. Aesthetics, engagement,
and enjoyment have a major impact on the way users interact with the visualiza-
tion and on how the gained knowledge is memorized. Despite several efforts taken
in this direction, these measures have mostly been explored in information visual-
ization and require further research in other fields like, e.g., scientific visualization.
When we have a better understanding of how these phenomena behave in different
visualization types, we can build a more general theory and learn from the insights
gained. In addition to already mentioned measures, proxy measures can be used to
quantify properties that are otherwise hard to observe. The idea is to find a measur-
able property that strongly correlates with the phenomenon we want to analyze.

As a reflection of a discussion panel on how to pursue theoretical research in vi-
sualization, Chen et al. [13] described different evaluation approaches and how they
can contribute to a theoretical foundation. Taxonomies classify objects of interest,
such as data types, visual encodings, user tasks, or interaction techniques into groups
and subgroups. Ontologies then describe additional relationships between these dif-
ferent groups and entities, providing a more detailed picture of the underlying inter-
actions. Guidelines describe the quality of a certain approach and make statements
about which practices should or should not be used in order to achieve a desired out-
come. The authors argue that guidelines need to be evaluated and refined over time,
as well as transformed into quantitative laws when applicable. VisGuides [20, 1]
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provides a platform to openly discuss guidelines in visualization and allow for their
continuous refinement. When a guideline has shown to be useful over the years,
it can be established as a principle. Conceptual models describe a general idea or
understanding of how certain processes or systems work in order to reason about
their structure and functioning. For example, a perceptual model describes how we
think the human visual system works, which allows us to derive conclusions and
best practices, although we have not fully understood this system yet. Such models
can further be supported by mathematical frameworks, like information theory. In
our opinion, the combination of quantitative measures and a mathematical frame-
work can form the basis of more general models of visualization. These can then be
used to reason about causal relationships and make testable predictions. We believe,
that the main goal of our community should be to unify existing approaches into
larger theories about visualization that incorporate acquired knowledge into a more
general understanding of the subject itself. Sacha et al. [45] demonstrated how per-
ceptual and theoretical frameworks, as well as guidelines, can be combined into a
model for understanding the process of knowledge generation. We should continue
this line of thought to further integrate quality and meta-perceptual measures into
theoretical frameworks and to create general models of the visualization process.
By continuously verifying and refining these models, we can continuously advance
visualization theory and strengthen the research field for greater accomplishments
to come.

3.5 Conclusion

Other research fields have shown how incremental refinement and verification of
theoretical models can lead to major leaps in knowledge and understanding. In vi-
sualization, we have seen several promising attempts towards a theoretical founda-
tion, as well as greater acknowledgement and presence of theoretical papers. We
can learn from other scientific disciplines and bear in mind that the formulation of a
theory and definition of measures in visualization do not need to be perfect from the
very beginning. Practical barriers, like not being able to compute a measure due to
technical limitations, should not prevent us from suggesting and formulating such
concepts. Many important milestones in scientific history, like Einstein’s general
relativity or Feynman’s quantum electrodynamics, have been postulated much ear-
lier than they could be verified. Similarly, Fermat’s Last Theorem took 358 years
from its proposition to a mathematical proof. Such theories allow us to state our as-
sumptions, formulate predictions, and develop technological advances, even if they
are not well-verified or ”proven” yet. Evaluation efforts can be made not only to
assess specific visualization techniques or applications, but to empirically test the-
ories. Based on such continuously validated and refined theories, we are optimistic
that we will eventually be able to evaluate and compare visualization techniques on
a more general level, predict how users will perceive and interact with the visualiza-
tion, and develop new visualization techniques for better decision making.
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