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Exploded Views for Volume Data
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Abstract—Exploded views are an illustration technique where an object is partitioned into several segments. These segments are
displaced to reveal otherwise hidden detail. In this paper we apply the concept of exploded views to volumetric data in order to solve
the general problem of occlusion. In many cases an object of interest is occluded by other structures. While transparency or cutaways
can be used to reveal a focus object, these techniques remove parts of the context information. Exploded views, on the other hand, do
not suffer from this drawback. Our approach employs a force-based model: the volume is divided into a part configuration controlled
by a number of forces and constraints. The focus object exerts an explosion force causing the parts to arrange according to the
given constraints. We show that this novel and flexible approach allows for a wide variety of explosion-based visualizations including
view-dependent explosions. Furthermore, we present a high-quality GPU-based volume ray casting algorithm for exploded views
which allows rendering and interaction at several frames per second.

Index Terms—Illustrative visualization, exploded views, volume rendering.
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1 INTRODUCTION

Occlusion is an important problem when rendering truly three-
dimensional information in scientific visualization, such as, for ex-
ample, medical data acquired from computer tomography. Because
of occlusion, normally not all of the data can be shown concurrently.
Frequently, the user wants to examine an object of interest within the
volumetric data set. In many cases depicting this focus object on its
own is not sufficient – the user is interested in exploring it within the
context of the whole data set. To solve the problem of occlusion the
context can be assigned a different - more sparse - visual representa-
tion, for example by reducing its opacity. This adjustment can even be
performed locally, so the representation only changes for those parts
of the context which actually occlude the focus [32, 33, 2]. In illus-
trations, cutaways and ghosting techniques are used for this purpose.
However, the drawback of these approaches is that parts of the context
information are still removed or suppressed. If it is instructive to retain
the context even when it occludes the focus structure, illustrators often
employ exploded views.

Basically, in an exploded view the object is decomposed into sev-
eral parts which are displaced so that internal details are visible (see
Figure 1). This does not only give an unobstructed view on the fo-
cus but also potentially reveals other interesting information, such as
cross-sections of the split object. The advantage of exploded views is
that they simultaneously convey the global structure of the depicted
object, the details of individual components, and the local relation-
ships among them.

The contribution of this paper is a new technique for generating ex-
ploded views based on a three-dimensional force-directed layout. We
present an approach that is capable of producing high quality exploded
depictions of volume data at interactive frame rates. One application
of our framework is the generation of highly detailed anatomic illus-
trations from scanned data (see Figure 2 and Figure 3).

The paper is structured as follows: In Section 2 we discuss related
work. Section 3 presents our approach for the generation of exploded
views from volumetric data sets. In Section 4 we detail our rendering
algorithm. The paper is concluded in Section 5.

• Stefan Bruckner and M. Eduard Gröller are with the Institute of Computer

Graphics and Algorithms, Vienna University of Technology, E-mail:

{bruckner|groeller}@cg.tuwien.ac.at.

Manuscript received 1 March 2006; accepted 1 August 2006; posted online 6

November 2006.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

Fig. 1. An early example of exploded views by Leonardo da Vinci – also
note the smaller depictions which show the use of different explosion
setups (”The babe in the womb”, c.1511).

2 RELATED WORK

The concept of cutting away parts of the volume to reveal internal
structures is quite common in volume visualization. Nearly every vol-
ume renderer features simple clipping operations. Wang et al. [34]
introduce volume sculpting as a flexible approach for exploring vol-
ume data. The work of Weiskopf et al. [35] focuses on interactive
clipping operations using arbitrary geometry to overcome the limita-
tions of common clipping planes. Konrad-Verse et al. [22] use a de-
formable cutting plane for virtual resection. The work of Dietrich et
al. [10] consists of clipping tools for the examination of medical vol-
ume data. Owada et al. [26, 27] present a system for modeling and
illustrating volumetric objects using artificial cutting textures based
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Fig. 2. Interactive exploded-view illustration of a human head with increasing degrees-of-explosion. Two hinge joints are used to constrain part
movement.

(a)

(b)

Fig. 3. (a) Plastinated anatomic model in Gunther von
Hangens’ ”Bodyworlds” exhibition (image courtesy of
http://www.bodyworlds.com). (b) Interactive exploded-view
illustration generated with our framework.

on surface models. Chen et al. [7] introduced the concept of spatial
transfer functions as a theoretical foundation for modeling deforma-
tions in volumetric data sets. Islam et al. [20] extend this work by
using discontinuities (i.e., splitting of the volume).

Some approaches employ a curve-skeleton [8]. The curve-skeleton
is a reduced representation of a volumetric object which can be gener-
ated using techniques such as volume thinning [14]. Gagvani et al. [15]
animate volume data sets using a skeleton-based approach. The inter-
active system presented by Singh et al. [30] allows manual editing of
volume deformations based on a skeleton. They extend this work by
introducing selective rendering of components for improved visualiza-
tion [29]. Correa et al. [9] use traversal of the skeleton tree to illustrate
properties such as blood flow.

Exploded views have been investigated in the context of archi-
tectural visualization by Niedauer et al. [25]. Finally, McGuffin et
al. [24] were the first to thoroughly investigate the use of exploded
views for volume visualization. Their approach features several wid-
gets for the interactive browsing of volume data partitioned into sev-
eral layers. The difference to our work is that our approach employs a
force-directed placement algorithm to automatically arrange the parts
of an exploded view in order to reveal a focus object. Additionally,
while McGuffin et al. only employ simple cuberille rendering [19],
we present a high-quality GPU-based direct volume rendering algo-
rithm.

As one of the main contributions of this paper we present an ap-
proach for the automated generation of exploded views from volume
data which does not rely on extensive object information. The tech-
nique distinguishes between focus and context using a fuzzy degree-
of-interest function. Rather than manually specifying a transformation
for each part of the context, the paper discusses an automatic tech-
nique which produces a three-dimensional layout of the parts. Our
approach is also capable of re-arranging the parts dynamically based
on the viewpoint. We further employ a simple interaction metaphor for
specifying part geometry. Finally, the paper describes a high-quality
GPU-based volume ray casting approach for the rendering of exploded
views at interactive frame rates.

3 GENERATING EXPLODED VIEWS FROM VOLUME DATA

Our approach distinguishes between two basic objects derived from
the volumetric data set. The selection (see Figure 4a) is the current
focus object specified by a selection volume. The selection volume
defines a real-valued degree-of-interest function [11]. A sample of the
selection volume at a specific position indicates the degree-of-interest
for the corresponding data sample, where one means most interest-
ing and zero means least interesting. The selection object comprises
all data samples with non-zero degree-of-interest. The advantage of
this definition is that it allows a smooth transition between focus and
context.

Everything that is not selected is part of the background (see Fig-
ure 4b) which represents the context. Segments of the background ob-
ject undergo a transformation while the selection remains static. We
divide the space covered by the background into an arbitrary number
of non-intersecting parts Pi (see Figure 4c). Each part is defined by
its geometry and its transformation. For simplicity, we introduce the
restriction that each part is convex – concave objects can be formed
by grouping together several convex parts. In general, the geometry
of a part does not correspond to the shape of the actual object con-
tained in the part (which is determined by the selection volume, the
data volume, and the specified transfer function). It merely bounds the
space that can be occupied by this object. It is therefore sufficient to
represent the part geometry by a bounding polygonal mesh.

Using this setup we can generate exploded views where the parts are
moved away to reveal the selection. However, it can be very tedious
and time-consuming to manually specify the transformation for each

http://www.bodyworlds.com
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(a) (b) (c)

Fig. 4. Object setup for exploded views. (a) selection object. (b) back-
ground object. (c) background object decomposed into parts.

part. We want a simple global mechanism to specify how ”exploded” a
view should be. Therefore, we introduce a degree-of-explosion param-
eter. When the degree-of-explosion is zero all parts remain untrans-
formed. By increasing the degree-of-explosion, the user can control
how much of the selection is revealed.

While it would be possible to use an ad-hoc method for displac-
ing parts according to the degree-of-explosion, we choose to employ
a force-based approach. In graph drawing, force-directed layout tech-
niques model connectivity information through physical forces which
can be simulated [12, 13]. Because of the underlying analogy to
a physical system, force-directed layout methods tend to meet vari-
ous aesthetic standards, such as efficient space filling, uniform edge
lengths, and symmetry. They also have the advantage of enabling
the visualization of the layout process with smooth animations. For
these reasons, we control our explosion using a rigid-body physics en-
gine [1]. Our goal is not to simulate physical reality which would re-
quire a far more sophisticated model including tissue properties, non-
linear deformation, and many other aspects. We rather want to supply
the user with a simple and intuitive interface to interactively generate
exploded visualizations of volumetric data sets. New types of explo-
sions can be generated just by adding additional forces and constraints.
Furthermore, the laws of Newtonian physics are generally well under-
stood by humans which aids comprehension of the resulting motions.

3.1 Part Geometry

An important step in generating an exploded view is specifying the
part geometry. We provide a simple interface for rapid interactive de-
composition of a volumetric data set. Our approach is based on the
splitting metaphor: the user starts out with a single part which corre-
sponds to the bounding box of the background object. By interactive
splitting of this part along arbitrary planes as well as grouping and hid-
ing parts the user can define complex part geometries with immediate
feedback. Our interface provides three simple tools to split parts:

Axis splitter. By clicking on a point on screen, the user splits the first
part that is intersected by the corresponding viewing ray. The
part is split along a plane which passes through the intersection
point. Its normal is the cross product between the viewing direc-
tion and the horizontal or vertical axis of the projection plane.

Depth splitter. The user clicks on a point. A viewing ray is cast
which records the first intersection with the background object.
The corresponding part is then split along a plane at the depth
of the intersection point. The plane is parallel to the projection
plane.

Line splitter. The user can draw a line segment. For each part it is de-
termined if the projection of the part intersects the line segment.
All parts which intersect the line segment are split along a plane
which projects to the line.

As exploded views frequently employ splits based on object sym-
metry, these tools provide an intuitive way of specifying and refining

(a)

(b)

Fig. 5. View-dependent exploded views. (a) Exploded view without
viewing force – a part occludes the selection (dark blue). (b) Exploded
view with viewing force – the occlusion is resolved.

part geometry. Despite the small set of operations, the concept is quite
powerful as it operates in a view-dependent manner. The user can
interactively rotate the volume and partition it in a natural way. In
addition to this interface, our approach could straight-forwardly em-
ploy automatically defined part geometry, for example by using a pre-
computed curve-skeleton.

3.2 Force Configuration

Force-directed layout approaches arrange elements such as the nodes
of a graph by translating the layout requirements into physical forces.
A simple setup uses repulsive forces between all nodes and attractive
forces between nodes which are connected by an edge. A simulation
is performed until the system reaches a state of minimal energy. The
corresponding node positions constitute the layout.

Our problem is similar. We want to arrange three-dimensional ob-
jects in such a way that they do not occlude another object, but with
as little displacement as possible. Like in an atomic nucleus or a plan-
etary system we want to achieve a steady state where the attractive
forces and the repulsive forces are in equilibrium. For this reason we
define a number of forces based on our requirements:

Return force. This attractive force tries to move the parts towards
their original location. Each vertex of the part geometry is con-
nected with its original (i.e., untransformed) position. The force
Fr is realized as a logarithmic spring:

Fr = cr ln(‖r‖) ·
r

‖r‖
(1)

where r is the vector from the vertex’s current position to its orig-
inal location and cr is a constant factor. The logarithmic relation-
ship of the force’s magnitude to the distance tends to produce less
oscillation than the linear relationship of Hooke’s law. The total
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Fig. 6. Exploded view of a turtle with increasing degree-of-explosion from left to right. The body of the turtle is selected and the shell is divided into
four parts.

return force for a part is normalized by dividing it by the number
of vertices.

Explosion force. We want to generate a force that drives the speci-
fied parts away from our selection object. The idea is to generate
a force field which describes the characteristics of the selection
object. Each point of the selection exerts a distance-based force
on every part. In order to keep the number of points low, we use
an octree-based approach. We generate two min-max octrees;
one for the data volume and one for the selection volume. Each
node stores the minimum and maximum data and selection val-
ues respectively, of the represented region. We traverse the two
octrees simultaneously and generate an explosion point for each
homogeneous octree node that contains both visible data values
under the current transfer function and nonzero selection values.
We add a small random bias to the position to prevent artifacts
due to the regular structure of the octree. The explosion point is
also weighted according to the size of the region corresponding
to the octree node. Each explosion point exerts a force Fe on
every part Pi:

Fe =
ce

e‖r‖
·

r

‖r‖
(2)

where r is the vector from the explosion point to the closest point
of the part geometry of Pi and ce is a scaling factor. The force is
applied to the closest point of the part geometry and can therefore
also generate a torque. The exponential fall-off is chosen to limit
the force’s influence to a region nearby the explosion point. The
total explosion force is normalized by dividing it by the number
of explosion points.

Viewing force. So far we have only considered view-independent ex-
plosions, i.e., the movement of parts does not take into account
the current viewpoint. In traditional illustration this problem
typically does not occur as the viewpoint is fixed and the ex-
ploded view is specifically generated to be most appropriate for
this single viewpoint. In an interactive system, however, we must
consider that the user can rotate the camera arbitrarily. For this
reason we introduce a view-dependent force which attempts to
arrange parts so that they do not occlude the selection for the
current viewing transformation. We follow the work of Carpen-
dale et al. [5, 6] who use similar techniques for the layout of
three-dimensional graphs.

We project each of the explosion points to the image plane. For
a part Pi we determine the point along the viewing ray corre-
sponding to the explosion point’s projection which is closest to
the center of Pi. The force Fv is then:

Fv =
cv

‖r‖
·

r

‖r‖
(3)

where r is the vector from the closest point along the viewing ray
to the center of the body and cv is a scaling factor. The total force
for a part is normalized by dividing it by the number of explosion
points.

Figure 5 shows an example for the influence of the viewing force.
In Figure 5a the explosion force displaces the parts but disregards
the viewpoint. The occlusion is resolved in Figure 5b by adding
the viewing force.

Spacing force. In order to prevent clustering of parts, we also add a
repulsive force Fs. For a part Pi, the spacing force exerted by
another part Pj is:

Fs =
cs

‖r‖2
·

r

‖r‖
(4)

where r is the vector from the center of Pj to the center of Pi and
cs is a constant scaling factor. The total spacing force for a part
is normalized by dividing it by the number of parts.

The scaling factors of explosion force, viewing force, and spacing
force, ce, cv, and cs, are scaled with the global degree-of-explosion
parameter, while cr remains constant:

c{e,s,v} = doe ·δ{e,s,v} (5)

where doe is the degree-of-explosion and δ{e,s,v} ∈ [0..1] specifies
the relative contribution of the corresponding force. This allows the
user to modify the influence of the individual forces, e.g. to reduce
view dependency or to increase spacing. The algorithm is insensitive

to changes in δ{e,s,v}. In our tests, a setting of δe = 1
2 , δv = 1

3 , and

δs = 1
6 has proven to be a universally good choice. The user mostly

interacts with the degree-of-explosion. Figure 6 shows a simple part
configuration for different degrees-of-explosion.

In addition to the basic forces discussed in this section, specific
applications may employ further forces. For example, if available,
connectivity information between certain parts could be modeled by
additional spring forces.

3.3 Constraint Specification

While the force configuration discussed in the previous section can be
used to generate expressive exploded view visualizations, it is some-
times useful to constrain the movement of parts. Therefore, our ap-
proach allows the interactive addition of joints which restrict the rel-
ative movement of parts. Available joints include sliders, hinges, ball



BRUCKNER et al.: EXPLODED VIEWS FOR VOLUME DATA

Fig. 7. Exploded view using constrains to limit part movement. The skull is selected. The left part of the face is static, the remaining parts are
connected by a slider joint which limits their movement to a translation along one axis.

Fig. 8. Interaction between constraints and viewing force. All parts except the two upper parts of the leg are static. These two parts are connected
by hinges similar to a swing door. As the camera rotates the viewing force causes the parts to orient themselves towards the viewer.

joints, and universal joints. Additionally, the user can provide an
importance for individual parts by modifying their mass. Parts with
higher masses will be less affected by the individual forces and, thus,
by the explosion. The user can restrict a part from being displaced by
assigning an infinite mass. This is particularly useful to easily create
break-away illustrations where typically only one section of the object
is moved away.

An example for the use of constraints is shown in Figure 2 where
two hinges are used. In Figure 7 the left part of the face has been
assigned infinite mass. The right part of the face is divided into several
parts which are connected by a slider joint. As the degree-of-explosion
is increased these parts move along the free axis to reveal the skull.

By specifying constraints the user can effectively add structural in-
formation that is missing from the raw data set. It is easily possible
to generate interactive illustrations which allow exploration within the
constraints specified by the designer. An interesting component in this
context is the viewing force. Although the movement of a part is con-
strained, it is still affected by the viewing force and therefore moves
within the given limits to reveal the selection. An example is shown
in Figure 8 where two parts are connected by a hinge joint. As the
camera rotates the effect of the viewing force causes the parts to orient
themselves towards the viewer.

Constraining part movements may result in arrangements with par-
tial occlusions of the selection object. Different visual representations
can be employed to resolve these conflicts. Based on the viewing force
that acts on a part we can modify the sparseness of the representation,
for example by modifying its transparency. An example of this behav-
ior is shown in Figure 9.

3.4 Selection Definition

Any segmentation algorithm can be used to define the selection.
Which technique is most effective depends on the type and nature of
the data set and the structure of interest. In our system we use an
enhanced version of the volume painting approach presented in our
previous work [3]. The user can specify the selection by painting on
visible structures using a volumetric brush. This selection can be re-

Fig. 9. Modulating transparency by the viewing force. As the two lower
parts move away, their transparency reduces since the viewing force
gets weaker. The upper part remains transparent because it is static –
therefore the viewing force stays constant.

fined once the view is exploded and will be updated interactively. As
the selection and part geometry are conceptually different entities, a
change in the selection object does not affect the part geometry and
visa versa. It does, however, influence the explosion and viewing
forces and can therefore affect the part arrangement. For instance,
if regions are added to the selection which are occluded by existing
parts, the viewing force will move those parts in order to provide an
unconcluded view.

The quality of the resulting visualization will naturally depend on
how well the object of interest is segmented. Our approach is quite tol-
erant with respect to minor errors in the segmentation. Since we allow
a non-binary definition of the selection, uncertainty in the segmen-
tation can be represented [21]. Rendering quality for conventionally
segmented objects can be improved by smoothing the binary mask.

4 INTERACTIVE EXPLODED VIEW RENDERING

Fast rendering is a key requirement for an interaction-based approach
like the one presented in this paper. In this section, we describe the
implementation of a high-quality GPU-based ray casting algorithm
for exploded views. Until recently, volume rendering on the graph-
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Algorithm 1 Basic rendering algorithm

perform visibility sorting of the parts
generate initial entry and exit points
perform initial ray casting
for all parts Pi in front-to-back order do

generate entry and exit points for Pi (see Section 4.1)
perform ray casting for Pi (see Section 4.2)

end for

ics hardware was only possible using a multi-pass approach [23]. This
has changed with the advent of conditional loops and dynamic branch-
ing in shaders. Now it is possible to implement a fragment program
which completely traverses a ray [31]. Apart from the quality improve-
ments, this allows for common acceleration techniques like early ray
termination and empty-space skipping [18, 28].

For rendering an exploded view we need to be able to render a vol-
umetric data set consisting of a background and a selection object.
The background object is decomposed into several non-intersecting
convex parts which can have arbitrary affine transformations. The se-
lection object also has its assigned transformation and can intersect
any part. Furthermore, we want to support empty space skipping and
early ray termination. Therefore we assume that we have geometry
enclosing the visible volume under the current transfer function for
both background and selection object. The use of this kind of bound-
ing structures for empty space skipping is very common in volume
rendering. They are frequently based on hierarchical data structures.
In our implementation, we use min-max octrees for both data volume
and selection volume.

Our GPU-based ray casting algorithm makes use of conditional
loops and dynamic branching available in Shader Model 3.0 GPUs.
It was implemented in C++ and OpenGL/GLSL. A basic overview is
given in Algorithm 1. We start by performing a visibility sort of the
parts. Next, we generate the entry and exit points for the segments of
the selection located in front of any part and perform the ray casting
step for these regions. These two steps are actually simplified cases
of the general iteration steps described in Sections 4.1 and 4.2. Then
we iterate through the parts in front-to-back order. For each part Pi

we first establish the entry and exit points of the viewing rays for both
background and selection object. Then we use this information for
performing ray casting of the part. Figure 10 illustrates the algorithm.

4.1 Entry and Exit Point Generation

Generally, the background entry and exit buffers always contain the
entry and exit points of the viewing rays for the intersection between
background bounding geometry and the part geometry. Essentially,
we are using the depth buffer to perform a CSG intersection between
these objects which can be simplified since the part geometry is always
convex. As portions of the selection can be located in regions which
are not contained in any part, the entry and exit buffers for the selection
need to be generated in a slightly different way.

At startup, we generate four off-screen buffers which can be bound
to a texture. For this purpose, we use the recently introduced frame-
buffer object OpenGL extension. In these buffers we store the ray
entry and exit points for both background and selection. A fragment
program is bound which writes out the volume texture coordinates un-
der the current object transformation to the red, green, and blue com-
ponents and the fragment depth in viewing coordinates to the alpha
component. The volume texture coordinates are later used for com-
puting the ray direction while the depth is used in order to optimize
compositing. We then perform the following operations to set up the
entry and exit buffers for selection and background:

Background. For the exit points the depth buffer is cleared to one
and the alpha component of the color buffer is cleared to zero.
Color writes are disabled. The depth test is set to ALWAYS and
the front faces of the part geometry are rendered. Then color
writes are enabled again, the depth test is set to GREATER, and
the back faces of the background object’s bounding geometry

image plane

1
2

3

4

5

part bounding geometry

object bounding geometry

background

selection

N processing order

skipped empty space

potential sample points

Fig. 10. Example of our exploded-view ray casting approach. The
parts are processed in front-to-back order. Empty space skipping is
performed based on object and part bounding geometries. The poten-
tial sample positions (not taking into account early ray termination) are
shown for each part.

are rendered. Finally, the depth test is set to LESS and the part
geometry’s back faces are rendered.

For the entry points, we clear the depth buffer to zero and the
alpha component of the color buffer to one, disable color writes,
and set the depth test to ALWAYS. Then the back faces of the part
geometry are rendered. Next, color writes are enabled again, the
depth test is set to LESS and the front faces of the background
object’s bounding geometry are rendered. Finally, the depth test
is set to GREATER and the front faces of the part geometry are
rendered.

Selection. For the exit points the depth buffer is cleared to zero. Then
the back faces of the selection’s bounding geometry are rendered
with the depth test set to GREATER. As it is possible that por-
tions of the selection are not included in any part, we then set the
depth test to LESS and render the front faces of all part geome-
tries located behind the current part.

For the entry points the depth buffer is cleared to one. The depth
test is set to LESS and the front faces of the selection’s bounding



BRUCKNER et al.: EXPLODED VIEWS FOR VOLUME DATA

geometry are rendered. Then the depth test is set to GREATER
and the front faces of the part’s bounding geometry are rendered.

We also need to handle the case when portions of the selection are
located in front of all parts. This is done analogously to the iteration
with the only difference that the background does not have to be taken
into account for both the entry point determination and the ray casting
step. Thus, the selection entry points do not need to be clipped. The
selection exit points are clipped against all part geometries.

4.2 Multi-Object Ray Casting

The ray casting pass uses the entry and exits points for rendering the
volumetric object contained in the current part. The volume texture
coordinates stored in the red, green, and blue components of the en-
try and exit point buffers are used to compute the ray direction. The
depth value stored in the alpha component determines which objects
need to be composited. If the intervals of background and selection
do not overlap, they can be composited sequentially. If they overlap,
however, multi-object compositing must be performed in the intersec-
tion region, i.e., two rays have to be traversed simultaneously. The
contributions of both objects at a sample point can be combined using
fusion functions [4], intersection transfer functions [3], or alternating
sampling [17].

The pseudocode given in Algorithm 2 shows the determination of
the intervals from the entry and exit points. CompositeBackground and
CompositeSelection perform single volume ray casting for background
and selection, respectively. CompositeBackgroundSelection performs
multi-volume compositing. The functions BackgroundToSelection and
SelectionToBackground transform between the background and the se-
lection coordinate systems. This is necessary as the background and
selection entry and exit points are given for the respective object trans-
formation.

To perform the ray casting for a part Pi we bind a fragment program
which implements Algorithm 2 and render the front faces of the part
geometry. The result is blended into a framebuffer object for subse-
quent display.

4.3 Performance

As the parts are non-intersecting, the visibility sorting can be per-
formed at object level rather than at primitive level. Since the number
of parts will be relatively low, this step introduces practically no over-
head. We use a GPU-based visibility sorting approach which employs
occlusion queries [16].

For fast rendering of the object and part bounding geometry, we
employ vertex buffer objects, i.e., the geometry is uploaded to GPU
memory whenever it is modified (e.g., transfer function change) and
can be subsequently rendered at very high frame rates.

Our ray casting shader contains dynamic branching and conditional
loops which could have a significant overhead. In our benchmarks,
however, we have noticed that the impact of these operations is com-
parably low. This might be due to the fact that there is high coherence
in the branches taken between fragments and the approach therefore
benefits from branch prediction. To verify this, we have compared our
exploded-view renderer with a reference implementation of a conven-
tional single-pass GPU ray caster. Both implementations use identical
compositing and shading routines, but the standard ray caster ignores
part transformations and the selection object. The selection object is
placed inside the background object (see Figure 4a) and the transfer
function is set to a steep ramp (see Figure 4b). For increasing numbers
of parts we measured the performance for an unexploded view (i.e.,
the generated image is equivalent to the reference ray caster) and a
fully exploded view.

The results of this comparison are given in Table 1. We see that
our approach scales well – the frame rate drops sublinearly with the
number of parts and the performance for a single part is almost iden-
tical. Considering the greatly increased flexibility of our rendering
approach, we believe that these results are quite promising.

Algorithm 2 Multi-Object Ray Casting: fB and bB are the ray’s entry
and exit points for the background object, fS and bS for the selection
object

if bB.depth < fB.depth ∧ bS.depth < fS.depth then
if bS.depth < fS.depth then

CompositeBackground( fB , bB)
else if bB.depth < fB.depth then

CompositeSelection( fS , bS)
else

if fB.depth < fS.depth then
if bB.depth < fS.depth then

CompositeBackground( fB , bB)
CompositeSelection( fS , bS)

else
f ′S = SelectionToBackground( fS)

CompositeBackground( fB , f ′S)
if bB.depth < bS.depth then

b′B = BackgroundToSelection(bB)
CompositeBackgroundSelection( f ′S , bB, fS, b′B)

CompositeSelection(b′B, bS)
else

b′S = SelectionToBackground(bS)

CompositeBackgroundSelection( f ′S , b′S, fS, bS)

CompositeBackground(b′S , bB)
end if

end if
else

if bS.depth < fB.depth then
CompositeSelection( fS , bS)
CompositeBackground( fB , bB)

else
f ′B = BackgroundToSelection( fB)
CompositeSelection( fS , f ′B)
if bB.depth < bS.depth then

b′B = BackgroundToSelection(bB)
CompositeBackgroundSelection( fB , bB, f ′B, b′B)
CompositeSelection(b′B, bS)

else
b′S = SelectionToBackground(bS)

CompositeBackgroundSelection( fB , b′S, f ′B, bS)

CompositeBackground(b′S , bB)
end if

end if
end if

end if
end if

5 CONCLUSION

Exploded views are a powerful concept for illustrating complex struc-
tures. In this paper we have presented a novel approach for generating
exploded views from volumetric data sets. Our method attempts to
make as little assumptions as possible while still automating laborious
tasks. Instead of manually displacing parts, the user defines constraints
which control the part arrangement. View-dependent explosions result
in a dynamic part arrangement within the specified constraints while
the user explores the object. Coupled with fast high-quality render-
ing, our framework for exploded-view volume-visualization features
an intuitive direct manipulation interface.

In future work we plan to investigate the integration of our inter-
active approach with methods for automated skeleton extraction. One
could imagine a system where the user can design illustration tem-
plates including joints and other constraints. This structure could then
be matched with the skeleton extracted from another data set. Ap-
proaches for automatically extracting view-dependent part geometry
based on concepts such as viewpoint entropy are another interesting
direction for further research.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Table 1. This table gives the frame rates for unexploded and exploded
view rendering for different part counts. Numbers in brackets denote the
performance as compared to the reference ray caster which achieved
8.97 frames/second. The viewport size is 512×512 with an object sam-
ple distance of 1.0. The data set dimensions are 256×256×166. Trans-
fer function and selection are specified as in Figure 4. Test system: Intel
Pentium 4, 3.4 GHz CPU, NVidia GeForce 6800 GT GPU.

number
of parts

frames/second
unexploded exploded

1 8.47 (94.4%) 7.56 (84.3%)
2 7.48 (83.4%) 7.52 (83.8%)
4 6.73 (75.0%) 6.61 (73.7%)
8 6.06 (67.6%) 5.26 (58.6%)

16 5.05 (56.3%) 4.67 (52.1%)
32 4.07 (45.4%) 3.93 (43.8%)
64 2.67 (29.8%) 2.53 (28.2%)
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