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Abstract

Illustrative volume visualization frequently employs non-photorealistic rendering techniques to enhance important

features or to suppress unwanted details. However, it is difficult to integrate multiple non-photorealistic rendering

approaches into a single framework due to great differences in the individual methods and their parameters. In this

paper, we present the concept of style transfer functions. Our approach enables flexible data-driven illumination

which goes beyond using the transfer function to just assign colors and opacities. An image-based lighting model

uses sphere maps to represent non-photorealistic rendering styles. Style transfer functions allow us to combine a

multitude of different shading styles in a single rendering. We extend this concept with a technique for curvature-

controlled style contours and an illustrative transparency model. Our implementation of the presented methods

allows interactive generation of high-quality volumetric illustrations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Volume rendering is a well established method for the visu-
alization of scientific data, such as tomographic scans. His-
torically, most volume rendering techniques are based on an
approximation of a realistic physical model. It was noticed,
however, that traditional depictions of the same types of data
– as found in medical textbooks, for example – deliberately
use non-realistic techniques in order to focus the viewer’s
attention to important aspects [ER00, RE01]. Using abstrac-
tion, visual overload is prevented leading to a more effective
visualization. Recent approaches have considered this fact,
leading to an increased interest in illustrative volume visual-

ization.

Approaches for illustrative volume visualization fre-
quently employ non-photorealistic rendering techniques to
mimic the style of traditional illustrations. They take advan-
tage of the illustrators’ century-long experience in depicting
complex structures in an easily comprehensible way. Many
of these techniques require tedious tuning of various param-
eters to achieve the desired result. We aim to circumvent this

† E-mail: {bruckner|groeller}@cg.tuwien.ac.at

issue by presenting the user with a gallery of styles extracted
from actual illustrations.

For this purpose, we introduce the concept of style trans-

fer functions. Instead of defining a color transfer function
which is augmented with various parameters for control-
ling the non-photorealistic rendering, our approach allows
the user to directly specify styles captured from existing art-
work in the transfer function. Style transfer functions allow
the generation of volumetric illustrations in the style of a
given work of art (see Figure 1).

Contours are an important concept to enhance the styl-
ized depiction of volume data. We present a simple measure
to calculate the curvature along the viewing direction which
is used to control the thickness of style-based contours. Our
approximation is computationally very efficient since it does
not require explicit reconstruction of second-order partial
derivatives. Using this curvature measure, we also introduce
a new transparency model based on techniques commonly
found in traditional illustrations. Our implementation is ca-
pable of producing high-quality illustrations of volume data
using a wide variety of different styles at interactive frame
rates.

This paper is structured as follows: In Section 2, we dis-

c© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



S. Bruckner & M. E. Gröller / Style Transfer Functions for Illustrative Volume Rendering

(a)

(b)

Figure 1: Using lit sphere maps from existing artwork. (a)

"Three Spheres II" (lithograph, 1946) by Dutch artist M. C.

Escher. (b) Direct volume renderings of a human skull using

the respective spheres as style, Escher’s painting is used as

background.

cuss related work. Section 3 presents the concept of style
transfer functions. Our implementation is detailed in Sec-
tion 4. Section 5 discusses the results of our approach. The
paper is concluded in Section 6.

2. Related Work

In computer graphics, many techniques have been de-
veloped to capture lighting effects in order to plausi-
bly embed objects in photographs or video or to cre-
ate new scenes under the same environmental condi-
tions [Deb98, SSI99, DHT∗00]. For non-photorealistic ren-
dering, approaches have been presented to reproduce nu-
merous artistic techniques, such as tone shading [GGSC98],
pencil drawing [SB99], hatching [PHWF01], or ink draw-
ing [SFWS03]. While these are specialized algorithms
which aim to accurately simulate a particular technique,
Sloan et al. [SMGG01] employ a simple method to approxi-
mately capture non-photorealistic shading from existing art-
work. Their approach forms one building block of style
transfer functions which we introduce in this paper (see Sec-
tion 3.1).

In the context of volume visualization, the combination
of different rendering styles is of particular interest, as it
allows to put emphasis on features of interest. Ebert and
Rheingans [ER00, RE01] present several illustrative tech-
niques which enhance structures and add depth and orien-
tation cues. They also propose to locally apply these meth-
ods for regional enhancement. Lu et al. [LME∗02,LMT∗03]
developed an interactive direct volume illustration sys-
tem that simulates traditional stipple drawing. Csébfalvi et
al. [CMH∗01] visualize object contours based on the mag-
nitude of local gradients as well as on the angle between
viewing direction and gradient vector using depth-shaded
maximum intensity projection. The concept of two-level vol-
ume rendering proposed by Hauser et al. [HMBG01], al-
lows focus+context visualization of volume data by com-
bining maximum intensity projection and direct volume ren-
dering. Viola et al. [VKG05], inspired by cutaway views
which are commonly used in technical illustrations, ap-
ply different compositing strategies to prevent an object
from being occluded by less important structures. Nagy et
al. [NSW02] combine line drawings and direct volume ren-
dering techniques. Yuan and Chen [YC04] enhance sur-
faces in volume rendered images with silhouettes, ridge and
valleys lines, and hatching strokes. Tietjen et al. [TIP05]
use a combination of illustrative surface and volume ren-
dering for visualization in surgery education and planning.
Salah et al. [SBS05] employ point-based rendering for non-
photorealistic depiction of segmented volume data. Tech-
niques by Lu and Ebert [LE05] as well as Dong and Clap-
worthy [DC05] employ texture synthesis to apply different
styles to volume data. Their approaches, however, do not
deal with shading. Krüger et al. [KSW06] use interactive
magic lenses based on traditional illustration techniques for
focus+context visualization of iso-surfaces.

Multi-dimensional transfer functions have been proposed
to extend the classification space and to allow better se-
lection of features. Kniss et al. [KKH01, KKH02] use a
two-dimensional transfer function based on scalar value
and gradient magnitude to effectively extract specific ma-
terial boundaries and to convey subtle surface properties.
Hladuvka et al. [HKG00] propose the concept of curvature-
based transfer functions. Kindlmann et al. [KWTM03] em-
ploy curvature information to achieve illustrative effects,
such as ridge and valley enhancement. Lum and Ma [LM04]
assign colors and opacities as well as parameters of the il-
lumination model through a transfer function lookup. They
apply a two-dimensional transfer function to emphasize ma-
terial boundaries using illumination.

3. Style Transfer Functions for Illustrative Volume

Rendering

In this section, we present the concept of style transfer func-
tions as well as additional techniques to enhance the illustra-
tive depiction of volume data.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 2: Lit sphere shading. The shading of an object is

represented as a function of eye-space normal orientation.

3.1. Lit Sphere Shading

Sloan et al. [SMGG01] presented a simple yet effective
method for capturing artistic lighting by using an image of
a sphere shaded in the desired style. They employed this ap-
proach for non-photorealistic rendering of polygonal mod-
els. The basic idea is to capture color variations of an ob-
ject as a function of normal direction. As a sphere provides
coverage of the complete set of unit normals, an image of
a sphere under orthographic projection will capture all such
variations on one hemisphere (see Figure 2). This image is
then used as a sphere map indexed by the eye-space nor-
mals to shade another object. Essentially, the sphere acts as a
proxy object for the illumination. In their work, Sloan et al.
also describe a method for extracting lit sphere maps from
non-spherical regions in a piece of artwork. They present
an interactive tool which allows rapid extraction of shading
styles from existing images.

The lit sphere map itself is a square texture where texels
outside an inscribed disk are never accessed. Normal vec-
tors parallel to the viewing direction map to the center of the
disk and normal vectors orthogonal to the viewing direction
map to the circumference of the disk. The lit sphere map is
indexed by simply converting the nx and ny components of
the eye-space normal n = (nx,ny,nz) which are in the range
[−1..1] to texture coordinate range (usually [0..1]). As the nz

component is ignored, lighting does not distinguish between
front and back faces. This is desired as the gradient direction
in the volume which serves as the normal might be flipped
depending on the data values at a material boundary.

While lit sphere shading fails to capture complex aspects
of realistic illumination, it is well-suited to represent the gen-
eral shading style of an object. Images of an illuminated
sphere are relatively easy to obtain and the extraction process
described by Sloan et al. allows to build up a large database
of styles with little effort. Another advantage is the view-
dependency of this technique. All lighting effects will appear
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Figure 3: Basic concept of style transfer functions. (a) Reg-

ular transfer function. (b) Style transfer function.

as if the light source was a headlight, i.e. as if it were rotating
with the camera. Generally, this is the desired setup in vol-
ume visualization. For these reasons, we employ lit sphere
maps as the basic components of our style transfer functions.

3.2. Style Transfer Functions

We assume a continuous volumetric scalar field f (P). A
sample value at an arbitrary position P is denoted by s =
f (P). We denote the gradient at position P by g = ∇ f (P).
For the purpose of shading, the normalized gradient n =
g

|g|
serves as the normal. Conventionally, the transfer func-

tion assigns color and opacity to each scalar value. There
are approaches that use multi-dimensional transfer functions
which employ derivatives of the volumetric function, such
as the gradient magnitude or the curvature magnitudes. For
simplicity we will restrict our discussion to one-dimensional
transfer functions at this point. Our technique equally applies
to multi-dimensional transfer functions (see Section 4.2 for
a discussion of this matter).

During rendering, at each sample point the scalar value
and the gradient are reconstructed. The transfer function
defines the color and opacity contribution of this sample,
while the gradient is used to compute the illumination. The
illumination model and its parameters are usually fixed,
i.e. they are not dependent on the transfer function. Lum
et al. [LM04] presented an approach were the parameters
of the Phong illumination model are specified by an ad-
ditional lighting transfer function. We extend this idea of
data-dependent lighting to enable a wide variety of non-
photorealistic shading styles. In our approach, we integrate
color and shading information in a combined style trans-
fer function. Mathematically, this is equivalent to extend-
ing the transfer function domain by including normal direc-
tion. A one-dimensional transfer function based on the scalar
value becomes three-dimensional, a two-dimensional trans-
fer function becomes four-dimensional, etc.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 4: Engine block rendered using different style transfer functions. The lit sphere maps used in the transfer function are

depicted at the bottom right corner of each image.

Transfer functions are usually implemented as lookup ta-
bles. The memory requirements for storing a complete style
transfer function lookup table would be prohibitively high
due to the increase in dimensionality. However, as there is
only a discrete number of styles it is not necessary to store
the whole function. We can store the set of styles separately.
The transfer function lookup table now contains references
to these styles instead of colors. The only restriction neces-
sary is that when interpolating between two styles, the in-
terpolation is performed uniformly for all normal directions,
i.e. transitions only occur between whole styles. If a non-
uniform transition is desired, this can easily be accomplished
by adding one or multiple intermediate styles. Conceptually,
this can be illustrated by replacing the single color of a trans-
fer function entry by a lit sphere map (see Figure 3). When
performing a style transfer function lookup, styles are first
interpolated according to the specified transfer function. Us-
ing this interpolated style, the eye-space normal direction
then determines the final sample color.

From a user’s point of view, the transfer function now not
only specifies the color over the range of data values, but
also the shading as a function of eye-space normal direction.
The complexity of specifying a transfer function, however,
is not increased. Instead of assigning a single color to a cer-
tain value range, a pre-defined shading style represented by
a lit sphere map is chosen. In this context, one advantage of
sphere maps as opposed to other mappings is that they can be
directly presented to the user as an intuitive preview image
for the style.

Style transfer functions allow for a flexible combination
of different shading styles in a single transfer function. Un-
shaded volume rendering (a constant color sphere), tone
shading, cartoon shading, metallic shading, painterly render-
ing, and many other styles can be used in the same render-
ing. Style transfer functions also enable inconsistent lighting
of different structures in a single data set as a means of ac-
centuating features [LHV04]. Figure 4 shows examples of
different styles applied to a data set.

3.3. Style Contours

Illustrators frequently employ contours to enhance the de-
piction of objects. Contours help to clearly delineate object
shape and resolve ambiguities due to occlusion by empha-
sizing the transition between front-facing and back-facing
surface locations [ST90]. In volume rendering, contours are
generally produced using the dot product between the view
vector v and the normal n. The sample color is darkened if
v is approximately orthogonal to n, i.e., v ·n is close to zero.
The drawback of this method is an uncontrolled variation in
the apparent contour thickness. Where the surface is nearly
flat, a large region of surface normals is nearly perpendicu-
lar to the view vector, making the contours too thick. Con-
versely, in fine structures, where the emphasis provided by
contours could be especially helpful, they appear to be too
thin. These deficiencies are illustrated in Figure 5 (a).

To remedy this problem, Kindlmann et al. [KWTM03]
proposed to regulate contours based on the normal curva-
ture along the view direction κv. A sample is defined to be
on a contour if the following condition is true:

|n · v| ≤
√

T κv(2−T κv) (1)

where T is a user-defined thickness value. While this
method is effective in depicting contours of constant thick-
ness, it requires the expensive reconstruction of second-
order derivatives of the volumetric function. Specifically,
the curvature measure κv is based on the geometry tensor.
The geometry tensor is constructed from the Hessian ma-
trix. Computing the geometry tensor in a fragment program
is very expensive and would not allow for interactive perfor-
mance. On the other hand, pre-computation would require
two additional 3D textures (the geometry tensor is symmet-
ric and can be stored in six values per voxel). Hadwiger et
al. [HSS∗05] circumvent this problem by restricting them-
selves to iso-surfaces, but for direct volume rendering no vi-
able solution has been presented so far.

We propose a simple approximation of κv which does not
suffer from these drawbacks. We are interested in the rate of

c© The Eurographics Association and Blackwell Publishing 2007.
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(a) (b) (c) (d)

Figure 5: Style contours. (a) Contours without curvature-controlled thickness. (b) Curvature-controlled contours with constant

color. (c) Curvature-controlled contours with varying colors. (d) Our curvature measure (darker regions corresponds to higher

curvature).
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Figure 6: Using the angle between the normals of two subse-

quent points along a viewing ray as an approximate measure

for the curvature along the view direction κv.

change in normal direction of the iso-surface correspond-
ing to the current sample value along the viewing direc-
tion. When performing volume ray casting, we step along
the ray direction and evaluate the normal at every sample
point. The angle between two subsequent normals along
the ray taken at a sufficiently small distance gives us in-
formation about the curvature along the viewing direction
(see Figure 6). When performing ray casting, we can there-
fore use the angle between the normal at the current sam-
ple point and the previous normal divided by the step size
as an estimate for κv. This is of course not accurate, as we
are not stepping along the iso-surface. However, due to the
finite resolution of the volume this coarse approximation
has proven to be sufficient for our purposes. The advantage
of this approach is that it introduces almost no additional
costs as the normal is evaluated at every sample point any-

way. Since we now have a measure for the curvature along
the viewing direction, we can employ the criterion proposed
by Kindlmann et al. to determine whether a sample is lo-
cated on a contour (Equation 1). Using a fixed contour color,
however, would be potentially inconsistent with the selected
styles. Instead, the contour color should be determined by
the style transfer function. For this reason we adjust the co-
ordinates for the lit sphere map lookup based on our curva-
ture measure: if a sample falls below the contour threshold,
we simply push the coordinates outwards along the radius
of the sphere in the following way: If r = |nx,y|, i.e., the
length of the eye-space normal n projected onto the lit sphere
map, we adjust the length of nx,y to r′ = min(1,

r
δ
) with

δ = 1 − min(1,

√
Tκv(2−Tκv)−|n·v|√

Tκv(2−Tκv)
). This not only allows

for varying contour appearance between different styles, but
also for a variation based on the normal direction. Contours
in a highlight region, for example, may be brighter than in a
dark region. Figure 5 (b) uses a style with constant contour
color while Figure 5 (c) employs varying contour colors. Our
curvature measure is depicted in Figure 5 (d).

3.4. Illustrative Transparency

In volume visualization transparency is frequently used in
order to depict complex three-dimensional structures. Our
approach provides two basic ways to control opacity:

Uniform opacity αu. The opacity value in the transfer
function controls the overall opacity of a sample indepen-
dent of normal direction.

Directional opacity αd . Each entry in a lit sphere map is an
(r,g,b,α) tuple. This allows for varying opacity based on
the normal direction.

While αu allows to control opacity independent of style,
αd is a function of the style. For the overall opacity we want
to apply the following two constraints in order to maintain
the semantics of opacity control in the transfer function:

c© The Eurographics Association and Blackwell Publishing 2007.
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(c) (d)

(a) (b)

Figure 7: Illustrative volume rendering using a style transfer function. Images (a)-(d) depict different opacity settings.

• If the value of αu is one, the opacity of a sample should
be solely determined by αd .

• If the value of αu is zero, the sample should be completely
transparent.

Transparency in illustrations frequently employs the 100-
percent-rule where transparency falls off close to the edges
of transparent objects and increases with the distance to
edges [DWE02]. Since this technique non-uniformly de-
creases the opacity of an object, it results in a clearer depic-
tion of transparent structures while still enabling the viewer
to see through them. In order to achieve an effect similar to
the 100-percent-rule, we employ a modulation of αu with
the curvature measure proposed in the previous section and
the gradient magnitude to compute the overall opacity α of
a sample:

α = αd ·α
0.5+max(0,|n·v|−

√
Tκv(2−Tκv))·(1−|g|)

u (2)

If the exponent is lower than one, the opacity of a sample
is enhanced, if it is greater than one the opacity is reduced.
The term max(0, |n · v|−

√

T κv(2−Tκv)) is zero when the
sample point is on the contour, and increases as points are
farther away from the contour. The term 1−|g| ranges from
zero to one and is included to prevent enhancement of nearly
homogeneous regions, where noise causes the gradient di-

rection to vary rapidly. When decreasing αu from one to
zero, flat and homogeneous regions become more transpar-
ent first. As αu drops further, the remaining contour regions
also begin to become more transparent. The constant of 0.5
restricts the maximum opacity enhancement. This value was
empirically determined and has proven to be effective for all
our test data sets. The overall effect is weighted by αd . An
example for our transparency model is shown in Figure 7.

4. Implementation

In this section we describe our implementation of style trans-
fer functions for a GPU-based ray casting approach. Our ren-
derer makes use of conditional loops and dynamic branching
available in Shader Model 3.0 GPUs. It was implemented
in C++ and OpenGL/GLSL. The presented techniques can
be integrated into an existing renderer using regular transfer
functions with little effort.

4.1. Style Transfer Function Lookup

A transfer function is usually implemented as a lookup table
which corresponds to a 1D texture on the GPU. For con-
ventional transfer functions, this texture stores an (r,g,b,α)
tuple for every data value. At each sample point, the inter-
polated data value is used to perform a texture lookup in this
1D texture to retrieve the color and opacity of the sample.

c© The Eurographics Association and Blackwell Publishing 2007.
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Within the transfer function texture, linear interpolation is
performed. A naive implementation of a style transfer func-
tion would simply replace the 1D texture by a 3D texture
which stores an (r,g,b,α) tuple for every data value and
normal direction. This approach requires only one texture
lookup and exploits native trilinear interpolation. As dis-
cussed in Section 3.2 this is not practical due to high storage
requirements. Thus, we use an alternative approach which
does not suffer from this problem. Our implementation uses
three different textures:

Transfer function texture t f t. This 1D texture stores the
uniform opacities αu and index values i for each data
value. The index values in the transfer function texture
range from zero to N −1, where N is the number of styles
specified in the style transfer function. For example, an
index value of one corresponds to the second style, two
corresponds to the third style, etc. Fractional values in-
dicate that an interpolation between two styles has to be
performed.

Index function texture i f t. As one style might be used
multiple times for different value ranges, we define M as
the number of distinct styles in the style transfer function.
The one-dimensional index function texture maps the in-
dex values i (ranging from zero to N − 1) retrieved from
the transfer function texture to locations j in the style
function texture (ranging from zero to M − 1). As this
mapping is discrete, no interpolation is performed for in-
dex function texture lookups. If no style is used multiple
times, the index function texture lookup can be skipped.

Style function texture s f t. This texture contains the dis-
crete set of M distinct styles specified in the current style
transfer function. As each style is a two-dimensional im-
age, an intuitive representation for this function would be
a 3D texture. Since this can lead to problems with mip-
mapping, an alternative way of storage may be more ap-
propriate (see Section 4.3).

Using these three textures, the complete lookup proceeds
as follows (see Figure 8):

1. Using the sample value s, retrieve the index value i and
the uniform opacity αu from the transfer function texture
t f t: (i,αu) = t f t(s).

2. Compute the indices to be used in the index function tex-
ture lookup i0 = ⌊i⌋, i1 = i0 + 1 and the interpolation
weight w = i− i0.

3. Retrieve the style indices j0 and j1 using two lookups
into the index function texture i f t: j0 = i f t(i0), j1 =
i f t(i1). If no style occurs multiple times in the style trans-
fer function, these lookups can be skipped.

4. Using the nx and ny components of the eye-space nor-
mal and the style indices j0 and j1, perform two lookups
into the style function texture s f t and linearly interpolate
between them: (r,g,b,αd) = s f t(nx,ny, j0) · (1 − w) +
s f t(nx,ny, j1) ·w.

4.2. Multi-dimensional Transfer Functions

So far, we have restricted our discussion to extending one-
dimensional transfer functions based on the data value
to style transfer functions. However, the presented tech-
niques also apply to multi-dimensional domains. To illus-
trate the generality of our approach, this section describes
the changes necessary to employ two-dimensional transfer
functions:

The transfer function texture becomes a 2D texture
and stores two indices ix and iy instead of i. The first
index ix increases along the horizontal axis and the sec-
ond index iy increases along the vertical axis. The index
function texture also becomes two-dimensional. Its width
is now the maximum number of horizontal style nodes
in the two-dimensional transfer function, its height is the
maximum number of vertical nodes. Analogous to the
one-dimensional case, the indices for the index function
texture lookup are: ix0 = ⌊ix⌋, iy0 = ⌊iy⌋, ix1 = ix0 + 1,
iy1 = iy0 + 1. The two interpolation weights are also
computed accordingly: wx = ix − ix0, wy = iy − iy0.
Four lookups into the index function texture i f t are per-
formed to retrieve the four style indices: j00 = i f t(ix0, iy0),
j10 = i f t(ix1, iy0), j01 = i f t(ix0, iy1), and j11 = i f t(ix1, iy1).
Finally, these four style indices and the nx and ny com-
ponents of the eye-space normal are used to perform
four lookups into the style function texture s f t. The final
color is computed by bilinear interpolation: (r,g,b,αd) =
(s f t(nx,ny, j00) · (1−wx)+ s f t(nx,ny, j10) ·wx) · (1 −
wy)+(s f t(nx,ny, j01) · (1−wx)+ s f t(nx,ny, j11) ·wx) ·wy.

This procedure is independent of the actual quantities
mapped to each axis. While data value and gradient mag-
nitude are common choices [KKH01, KKH02], many other
attributes are useful in the context of specific applications.
Rendering of segmented data, for example, is frequently
realized through a two-dimensional lookup using the data

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 9: Rendering of segmented volume data using a

multi-dimensional style transfer function based on data

value and object membership.

value and an object identifier [HBH03]. Figure 9 shows an
example of such a multi-dimensional style transfer func-
tion. In this way other measures such as distance [ZDT04],
saliency [KV06], or importance [VKG05], either predefined
or computed on-the-fly, could be mapped to visual styles
easily. Further exploration of these possibilities will be part
of our future work.

4.3. Mip-Mapping

Current graphics hardware uses mip-mapping to avoid alias-
ing in texture mapping. To take advantage of the GPU’s
mip-mapping capabilities for style lookups, certain consid-
erations have to be made. First, for 3D textures, each di-
mension is halved for every subsequent mip-map level. If
styles are stored as slices of a 3D texture, undesired mix-
ing between styles occurs at higher mip-map levels. Thus, if
the style function texture is implemented as as a 3D texture,
mip-mapping has to be disabled. One solution to this prob-
lem is the EXT_texture_array OpenGL extension. A texture
array is a collection of two-dimensional images arranged in
layers. Mip-mapping is performed separately for each layer.
This extension is currently only available on GeForce 8 se-
ries graphics hardware. A third possibility is to arrange the
styles in a single 2D texture. Although this slightly compli-
cates indexing, it is the option of our choice as it is supported

Figure Regular TF Style TF
Figure 7 (a) 11.7 fps 11.9 fps
Figure 7 (b) 10.5 fps 9.6 fps
Figure 7 (c) 10.1 fps 8.1 fps
Figure 7 (d) 12.5 fps 12.8 fps

Table 1: Performance comparison of style transfer func-

tions and regular transfer functions measured on a system

equipped with an AMD Athlon 64 X2 Dual 4600+ CPU

and an NVidia GeForce 7900 GTX GPU. Performance num-

bers are given in frames per second. Data dimensions:

256× 256× 230. Viewport size: 512× 512. Object sample

distance: 0.5.

on a wider range of hardware. We perform custom mip-map
generation to avoid mixing between styles at their borders.
Conventionally, when performing a texture lookup the ap-
propriate mip-map level is determined by the hardware us-
ing the screen-space derivatives of the texture coordinates.
These derivatives are undefined when the texture fetch takes
place within conditionals or loops. Thus, as our algorithm
uses raycasting, we cannot exploit the standard mechanism.
We therefore manually compute the size of a projected voxel
at each sample point to determine the mip-map level. In areas
of high curvature, the gradient direction varies more quickly,
which can lead to artifacts. Additionally, when its magnitude
approaches zero, the gradient vector becomes a less reliable
predictor for the normal direction. We therefore also bias the
determined mip-map level using a function of curvature and
gradient magnitude.

4.4. Performance

In comparison to a regular one-dimensional transfer func-
tion, a style transfer function lookup requires a maximum
of four additional texture fetches (two for the index func-
tion texture and two for the style function texture). The in-
dex function texture does not require filtering and is rather
small. It therefore heavily benefits from texture caching. On
GeForce 8 series hardware it could also be implemented
as a buffer texture using the EXT_texture_buffer_object
OpenGL extension for additional performance gains. Al-
though the additional texture fetches incur an overhead, the
cost for evaluating the illumination model is saved when us-
ing style transfer functions.

To evaluate the performance of our approach, we com-
pared the use of a style transfer function for classifica-
tion and shading to a regular one-dimensional transfer func-
tion with simple Phong shading. The same opacities were
used for both transfer functions. Both implementations use
empty-space skipping and early-ray termination. The view-
port size was 512× 512 and the object sample distance was
set to 0.5. We used the data set depicted in Figure 7 (dimen-
sions: 256×256×230). Our test system was equipped with
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an AMD Athlon 64 X2 Dual 4600+ CPU and an NVidia
GeForce 7900 GTX GPU. The results of this comparison
are shown in Table 1. If only one style is visible, the perfor-
mance is approximately equal (style transfer functions are
even slightly faster) as all lighting computations are replaced
by texture fetches which benefit from coherent access. If
multiple styles are visible, the style transfer function per-
forms slightly worse due to texture caching effects. In total,
however, the overhead of employing a style transfer function
is only minor but greatly increases the flexibility.

5. Discussion

In our experiments, style transfer functions have proven to
be a simple method for generating images and animations in
a wide variety of different appearances. Lit sphere maps are
particularly effective in representing the styles typically used
in medical illustrations. Our approach is well-suited for this
application, as illustrations frequently rely on certain shad-
ing conventions. This means that a database of styles can po-
tentially be reused for a large number of data sets. Figures 7
and 9, for example, use styles obtained from medical illus-
trations. Another advantage is that the theme of an image
can quickly be changed by simply replacing one set of styles
with another one. This is illustrated in Figure 10, where two
very different results are achieved by a simple exchange of
styles.

While the representation of styles as lit sphere maps has
proven to be effective and efficient, it has drawbacks. One
problem already discussed by Sloan et al. [SMGG01] occurs
when the sphere contains prominent texture features. When
the camera is rotated, they will appear to follow the eye lead-
ing to an undesired metallic impression. To solve this prob-
lem, texture and lighting information have to be separated.
The texture information could then be aligned to the object,
for example based on curvature directions. This might be an
interesting direction for future research.

6. Conclusions

In this paper, we presented a new technique for data-
dependent image-based shading of volumetric data. We in-
troduced the concept of style transfer functions which define
the color at a sample point as a function of the data value
and the eye-space normal. This allows for flexible combi-
nation of different rendering styles. We extended our ap-
proach to handle thickness-controlled style-based contours
using an efficient approximation of the normal curvature
along the viewing direction. Furthermore, we introduced a
new transparency model designed to emulate techniques em-
ployed by illustrators. Our framework is able to generate
high-quality images resembling traditional illustrations at in-
teractive frame-rates.

Figure 10: Changing the theme of an image by replacing

styles. Top: Drawing of a staghorn beetle by A. E. Brinev.

Middle: Volume rendering of a staghorn beetle using a sim-

ilar style. Bottom: Staghorn beetle rendered using a more

realistic style.
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