
VolumeShop: An Interactive System for Direct Volume Illustration

Stefan Bruckner M. Eduard Gröller∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Austria

(a) (b)

Figure 1: Annotated direct volume illustrations of a carp. (a) The swim bladder is highlighted using cutaways and ghosting. (b) The swim
bladder is displayed enlarged.

ABSTRACT

Illustrations play a major role in the education process. Whether
used to teach a surgical or radiologic procedure, to illustrate nor-
mal or aberrant anatomy, or to explain the functioning of a tech-
nical device, illustration significantly impacts learning. Although
many specimens are readily available as volumetric data sets, par-
ticularly in medicine, illustrations are commonly produced manu-
ally as static images in a time-consuming process. Our goal is to
create a fully dynamic three-dimensional illustration environment
which directly operates on volume data. Single images have the
aesthetic appeal of traditional illustrations, but can be interactively
altered and explored. In this paper we present methods to realize
such a system which combines artistic visual styles and expressive
visualization techniques. We introduce a novel concept for direct
multi-object volume visualization which allows control of the ap-
pearance of inter-penetrating objects via two-dimensional transfer
functions. Furthermore, a unifying approach to efficiently integrate
many non-photorealistic rendering models is presented. We dis-
cuss several illustrative concepts which can be realized by com-
bining cutaways, ghosting, and selective deformation. Finally, we
also propose a simple interface to specify objects of interest through
three-dimensional volumetric painting. All presented methods are
integrated into VolumeShop, an interactive hardware-accelerated
application for direct volume illustration.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Viewing algorithms

Keywords: illustrative visualization, volume rendering, fo-
cus+context techniques

∗e-mail: {bruckner | groeller}@cg.tuwien.ac.at

1 INTRODUCTION

A considerable amount of research has been devoted to developing,
improving and examining direct volume rendering algorithms for
visualization of scientific data. It has been shown that volume ren-
dering can be successfully used to explore and analyze volumetric
data sets in medicine, biology, engineering, and many other fields.
In recent years, non-photorealistic or illustrative methods employed
to enhance and emphasize specific features have gained popularity.
Although we base our paper on this large body of research, our
focus is somewhat different. Instead of using these techniques to
improve the visualization of volume data for common applications
such as diagnosis, we want to combine existing and new methods
to directly generate illustrations, such as those found in medical
textbooks, from volumetric data.

Illustrations are an essential tool in communicating complex re-
lationships and procedures in science and technology. However, the
time needed to complete an illustration is considerable and varies
widely depending on the experience and speed of the illustrator and
the complexity of the content. The more complicated the subject
matter, the longer it will take the illustrator to research and solve a
complex visual problem. Different illustration methods and styles
can also have a significant impact on the time involved in the cre-
ation of an illustration. Therefore, illustrators are increasingly us-
ing computer technology to solve some of these problems. This,
however, is mostly restricted to combining several manually cre-
ated parts of an illustration using image processing software.

Volume rendering has gained some attention in the illustration
community. For example, Corl et al. [4] describe the use of volume
rendering to produce images as reference material for the manual
generation of medical illustrations. We aim to take this develop-
ment one step further. Our goal is to create a fully dynamic three-
dimensional volume-based illustration environment where static
images have the aesthetic appeal of traditional illustrations. The
advantages of such a system are manifold: Firstly, the whole pro-
cess of creating an illustration is accelerated. Different illustration
methods and techniques can be explored interactively. It is easy to
change the rendering style of a whole illustration - a process that

would otherwise require a complete redrawing. Moreover, the re-
search process is greatly simplified. Provided that the object to be
depicted is available as a volumetric data set, it can be displayed
with high accuracy. Based on this data, the illustrator can select
which features he wants to emphasize or present in a less detailed
way. Illustration templates can be stored and reapplied to other data
sets. This allows for the fast generation of customized illustrations
which depict, for instance, a specific pathology. Finally, the illus-
tration becomes more than a mere image. Interactive illustrations
can be designed where a user can select different objects of interest
and change the viewpoint.

This paper is subdivided as follows: In Section 2 we discuss
related work. Section 3 gives a conceptual overview of our ap-
proach. In Sections 4, 5, and 6, we cover in detail the three fun-
damental building blocks of our direct volume illustration system,
multi-object volume rendering, illustrative enhancement, and se-
lective illustration, respectively. Section 7 discusses strategies and
results for an efficient implementation of the presented concepts.
The paper is concluded in Section 8.

2 RELATED WORK

Non-photorealistic or illustrative rendering methods are a very ac-
tive field of research. In volume visualization, Levoy [14] was the
first to propose modulation of opacity using the magnitude of the
local gradient. This is an effective way to enhance surfaces in vol-
ume rendering, as homogeneous regions are suppressed. Based on
this idea, Rheingans and Ebert [19] present several illustrative tech-
niques which enhance features and add depth and orientation cues.
They also propose to locally apply these methods for regional en-
hancement. Using similar methods, Lu et al. [15] developed an in-
teractive volume illustration system that simulates traditional stip-
ple drawing. Csébfalvi et al. [5] visualize object contours based on
the magnitude of local gradients as well as on the angle between
viewing direction and gradient vector using depth-shaded maxi-
mum intensity projection. Lum and Ma [16] present a hardware-
accelerated approach for high-quality non-photorealistic rendering
of volume data. Exploring the variety of traditional illustration
styles, selective emphasis of certain structures is an important tech-
nique. The concept of two-level volume rendering, proposed by
Hauser et al. [8], allows focus+context visualization of volume
data. Different rendering styles, such as direct volume rendering
and maximum intensity projection, are used to emphasize objects of
interest while still displaying the remaining data as context. Meth-
ods for combining multiple volume data sets have been investigated
in the context of multi-modal data. For instance, Cai and Sakas [2]
discuss different methods for data intermixing in volume render-
ing. Wilson et al. [25] propose a hardware-accelerated algorithm for
multi-volume visualization. Leu and Chen [13] present a system for
modeling scenes consisting of multiple volumetric objects which is
restricted to non-intersecting volumes. The approach by Grimm et
al. [7] uses alternating sampling for combining multiple volumes in
dynamic scenes. An automated way of performing clipping opera-
tions has been presented by Viola et al. [23]. Inspired by cut-away
views, which are commonly used in technical illustrations, they ap-
ply different compositing strategies to prevent an object from being
occluded by a less important object. Konrad-Verse et al. [10] per-
form clipping using a mesh which can be flexibly deformed by the
user with an adjustable sphere of influence. Zhou et al. [27] pro-
pose the use of distance to emphasize and de-emphasize different
regions. Lum and Ma [17] use two-dimensional scalar-based light-
ing transfer functions to enhance material boundaries using illumi-
nation. Volume sculpting, proposed by Wang and Kaufman [24],
enables interactive carving of volumetric data. Islam et al. [9] dis-
cuss methods for spatial and temporal splitting of volume data sets.

multi-object

volume rendering

illustrative

enhancement

selective

illustration

data

volume

selection

volume
sample

data

meta

information

sample

data

meta

information

acquisition

device

user

input

output

image

Figure 2: Conceptual overview of our direct volume illustration envi-
ronment.

3 OVERVIEW

The architecture of VolumeShop, our direct volume illustration sys-
tem, discriminates between two basic types of volumes: data vol-
umes and selection volumes. A data volume stores the actual scalar
field, for example acquired by a CT scanner. A selection volume
specifies a particular structure of interest in a corresponding data
volume. It stores real values in the range [0,1] where zero means
”not selected” and one means ”fully selected”. While both multiple
data and selection volumes can be defined, only one pair is active
at a time. Both volumes are stored in a bricked memory layout us-
ing reference counting, i.e., they are subdivided into small cubes
which are accessed using an index data structure. Redundant infor-
mation is not duplicated, thus, if two bricks contain the same data,
they are stored in memory only once. The copy-on-write idiom is
used for handling modifications. This is most useful for the selec-
tion volume due to its sparse nature. Furthermore, several pieces
of meta information (e.g., min-max octrees, bounding boxes, and
transformations) are stored for both volumes and updated on mod-
ification. This allows, for instance, the quick extraction of tight
bounding volumes, which are used to skip empty space during ren-
dering. At the heart of the system lies a multi-object volume render-
ing algorithm which is responsible for the concurrent visualization
of multiple user-defined volumetric objects. It makes use of illus-
trative enhancement methods and selective illustration techniques
defining the visual appearance of objects. A conceptual overview
of our system is given is Figure 2. In the following sections, we
will describe each of these components in detail.

4 MULTI-OBJECT VOLUME RENDERING

When illustrating a volumetric data set, we want to enable interac-
tive selection and emphasis of specific features. The user should
be able to specify a region of interest which can be highlighted and
transformed, similar to common image editing applications. We
also want to permit arbitrary intersections between objects and con-
trol how the intersection regions are visualized.

Our approach identifies three different objects for the interaction
with a volumetric data set: a selection is a user-defined focus re-
gion, the ghost corresponds to the selection at its original location,
and the background is the remaining volumetric object. A transfor-
mation T can be applied to the selection, e.g., the user can move,
rotate, or scale this object. While the concept of background and se-
lection is used in nearly every graphical user interface, ghosts nor-

background ghost selection

selection
sets

volume
sets

object
sets

Figure 3: Overview of the basic multi-object combination process for
background, ghost, and selection: the intersection between selection
sets and volume sets results in object sets which are then combined.

mally exist, if at all, only implicitly. In the context of illustration,
however, such an explicit definition of a ghost object is advanta-
geous.

We assume a scalar-valued volumetric function fV and a selec-
tion function fS, which are defined for every point p in space. The
selection function fS has a value in [0,1] which indicates the de-
gree of selection. Based on this degree of selection we define three
fuzzy selection sets SS, SG, and SB (see Figure 3, first row) with
their respective membership functions µS, µG, and µB:

µSS
(p) = fS(T (p))

µSG
(p) = fS(p)

µSB
(p) = 1− fS(p)

(1)

where T is the transformation that has been applied to the selec-
tion.

To control the appearance of our three objects, i.e., selection,
ghost, and background, we define color and opacity transfer func-
tions based on the values of fV , which we denote cS, αS, cG, αG,
and, cB, αB. We use the opacity transfer functions to define the
membership functions of three volume sets, VS, VG, and VB (see
Figure 3, second row):

µVS
(p) = αS(fV (T (p)))

µVG
(p) = αG(fV (p))

µVB
(p) = αB(fV (p))

(2)

For each of our three objects we can now define an object set
as the intersection between the corresponding selection and volume
set (see Figure 3, third row):

S = SS ∩VS

G = SG ∩VG

B = SB ∩VB

(3)

These sets correspond to our basic objects selection, ghost, and
background. Thus, in the following we will use these terms to refer
to the respective object sets and vice versa. For volume rendering,
we now need a way to determine the color and opacity at a point p
in space depending on its grade of membership in these sets. We
assume n sets X1,X2, . . . ,Xn and their corresponding color transfer
functions c1,c2, . . . ,cn. We can then define the color at a point p
as a weighted sum using the respective membership functions as
weights:

c(p) =

n

∑
i=1

ci(p)·µi(p)

n

∑
i=1

µi(p)
(4)

As the membership functions of our sets are based on the opacity
and the degree of selection, we define the opacity at p as the grade
of membership in the union of all sets:

α(p) = µX1∪X1∪...∪Xn
(p) (5)

Using Equations 4 and 5 for our three sets S, G, and B and the
color transfer functions cS, cG, and cB leads to a meaningful com-
bination of colors and opacities when used in direct volume render-
ing. However, we want to provide the user with additional control
over the appearance of regions of intersection. Frequently, for ex-
ample, illustrators emphasize inter-penetrating objects when they
are important for the intent of the illustration.

To achieve this we first need to identify potential regions of in-
tersection. According to our definitions B∩G = /0, i.e., background
and ghost never intersect. The selection, however, can intersect
either the background, the ghost, or both. Thus, we direct our at-
tention to the sets GS = G∩ S and BS = B∩ S . For every point
which is a member of one of these sets, we want to be able to spec-
ify its appearance using special intersection transfer functions for
color and opacity. Thus, we define two new sets VGS and VBS with
the following membership functions:

µVGS
(p) = αGS(fV (p), fV (T (p))

µVBS
(p) = αBS(fV (p), fV (T (p))

(6)

The intersection transfer functions are two-dimensional. Their
arguments correspond to the value of volumetric function fV at
point p and at T (p), the value of the function at p transformed
by the selection transformation T . Based on these two sets, we now

define two alternative sets ĜS and B̂S for the regions of intersection:

µ
ĜS

(p) =

{
0 µGS(p) = 0

µSG∩SS∩VGS
(p) otherwise

µ
B̂S

(p) =

{
0 µBS(p) = 0

µSB∩SS∩VBS
(p) otherwise

(7)

To evaluate the combined color and opacity at a point p in space,

we use Equation 4 and 5 with the sets S − (ĜS ∪ B̂S), G − ĜS,

B− B̂S, ĜS, and B̂S and the respective color transfer functions cS,
cG, cB, cGS, and cBS. We use the standard definitions for fuzzy
set operators where the minimum operator is used for the intersec-
tion and the maximum operator is used for the union of two fuzzy
sets [26].

The intersection transfer functions can be used to control the
color and opacity in the region of intersection between two objects
based on the scalar values of both objects. In our implementation
we provide a default setting which is an opacity-weighted average
between the one-dimensional color transfer functions of the two re-
spective objects (background and selection, or ghost and selection).
Further, we provide presets where the opacity is computed from the
one-dimensional opacity transfer functions by one of the composit-
ing operators derived by Porter and Duff [18]. The color can be

Figure 4: Using intersection transfer functions to illustrate implant
placement in the maxilla. As the selection (green) is moved into the
ghost (faint red), the intersection transfer function causes it to be
displayed in blue.

specified arbitrarily. Additionally, the user can paint on the two-
dimensional function using a gaussian brush to highlight specific
scalar ranges. Figure 4 shows an example where the ghost/selection
intersection transfer function is used to illustrate the placement of
an implant in the maxilla. This kind of emphasis is not only use-
ful for the final illustration, but can act as a kind of implicit visual
collision detection during its design.

While we use the concept presented in this section for concurrent
visualization of multiple objects derived from the same data set,
this restriction is not necessary - objects could also be derived from
multiple data sets. The approach could be straight-forwardly used
for general multi-volume visualization. However, we note that the
use of intersection transfer functions might not be feasible in a setup
consisting of a large number of objects. Increasing the number of
objects will quickly lead to a combinatorial explosion in the number
of possible regions of intersection. In such a case the objects for
which such a fine-grained control is required should be limited by
application-specific constraints.

5 ILLUSTRATIVE ENHANCEMENT

Illustration is closely related to non-photorealistic rendering meth-
ods, many of which attempt to mimic artistic styles and techniques.
In this section we present a simple approach which integrates sev-
eral presented models and is thus well-suited for a volume illus-
tration system. Most illumination models use information about
the angle between normal, light vector and viewing vector to de-
termine the lighting intensity. In volume rendering, the directional
derivative of the volumetric function, the gradient, is commonly
used to approximate the surface normal. Additionally, the gradient
magnitude is used to characterize the ”surfaceness” of a point; high
gradient magnitudes correspond to surface-like structures while low
gradient magnitudes identify rather homogeneous regions. Numer-
ous distinct approaches have been presented that use these quanti-
ties in different combinations to achieve a wide variety of effects.
Our goal is to present a computationally inexpensive method which
integrates many of these models.

We define a two-dimensional lighting transfer function. The ar-
guments of this function are the dot product between the normalized
gradient N̂ and the normalized light vector L̂ and the dot product be-
tween the normalized gradient and the normalized half-way vector
Ĥ, where Ĥ is the normalized sum of L̂ and the normalized view
vector V̂ . A two-dimensional lookup table stores the ambient, dif-
fuse, and specular lighting contributions for every N̂ · L̂ and N̂ · Ĥ
pair. Additionally, a fourth component used for opacity enhance-
ment is stored. Shading is then performed by using these four val-
ues in the following way to compute the shaded color cs and shaded
opacity αs:

cs = (sa(N̂ · L̂, N̂ · Ĥ)+ sd(N̂ · L̂, N̂ · Ĥ)) · cu + ss(N̂ · L̂, N̂ · Ĥ)
αs = (min(1,sα (N̂ · L̂, N̂ · Ĥ)+(1−|N|)))−1 ·αu

(8)

N Lˆ ˆ

N Hˆ ˆ

N Lˆ ˆ

N Hˆ ˆ

(a) (b)

N Lˆ ˆ

N Hˆ ˆ

N Lˆ ˆ

N Hˆ ˆ

(c) (d)

Figure 5: The same data set rendered with four different lighting
transfer functions (the lighting transfer function for each image are
displayed in the lower left corner - ambient, diffuse, specular, and
opacity enhancement components are encoded in the red, green, blue,
and alpha channel, respectively). (a) Standard Phong-Blinn lighting.
(b) Phong-Blinn lighting with contour enhancement. (c) Cartoon
shading with contour enhancement. (d) Metal shading with contour
enhancement.

where cu and αu are the unshaded color and opacity, and sa, sd ,
and ss are the shading transfer function components for ambient,
diffuse, and specular lighting contributions. The opacity enhance-
ment component of the transfer function denoted by sα is combined
with the gradient magnitude |N| to modulate the unshaded opacity
value (we assume that the gradients have been scaled such that |N|
is between zero and one).

We use the terms ”ambient”, ”diffuse”, and ”specular” to illus-
trate the simple correspondence in case of Phong-Blinn lighting.
However, the semantics of these components are defined by the
model used for generation of the lighting transfer function. Thus,
a lighting transfer function might use these terms to achieve effects
completely unrelated to ambient, diffuse, and specular lighting con-
tributions. In a similar matter, when examining Equation 8 it can be
seen that the ambient and diffuse components could be combined
without loss. We only choose to keep them separate for the sake of
consistency and simplicity.

It is straight-forward to use this kind of lighting transfer function
for common Phong-Blinn lighting. However, many other models
can also be specified in this way and evaluated at constant costs.
For example, contour lines are commonly realized by using a dark
color where the dot product between gradient and view vector N̂ ·V̂
approaches zero, i.e., these two vectors are nearly orthogonal. If we

have N̂ · L̂ and N̂ · Ĥ with Ĥ = L̂ +V , then N̂ ·V̂ = 2(N̂ · Ĥ)− N̂ · L̂.
We can thus create a lighting transfer function where we set ambi-
ent, diffuse and specular components to zero where N̂ · L̂≈ 2(N̂ ·Ĥ).
One advantage of this approach is that artifacts normally intro-
duced by using a threshold to identify contour lines can be reme-
died by smoothing them in the lighting transfer function (e.g., us-
ing a gaussian) with no additional costs during rendering. Using
the opacity enhancement component of the lighting transfer func-
tion also allows for a meaningful combination of contour enhance-

ment and transparency: the opacity of contour regions is increased,
but only where the gradient magnitude is high. Without taking the
gradient magnitude into account opacity enhanced contour lines
would lead to a cluttered image in translucent views. This is due
to rapidly varying gradient directions in nearly homogeneous re-
gions. Pure gradient-magnitude opacity-enhancement without di-
rectional dependence just requires a constant sα . Other methods,
such as cartoon shading [3] or metal shading [6] can be realized
straight-forwardly and combined with effects like contour enhance-
ment. Figure 5 shows an image rendered using four different light-
ing transfer functions.

6 SELECTIVE ILLUSTRATION

In this section we present techniques for selective illustration. Se-
lective illustration techniques are methods which aim to emphasize
specific user-defined features in a data set using visual conventions
commonly employed by human illustrators. They are closely re-
lated to focus+context approaches frequently found in information
visualization. The general idea is to highlight the region of interest
(focus) without completely removing other information important
for orientation (context).

6.1 Volume Painting

Volume Segmentation, i.e., the identification of individual objects
in volumetric data sets is an area of extensive research, especially
in medical imaging applications. Approaches range from very gen-
eral methods to algorithms specifically designed to identify certain
structures. An important criterion is the exactness of the segmenta-
tion, i.e., the ratio between correctly and incorrectly classified vox-
els. In practice, due to limited information, this criterion is difficult
to measure. For volume illustration, however, voxel-exact classifi-
cation of features is not necessarily of primary concern. Rather, it is
important that the illustrator can quickly and easily add and remove
structures of interest to and from the selection. Furthermore, as
our approach is based on a fuzzy selection function, this fuzzyness
should be also supported by the selection definition method. For
this reason, we use a simple three-dimensional volumetric paint-
ing approach for selection definition. When the user clicks on the
image, a ray is cast from the corresponding position on the im-
age plane into the data volume. At the first non-transparent voxel
that is intersected by the ray, a volumetric brush (e.g., a three-
dimensional gaussian) is ”drawn” into the selection volume for each
non-transparent voxel within the bounding box of the brush. Dif-
ferent composition methods can be chosen, for example addition
(i.e., actual painting) or subtraction (i.e., erasing). We have found
that this approach is intuitive and capable of achieving good results
in a short time: the user specifies a transfer function which dis-
plays the object of interest and then just paints on it until it is fully
selected. However, it is clear that a real-world application should
also include more sophisticated algorithms. Just like image editing
software normally supports manual and semi-automatic selection
mechanisms (e.g., the common ”magic wand tool”), a volume il-
lustration system should include volume painting as well as region
growing or watershed segmentation.

6.2 Cutaways and Ghosting

Cutaways (also referred to as cut-away views) are an important tool
commonly employed by illustrators to display specific features oc-
cluded by other objects. The occluding object is cut out to reveal the
structure of interest. Viola et. al. [22] introduced importance-driven
volume rendering, a general framework for determining which ob-
ject is to be cut by using an importance function. Our simplified

(a) (b) (c)

Figure 6: Different degrees of ghosting - from no ghosting (a) to full
cutaway (c).

(a) (b)

Figure 7: Using different artistic visual conventions. (a) Illustrating
a tumor resection procedure using an automatically generated arrow.
(b) Detailed depiction of a hand bone using a fan.

three-object setup allows static definition of this importance func-
tion, which enables us to skip costly importance compositing and
thus allows for an efficient implementation. Cutaways are only per-
formed on the background and can be independently defined for
ghost and selection.

Ghosting refers to a technique which is frequently used in con-
junction with cutaways. Instead of removing the occluding regions
completely, opacity is selectively reduced in a way which attempts
to preserve features such as edges. This tends to aid mental recon-
struction of these structures and generally gives a better impression
of the spacial location of the object in focus. In our approach, the
user can smoothly control the degree of ghosting from no ghost-
ing (opacity is not reduced at all) to full cutaway view (occluding
structures are completely suppressed) as shown in Figure 6. This
is achieved by combining a user-defined ghosting factor with the
opacity-enhancement component of the lighting transfer function.
Thus, for a lighting transfer function which enhances the opacity of
contours, increasing the degree of ghosting will preserve these re-
gions. Again, in the context of importance-driven volume rendering
this approach can be seen as a special level-of-sparseness which is
designed to closely correspond to traditional illustration techniques.

6.3 Visual Conventions and Interaction

As the selection can undergo a user-defined transformation there
are a number of possibilities for combining the effects of transfer
functions, cutaways and ghosting, and spacial displacement. In its
simplest form, this can be used to illustrate the removal or insertion
of an object. Furthermore, ”magic views” on a structure of interest
can be generated, where the object is displayed using a different
degree of detail, orientation, or rendering style.

Illustrators commonly employ certain visual conventions to indi-
cate the role of an object in their works. In our illustration environ-
ment, we provide the user with different kinds of visual enhance-
ments inspired by these conventions:

Boxes: For three-dimensional interaction, bounding boxes provide
useful cues on the position and orientation of an object if oc-
clusions are handled correctly. The display of bounding boxes

is most useful when the selection is arranged during the design
of an illustration. For the presentation of the illustration, how-
ever, the bounding boxes can be distracting and potentially
occlude important details.

Arrows: Arrows normally suggest that an object actually has been
moved during the illustrated process (e.g., in the context of
a surgical procedure) or that an object needs to be inserted
at a certain location (e.g., in assembly instructions). Analo-
gously, we use arrows to depict the translation between ghost
and selection, i.e., the arrow is automatically drawn from the
object’s original position to its current location. To avoid
very short arrows in case the selection and the ghost project
to nearby positions in image space, we use the screen-space
depth difference to control the curvature of the arrow. This
leads to the kind of bent arrows frequently found in illustra-
tions. Figure 7 (a) shows an example for the use of arrows.

Fans: A fan is a connected pair of shapes, such as rectangles or
circles, used to indicate a more detailed or alternative depic-
tion of a structure. It can be easily constructed by connecting
the screen-space bounding rectangles of ghost and selection.
In combination with cutaways and ghosting, this type of en-
hancement can lead to very expressive visualizations, depict-
ing, for example, two different representations of the same
object (see Figure 7 (b)).

Apart from controlling visual appearance, it is useful to provide
different interaction types based on the role of an object in the il-
lustration. A selection can be in one of three states which influence
the way it behaves in relation to the remaining scene:

Integrated: The selection acts as fully belonging to the three-
dimensional scene. This is intuitive, but has certain draw-
backs. For example, when the viewpoint is rotated, the se-
lection’s movement is dependent on its distance to the origin.
It can easily move out of the viewport or can be occluded by
other objects.

Decoupled: The opposite to the integrated approach is to fully de-
couple the selection from the scene. It can be independently
manipulated and is not affected by the viewing transforma-
tion. This is, for instance, useful when it is required to depict
an object at a specific orientation regardless of the viewing
transformation.

Pinned: A useful hybrid between the two modes above is to allow
the object to be pinned to its current position in image space.
Its on-screen location remains static, but it is still affected by
rotations. A rotation of the viewpoint causes the same relative
rotation of the object. For example, this can be used to gen-
erate a special view which always shows the part of an object
facing away from the viewer in the background object.

6.4 Annotations

Hand-made illustrations in scientific and technical textbooks com-
monly use labels or legends to establish a co-referential relation
between pictorial elements and textual expressions. As we allow
multiple selections to be defined, annotations are important for both
recreating the appearance of static illustrations and simplifying ori-
entation in our interactive environment. For placing annotations we
need their screen-space bounding rectangles and anchor points. We
use the following guidelines to derive a simple layout algorithm for
optically pleasing annotation placement (for a more complete de-
scription of annotation layout styles and guidelines refer to [1]):

• Annotations must not overlap.

Figure 8: Annotated illustration of a human foot - the current selec-
tion is highlighted.

• Connecting lines between annotation and anchor point must
not cross.

• Annotations should not occlude any other structures.

• An annotation should be placed as close as possible to its an-
chor point.

In many textbook illustrations, annotations are placed along the
silhouette of an object to prevent occlusions. We can approximate
this by extracting the convex hull of the projections of the bound-
ing volumes of all visible objects. The resulting polygon is radially
parameterized. Thus, the position of an annotation is defined by
one value in the range [0,1]. Based on its location in parametric
space, a label is always placed in such a way that it remains outside
the convex hull. All annotations are initially placed at the position
along the silhouette polygon which is closest to their respective an-
chor point. We then use a simple iterative algorithm which consists
of the following steps:

1. If the connection lines of any two labels intersect, exchange
their positions.

2. If exchanging the positions of two labels brings both closer to
their anchor points, exchange their positions.

3. If a label overlaps its predecessor, it is moved by a small delta.

These three steps are executed until either all intersections and
overlaps are resolved or the maximum number of iterations has
been reached. Remaining intersections and overlaps are handled
by disabling annotations based on priority. We use the screen-space
depth of the anchor point to define these priorities, i.e., annotations
whose reference structures are farther away will be disabled first.
While this basic algorithm does not result in an optimal placement,
it is very fast for a practical number of labels (usually no more than
30 annotations are used in a single illustration) and generally leads
to a visually pleasing layout. Due to the initialization of annotation
locations at the position on the silhouette closest to the anchor point,
the annotations generally move smoothly in animated views. Dis-
continuities only occur when intersections and overlaps need to be
resolved. As some annotated structures might not be visible from
every viewpoint, we use the screen-space depth of the anchor point
to control the opacity of the connection line between anchor point
and label. Figure 8 shows an annotated illustration of a human foot
highlighting the current selection.

Figure 9: Screenshot of VolumeShop (http://www.cg.tuwien.ac.
at/volumeshop) during operation.

7 IMPLEMENTATION

In this section, we briefly describe the implementation of our algo-
rithm for illustrative multi-object volume rendering with support for
cutaways and ghosting. It is integrated into VolumeShop, a proto-
type application for interactive direct volume illustration (see Fig-
ure 9). VolumeShop has been implemented in C++ and Cg using
OpenGL. While we have clear indications that the current version
of NVidia’s Cg compiler does not produce optimal code in all cir-
cumstances, we have refrained from hand-optimizing assembly lan-
guage shaders for the sake of portability.

It is possible to implement all presented methods in one sin-
gle rendering pass. However, this would introduce considerable
computational overhead, as, for example, multi-object compositing
would have to be performed for every sample point even if it only
intersects one object. While current graphics hardware supports dy-
namic branching, it still introduces severe performance penalties. It
is therefore favorable to choose a multi-pass approach. A well-
established strategy is to use the early-z culling capability of mod-
ern hardware for computational masking. Employing this approach
we can identify those regions where less work has to be performed
and use simplified vertex and fragment programs in these areas.

We can quickly extract bounding volumes for background, ghost,
and selection by traversing our hierarchical data structures and ren-
dering the corresponding geometry. Initially, we set up two depth
maps by rendering the bounding volumes of ghost and selection
each into a separate depth texture with the depth test set to LESS.
These depth maps are used in the subsequent rendering passes
to discard fragments, thus emulating a two-sided depth test. For
smooth cutaways we additionally filter these depth maps using a
large kernel.

In principle, our implementation is comprised of three volume
rendering passes using three sets of vertex and fragment programs
with increasing complexity:

Background pass: The first volume rendering pass is responsible
for the background object. We set the depth test to LESS
and render the bounds of the background object into the depth
buffer. Depth buffer writes are then disabled to take advantage
of early-z culling and the depth test is set to GREATER. Thus,
empty space up to the first intersection point of a viewing
ray with the background bounding volume is skipped with-
out executing the fragment program. We then render view-
aligned slices in back-to-front order and perform shading in a

fragment program. Shadow mapping hardware is used to dis-
card fragments whose depth is greater or equal than the corre-
sponding value of the ghost or selection depth texture. Thus,
regions which might contain the ghost and/or the selection are
effectively cut out from the background object.

Ghost pass: In the second volume rendering pass we start by clear-
ing the depth buffer and rendering the bounding volume of
the ghost object with the depth test set to GREATER. Then
depth buffer writes are disabled again and the depth test is
set to LESS. The fragment program needs to perform shad-
ing for background and ghost. Fragments whose depth value
is greater or equal than the corresponding value of the selec-
tion depth map are discarded. If cutaways are enabled then
the opacity of the background is additionally modulated by a
user-defined ghosting factor for fragments whose depth value
is greater or equal than the corresponding value of the ghost
depth map.

Selection pass: For the final pass we render the selection bounds
into the cleared depth buffer with the depth test set to
GREATER. Depth buffer writes are then disabled again and
the depth test is set to LESS. The selection transformation
is handled by passing in two sets of texture coordinates:
one unmodified set for background and ghost, and an ad-
ditional set for the selection which is transformed accord-
ingly. In the fragment program we need to perform shad-
ing for background, selection, and ghost. We also handle
background/selection and ghost/selection intersections by us-
ing the colors and opacities defined in the intersection trans-
fer functions. For cutaways, the background’s opacity is addi-
tionally modulated for fragments whose depth value is greater
or equal than the corresponding values in one or both of the
depth maps.

For handling of intersections with opaque geometry an addi-
tional depth map is generated before the background pass. The
color contributions of the geometry are blended into the frame
buffer. The depth texture is used in all three rendering passes to dis-
card fragments which are occluded by geometry. Visual enhance-
ments are either displayed as real three-dimensional objects with
correct intersection handling (e.g., bounding boxes) or as overlays
(e.g., fans). As larger selections will require more fragments to be
processed in the more complex rendering passes, the performance
of the presented algorithm mainly depends on the size of the se-
lection. Thus, if no selection has been defined we achieve almost
the same frame rates as conventional slice-based volume rendering
due to the effectiveness of early-z culling. Selections, by definition,
typically will be rather small compared to the background. Addi-
tionally, if we can determine that the selection does not intersect
background or ghost (e.g., by means of a simple bounding box test)
we execute a simplified fragment program in the selection pass.

For obtaining performance results we used the following setup:
The chosen data set was the standard UNC CT head (2563) ren-

dered using
√

3 ·2562 ≈ 444 slices - a realistic number for high-
quality rendering. The selection was set to a cube sized 163, 323,
and 643 voxels centered in the middle of the data set. The selection
transformation was set to identity. The transfer functions for back-
ground, ghost, and selection were set to zero opacity for values up
to 1228 and to an opacity of one for all values above. The frame
rates given in Table 1 are average figures for three 360◦ rotations
about the x-,y-, and z-axis for a 5122 viewport. An Intel Pentium 4
3.4 GHz CPU and an NVidia GeForce 6800 GT GPU were used to
obtain these measurements.

These results indicate that our approach is well-suited for high-
quality rendering in interactive applications. In the future, we ex-
pect to further increase the rendering performance by integrating
early ray termination as proposed by Krüger and Westermann [11].

selection frame rate

none 8.28

163 8.04

323 6.81

643 4.86

Table 1: Performance results for rendering 444 slices of the UNC CT
head (2563) using different selection sizes.

8 CONCLUSION AND FUTURE WORK

In this work, we introduced the general concept of a direct
volume illustration environment. Based on this concept, Vol-
umeShop (http://www.cg.tuwien.ac.at/volumeshop), an in-
teractive system for the generation of high-quality illustrations from
volumetric data, has been developed. An intuitive three-object
setup for the interaction with volumetric data was discussed. We
contributed a general technique for multi-object volume render-
ing which allows for emphasis of intersection regions via two-
dimensional transfer functions. Furthermore, we introduced a uni-
fied approach to efficiently integrate different non-photorealistic il-
lumination models. Techniques for selective illustration were pre-
sented which combine cutaways and ghosting effects with artis-
tic visual conventions for expressive visualization of volume data.
In addition, we proposed volume painting as an interactive selec-
tion method and presented an algorithm for automated annotation
placement. A hardware-accelerated volume renderer was devel-
oped which combines the presented techniques for interactive vol-
ume illustration.

While we believe that the results achieved with our prototype
system are promising, a lot of work remains to be done. In the fu-
ture we aim to integrate further artistic styles and techniques for the
creation of aesthetically pleasing illustrations [20]. We also want
to investigate methods for automatically guiding viewpoint specifi-
cation [21] and light placement [12]. Finally, improved interaction
metaphors and techniques could significantly contribute to the us-
ability of a volume illustration system.

ACKNOWLEDGEMENTS

The work presented in this publication is carried out as part of the

exvisation project (http://www.cg.tuwien.ac.at/research/vis/

exvisation) supported by the Austrian Science Fund (FWF) grant no.

P18322. We would like to thank Sören Grimm and Ivan Viola for several

fruitful discussions. Furthermore, we thank the anonymous reviewers for

their valuable comments.

The carp data set is courtesy of Michael Scheuring, University of Er-

langen, Germany. The stag beetle data set has been provided by Georg

Glaeser, Vienna University of Applied Arts, Austria and Johannes Kastner,

Wels College of Engineering, Austria. The visible human data set is cour-

tesy of the Visible Human Project, National Library of Medicine, USA. The

engine block data set is courtesy of General Electric, USA.

REFERENCES

[1] K. Ali, K. Hartmann, and T. Strothotte. Label layout for interactive

3D illustrations. Journal of the WSCG, 13(1):1–8, 2005.

[2] W. Cai and G. Sakas. Data intermixing and multi-volume rendering.

Computer Graphics Forum, 18(3):359–368, 1999.

[3] J. Claes, F. Di Fiore, G. Vansichem, and F. Van Reeth. Fast 3D car-

toon rendering with improved quality by exploiting graphics hard-

ware. In Proceedings of Image and Vision Computing New Zealand

2001, pages 13–18, 2001.

[4] F. M. Corl, M.R. Garland, and E. K. Fishman. Role of computer tech-

nology in medical illustration. American Journal of Roentgenology,

175(6):1519–1524, 2000.

[5] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and M. E. Gröller. Fast

visualization of object contours by non-photorealistic volume render-

ing. Computer Graphics Forum, 20(3):452–460, 2001.

[6] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic

lighting model for automatic technical illustration. In Proceedings of

ACM SIGGRAPH 1998, pages 447–452, 1998.

[7] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller. Flexible di-

rect multi-volume rendering in interactive scenes. In Proceedings of

Vision, Modeling, and Visualization 2004, pages 386–379, 2004.

[8] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Gröller. Two-level vol-

ume rendering. IEEE Transactions on Visualization and Computer

Graphics, 7(3):242–252, 2001.

[9] S. Islam, S. Dipankar, D. Silver, and M. Chen. Spatial and temporal

splitting of scalar fields in volume graphics. In Proceedings of the

IEEE Symposium on Volume Visualization and Graphics 2004, pages

87– 94, 2004.

[10] O. Konrad-Verse, B. Preim, and A. Littmann. Virtual resection with

a deformable cutting plane. In Proceedings of Simulation und Visual-

isierung 2004, pages 203–214, 2004.

[11] J. Krüger and R. Westermann. Acceleration techniques for GPU-based

volume rendering. In Proceedings of IEEE Visualization 2003, pages

287–292, 2003.

[12] C. H. Lee, X. Hao, and A. Varshney. Light collages: Lighting design

for effective visualization. In Proceedings of the IEEE Visualization

2004, pages 281–288, 2004.

[13] A. Leu and M. Chen. Modelling and rendering graphics scenes com-

posed of multiple volumetric datasets. Computer Graphics Forum,

18(2):159–171, 1999.

[14] M. Levoy. Display of surfaces from volume data. IEEE Computer

Graphics and Applications, 8(3):29–37, 1988.

[15] A. Lu, C. J. Morris, D. S. Ebert, P. Rheingans, and C. Hansen. Non-

photorealistic volume rendering using stippling techniques. In Pro-

ceedings of IEEE Visualization 2002, pages 211–218, 2002.

[16] E. B. Lum and K.-L. Ma. Hardware-accelerated parallel non-

photorealistic volume rendering. In Proceedings of the International

Symposium on Non-photorealistic Animation and Rendering 2002,

pages 67–74, 2002.

[17] E. B. Lum and K.-L. Ma. Lighting transfer functions using gradient

aligned sampling. In Proceedings of IEEE Visualization 2004, pages

289–296, 2004.

[18] T. Porter and T. Duff. Compositing digital images. Computer Graph-

ics, 18(3):253–259, 1984.

[19] P. Rheingans and D. S. Ebert. Volume illustration: Nonphotorealistic

rendering of volume models. IEEE Transactions on Visualization and

Computer Graphics, 7(3):253–264, 2001.

[20] P.-P. Sloan, W. Martin, A. Gooch, and B. Gooch. The lit sphere: A

model for capturing NPR shading from art. In Proceedings of Graph-

ics Interface 2001, pages 143–150, 2001.

[21] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint se-

lection using viewpoint entropy. In Proceedings of Vision Modeling

and Visualization 2001, pages 273–280, 2001.

[22] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven volume

rendering. In Proceedings of IEEE Visualization 2004, pages 139–

145, 2004.

[23] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-driven feature

enhancement in volume visualization. IEEE Transactions on Visual-

ization and Computer Graphics, 11(4):408–418, 2005.

[24] S. W. Wang and A. E. Kaufman. Volume sculpting. In Proceedings

of the Symposium on Interactive 3D Graphics 1995, pages 151–156,

1995.

[25] B. Wilson, E. B. Lum, and K.-L. Ma. Interactive multi-volume visu-

alization. In Proceedings of the International Conference on Compu-

tational Science 2002, pages 102–110, 2002.

[26] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,

1965.

[27] J. Zhou, A. Döring, and K. D. Tönnies. Distance based enhancement

for focal region based volume rendering. In Proceedings of Bildver-

arbeitung für die Medizin 2004, pages 199–203, 2004.

