
BrainGazer – Visual Queries for Neurobiology Research

Stefan Bruckner, Veronika Šoltészová, M. Eduard Gröller, Member, IEEE,
Jiřı́ Hladůvka, Katja Bühler, Jai Y. Yu, and Barry J. Dickson

Fig. 1: Neural projections in the brain of the fruit fly visualized using the BrainGazer system.

Abstract— Neurobiology investigates how anatomical and physiological relationships in the nervous system mediate behavior. Molec-
ular genetic techniques, applied to species such as the common fruit fly Drosophila melanogaster, have proven to be an important
tool in this research. Large databases of transgenic specimens are being built and need to be analyzed to establish models of neu-
ral information processing. In this paper we present an approach for the exploration and analysis of neural circuits based on such
a database. We have designed and implemented BrainGazer, a system which integrates visualization techniques for volume data
acquired through confocal microscopy as well as annotated anatomical structures with an intuitive approach for accessing the avail-
able information. We focus on the ability to visually query the data based on semantic as well as spatial relationships. Additionally,
we present visualization techniques for the concurrent depiction of neurobiological volume data and geometric objects which aim to
reduce visual clutter. The described system is the result of an ongoing interdisciplinary collaboration between neurobiologists and
visualization researchers.

Index Terms—Biomedical visualization, neurobiology, visual queries, volume visualization.

1 INTRODUCTION

A major goal in neuroscience is to define the cellular architecture of
the brain. Mapping out the fine anatomy of complex neuronal cir-
cuits is an essential first step in investigating the neural mechanisms
of information processing. This problem is particularly tractable in in-
sects, in which brain structure and function can be studied at the level
of single identifiable neurons. Moreover, in the fruit fly Drosophila
melanogaster, a rich repertoire of molecular genetic tools is available
with which the distinct neuronal types can be defined, labeled, and ma-
nipulated [36]. Because of the high degree of stereotypy in insect ner-
vous systems, these genetic tools make it feasible to construct digital
brain atlases with cellular resolution [33]. Such atlases are an invalu-
able reference in efforts to compile a comprehensive set of anatomical
and functional data, and in formulating hypotheses on the operation of
specific neuronal circuits.

One approach in generating a digital atlas of this kind is by ac-
quiring confocal microscope images of a large number of individual
brains. In each specimen, one or more distinct neuronal types are
highlighted using appropriate molecular genetic techniques. Addition-

∙ Stefan Bruckner, Veronika Šoltészová, and M. Eduard Gröller are with the
Institute of Computer Graphics and Algorithms, Vienna University of
Technology, Austria, E-mail: {bruckner,vero,groeller}@cg.tuwien.ac.at.

∙ Jiřı́ Hladůvka and Katja Bühler are with the VRVis Research Center,
Vienna, Austria, E-mail: {jiri,katja}@vrvis.at.

∙ Jai Y. Yu and Barry J. Dickson are with the Research Institute of Molecular
Pathology, Vienna, Austria, E-mail: {Jai.Yu,dickson}@imp.ac.at.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

ally, a general staining is applied to reveal the overall structure of the
brain, providing a reference for non-rigid registration to a standard
template. After registration, the specific neuronal types in each speci-
men are segmented, annotated, and compiled into a database linked to
the physical structure of the brain. The complexity and sheer amount
of these data necessitate effective visualization and interaction tech-
niques embedded in an extensible framework. We detail BrainGazer,
a novel visualization system for the study of neural circuits that has
resulted from an interdisciplinary collaboration. In particular, in addi-
tion to visualization, we focus on intuitively querying the underlying
database based on semantic as well as spatial criteria.

The remainder of the paper is structured as follows: Related work
is discussed in Section 2. Section 3 outlines the data acquisition work-
flow and gives a conceptual overview of our system. In Section 4 we
detail the visualization techniques employed. Our novel approach for
semantic and spatial visual queries is presented in Section 5. Section 6
provides details on the implementation of our system. Results are dis-
cussed in Section 7. The paper is concluded in Section 8.

2 RELATED WORK

Excellent starting points to get insight into the world of neuroscien-
tists, their data, the huge data collections, and related problems are
given by Koslow and Subramaniam [26] as well as Chicurel [11]. Data
acquired to study brain structure captures information on the brain
on different scales (e.g., molecular, cellular, circuitry, system, behav-
ior), with different focus (e.g., anatomy, metabolism, function) and is
multi-modal (text, graphics, 2D and 3D images, audio, video). The
establishment of spatial relationships between initially unrelated im-
ages and information is a fundamental step towards the exploitation
of available data [6]. These relationships provide the basis for the vi-
sual representation of a data collection and the generation of further
knowledge. Jenett et al. [22] describe techniques and workflow for



quantitative assessment, comparison, and presentation of 3D confocal
microscopy images of Drosophila brains and gene expression patterns
within these brains. An automatic method to analyze and visualize
large collections of 3D microscopy images has been proposed by de
Leeuw et al. [13].

Brain atlases are a common way to spatially organize neuroanatom-
ical data. The atlas serves as reference frame for comparing and inte-
grating image data from different biological experiments. Maye et
al. [33] give an introduction and survey on the integration and visual-
ization of neural structures in brain atlases. A classical image-based
neuroanatomical atlas of Drosophila melanogaster is the FlyBrain at-
las [16], spatially relating a collection of 2D drawings, microscopic
2D images and text. The web interface provides visual navigation
through the data by clicking on labeled structures in images. Brain
Explorer [28], an interface to the Allen Brain Atlas, allows the visu-
alization of mouse brain gene expression data in 3D. An example for
a 3D atlas of the developing Drosophila brain has been described by
Pereanu and Hartenstein [37]. Segmentation, geometric reconstruc-
tion, annotation, and rendering of the neural structures was performed
using Amira [2]. The Neuroterrain 3D mouse brain atlas [4] consists
of segmented 3D structures represented as geometry and references
a large collection of normalized 3D confocal images. An interface
to interact with the data has been described for neither of these at-
lases. NeuARt II [9] provides a general 2D visual interface to 3D neu-
roanatomical atlases including interactive visual browsing by stereo-
tactic coordinate navigation. The CoCoMac-3D Viewer developed by
Bezgin et al. [5] implements a visual interface to two databases con-
taining morphology and connectivity data of the macaque brain for
analysis and quantification of connectivity data. It also allows graphi-
cal manipulation of entire structures.

Most existing interfaces to neuroanatomical databases provide only
very limited tools for visual analysis, although there exist powerful
general methods for the exploration of multidimensional and spatial
data. Surveys of concepts for visual analysis of databases and visual
data mining have been published by Derthick et al. [14] and Keim [24].
The most prominent techniques are interactive filtering by dynamic
queries [1] and brushing and linking for the exploration of multidimen-
sional data [31]. Special focus on visual analytics of spatial databases
discussing multidimensional access methods is subject of the survey
by Gaede and Günther [18]. Examples for visual navigation through
spatial data can be mainly found in geographical information systems
(e.g., Google maps or the public health surveillance system proposed
by Maciejewski et al. [30]).

An example for interfaces to neuroanatomical image collections
and databases realizing more elaborate visual query functionalities is
the European Computerized Human Brain Database (ECHBD) [17].
It connects a conventional database with an infrastructure for direct
queries on raster data. Visual queries on image contents can be di-
rectly realized by interactive definition of a volume of interest in a
3D reference image. Direct search by drawing regions of interest in
a 2D image to query injection and label sites on a set of related stud-
ies has been realized by Press et al. [38] as interface to the XANAT
database. Ontology-based high-level queries in a database of bee brain
images based on pre-generated 3D representations of atlas information
have been recently proposed by Kuß et al. [27]. The interactive def-
inition of volumes of interest directly on the 3D data for queries on
pre-computed fiber tracts of a Diffusion Tensor Imaging (DTI) data
set has been proposed by Sherbondy et al. [42]. Several approaches
for the 3D visualization of neurons based on microscopy data have
been presented [32, 23, 3, 40]. Rendering of pure geometric repre-
sentations of large neural networks has been addressed recently by de
Heras Ciechomski et al. [12].

Nevertheless, the visual presentation of 3D neuroanatomical image
data in query interfaces to large data collections is currently mainly
realized as geometric representations of atlas information in combi-
nation with or alternatively to axis aligned 2D sections of the image
data. The system presented in this paper combines state-of-the-art 3D
visualization techniques for neurobiological data with a novel visual
query interface, thereby integrating semantic and spatial information.

3 SYSTEM OVERVIEW

The nervous system is composed of individual neurons, which process
and transmit information in the form of electrochemical signals. They
are the basic structural and functional units of an organism’s nervous
system and are therefore of primary interest when studying brain func-
tion. Different types of specialized neurons exist and knowledge about
their arrangement, connectivity, and physiology allows neuroscientists
to derive models of cognitive processes. In an interdisciplinary collab-
oration between neurobiologists and visualization researchers, we in-
vestigate neural circuits in the fruit fly Drosophila melanogaster. Con-
served genes and pathways between flies and other organisms, together
with the availability of sophisticated molecular genetic tools make
Drosophila a widely used model system for elucidating the mecha-
nisms that affect complex traits such as behavior. This section gives
an overview on the basic methodology we use for these studies and the
visualization system which has been developed.

3.1 Data Acquisition

We use the Gal4/UAS system [7] to label and manipulate specific neu-
rons in the fly brain and ventral nerve cord. The brain and nerve cord
are separately dissected. Specific neurons are stained with a green
fluorescent protein (GFP). Additionally, separate neuropil staining is
used to facilitate registration – it highlights regions of high synaptic
density which provide a stable morphological reference. After prepa-
ration and staining, the tissues are scanned using a Zeiss LSM 510
laser scanning confocal microscope with a 25X objective. Data sets
of 165 slices at a 1 µm interval and an image resolution of 768 × 768
pixels are generated.

The neuropil staining is then used to perform non-rigid registra-
tion [39] of the scans to a corresponding template for either brain
or ventral nerve cord, similar to the approach described by Jenett et
al. [22]. The template was generated by averaging a representative set
of scans registered against a reference scan. The registration process
itself is automatic, but results are manually verified and additional im-
age processing operations may be applied to reduce noise. Only scans
considered to be registered with sufficient accuracy are used for the
database.

Each neuron is characterized by three types of features: a cell body,
the neural projection, which is an elongated structure that spreads over
large areas, and arborizations, which contain synapses where commu-
nication with other neurons occurs. Neurons are classified based on
the morphology or shape of these features. Neurons that share similar
cell bodies, patterns of projections, and arborizations, as well as ex-
pression of the same Gal4 drivers, are tentatively considered to belong
to the same type. Types of neurons having these anatomical properties
may perform similar functions.

Standardized volumes are created by generating averages for each
Gal4 line which allow evaluation of the biological variability of the
corresponding expression patterns. Amira [2] is used to segment cell
body locations and arborizations from these average volumes. The
resulting objects are therefore representations of the typical locations
and shapes of these structures. They are examined together with the
corresponding average volumes and individual confocal scans in order
to assess their constancy between multiple specimens. Neural projec-
tions are traced from individual images using the skeletonizer plugin
for Amira [41]. Surface geometry is generated for cell body loca-
tions and arborizations, while neural projections are stored as skeleton
graphs. References to these files, the original confocal volumes, the
average Gal4 volumes, the templates, and template regions (surface
geometry based on a template volume representing particular parts
of the anatomy such as the antennal lobes) are stored in a relational
database. The central entities within this database are neural clusters
which group cell body locations, neural projections, and arborizations.
These neural clusters correspond to particular neuronal types.

3.2 Visualization and Interaction

One of the goals in developing the BrainGazer system was to facilitate
the study of neural mechanisms in the mating behavior of Drosophila



database
interface

visual
queries

relational
database

spatial
indices

file server

user interface

data handling

interactive
visualization

Fig. 2: Conceptual overview of the BrainGazer system.

using the acquired data. The research challenge is to reveal how chem-
ical and auditory cues are detected and processed in the fly’s brain,
how these signals are interpreted in the context of internal physiolog-
ical states and past experience, and how this information is used to
make decisions that are fundamental to the animal’s reproductive suc-
cess [15]. By visualizing individual neurons on a common reference
template, potential connections between these neurons based on the
spatial colocalisation of their arbor densities can be identified. This
information is used to generate network diagrams which allow us to
formulate specific hypotheses of circuit function. For example, we
have used this principle to identify the neuronal types that constitute
a putative pathway for sensing and processing pheromone signals and
triggering courtship behavior. In order to facilitate this type of ex-
amination, it is important to provide efficient means for interactively
accessing the generated database. BrainGazer provides two distinct
paths to select data for display and analysis (see Figure 2):

Database interface. A traditional table-view database interface al-
lows users to filter and select items based on combinations of
different criteria, such as gender or neuronal type. A result view
is updated immediately when query parameters change. The user
can then select the desired data items and load them into the ap-
plication. Additionally, it is possible to perform a full-text search
of the database to quickly access specific data sets.

Visual queries. While a traditional database interface is useful for
quickly accessing a known subset of the data, it is also impor-
tant to be able to visually search the whole set of available data
based on spatial relationships. The visual query interface is dis-
played directly in the visualization window and provides instant
access to contextual information and related structures for se-
lected items and regions of interest.

All data sets are stored on a central file server and transferred on-
demand. The relational database storing references to these files is also
accessed over the network. To facilitate visual queries, a set of spatial
indices is maintained and updated whenever changes to the data occur.

The application itself comprises a rich set of standard tools for
2D/3D navigation (rotation, zoom, pan, slicing), rendering (ortho-
graphic and perspective projection, clipping planes, cropping boxes,

transfer functions, windowing), multiple linking of 3D and 2D views,
multi-screen support, and image and video capture. Working sessions
together and all current settings can be saved to disk and later restored
with automatic transfer of all loaded data sets. As these features are
common in similar systems, we restrict our further discussion to novel
aspects of our approach. A typical screenshot of BrainGazer is shown
in Figure 1.

4 VISUALIZATION

One of the challenges in developing BrainGazer was the concurrent vi-
sualization of many different anatomical structures while minimizing
visual clutter. As semi-transparent volume data is depicted together
with geometric objects, care has to be taken to avoid occlusion while
preserving the ability to identify spatial relationships. In this section,
we describe the visualization techniques we employ for this purpose.

Template regions, cell body locations, and arborizations are avail-
able as triangle meshes. We render them using standard per-pixel
Phong illumination. Neural projections are given as skeleton graphs
with optional diameter information. As the diameter values can be un-
reliable and misleading, the projections are preferably viewed with a
constant diameter. However, we provide the option of using the avail-
able diameter values as well. The skeleton graph is extruded to cylin-
ders and rendered as polygonal geometry which also enables simple
and fast rendering of object outlines in 2D slice views (in the future
we also plan to investigate more advanced techniques to improve the
visual quality, such as convolution surfaces [35] or self-orienting sur-
faces [34]). The remaining data sets, templates, average Gal4 volumes,
and confocal scans are volume data. The users of BrainGazer want to
visualize them together with the geometric objects.

4.1 Volume Rendering

Volume data acquired by confocal microscopy is frequently visual-
ized using Maximum Intensity Projection (MIP) as the stained tissues
have the highest data values. When concurrently depicting several
different scans, however, the disadvantage of MIP is that spatial re-
lationships are lost. Using Direct Volume Rendering (DVR), on the
other hand, suffers from occlusion. This is particularly problematic as
it is frequently necessary to visualize several confocal scans together
with a template volume which provides anatomical context. The tem-
plate should not occlude features highlighted in the other data sets but
is important for spatial orientation. Thus, in BrainGazer we chose
to employ a variant of Maximum Intensity Difference Accumulation
(MIDA) [8]. As MIDA represents a unifying extension of both DVR
and MIP, it is well suited for our problem. We extended the method to
enable the concurrent rendering of multi-channel data sets [10].

MIDA uses a generalization of the over operator where the previ-
ously accumulated color and opacity are modulated by an additional
factor. The accumulated opacity Ai and color Ci at the i-th sample
position Pi along a viewing ray traversed in front-to-back order are
computed as:

Ai = B̂iAi−1 +(1− B̂iAi−1)Âi
Ci = B̂iCi−1 +(1− B̂iAi−1)ÂiĈi

(1)

where Âi and Ĉi are the opacity and color, respectively, of the sam-
ple and B̂i is the modulation factor. In the original method, which
focused on single-channel data sets, B̂i was defined based on the ab-
solute difference between the current maximum along the ray and the
data value at a sample point. This approach gives increased visual
prominence to local maxima. The resulting images share many of the
characteristics with MIP, but feature additional spatial cues due to ac-
cumulation.

In the following, we present a simple extension of MIDA to
multi-channel data. We assume a multi-channel data set consisting
of N continuous scalar-valued volumetric functions f1(P), . . . , fN(P)
of normalized data values in the range [0,1]. Each channel has
an associated color function c1(P), . . . ,cN(P) and opacity function
α1(P), . . . ,αN(P).



(a) (b) (c)

Fig. 3: The ventral nerve cord of a fly rendered using (a) DVR, (b)
MIDA, and (c) MIP. The template (gray) is depicted together with two
average Gal4 data sets (red and blue).

Like Kniss et al. [25], at the i-th sample position Pi along a ray,
we sum the opacities and average the colors for the overall opacity Âi
and color Ĉi of the sample (opacities larger than one are subsequently
clamped):

Âi =
N
∑

j=1
α j(Pi) Ĉi =

N
∑
j=1

α j(Pi)c j(Pi)

N
∑
j=1

α j(Pi)
(2)

We want to enhance regions where the maximum along the ray
changes for any channel. Specifically, when the maximum changes
from a low to a high value, the corresponding sample should have
more influence on the final image compared to the case where the dif-
ference is only small. We use δ j to classify this change at every sample
location Pi:

δ j(Pi) =

⎧⎨⎩ f j(Pi)−
i−1

max
k=1

f j(Pk) if f j(Pi)>
i−1

max
k=1

f j(Pk)

0 otherwise
(3)

Whenever a new maximum for channel j is encountered while
traversing the ray, δ j is nonzero. These are the cases where we want
to override occlusion relationships. For this purpose, the modulation
factor B̂i from Equation 1 is defined as:

B̂i = 1− N
max
j=1

δ j(Pi)
α j(Pi)

αmax(Pi)
(4)

In Equation 4 the maximum of δ j(Pi) weighted by the ratio between
each channel’s opacity α j(Pi) and the maximum opacity αmax(Pi) of
all channels is computed. The additional weighting ensures that invis-
ible samples have no influence on the final image. If the maximum
opacity is zero, i.e., no channel is visible at the current sample loca-
tion, we set B̂i to one.

The advantage of this approach is that it enables a clear depiction
of stained data sets but does not require complex transfer functions to
resolve occlusion problems. In our system, transfer function specifica-
tion is typically performed by defining a linear opacity mapping using
standard window/level controls and choosing a pre-defined color map.

Using this volume rendering technique, a high-intensity stained
structure immersed in the relatively homogeneous template, for exam-
ple, will be distinctly visible while still featuring subtle transparency
as an additional occlusion cue. Channels with no distinct maxima will
appear DVR-like while stained data will exhibit visual characteristics
very similar to MIP. In contrast to two-level volume rendering [20] or
the approach of Straka et al. [43], no pre-classification of structures of
interest is required.

Figure 3 shows the template volume of the ventral nerve cord (in
gray tones) together with two stained average Gal4 volumes (depicted

in shades of red and blue) rendered using (a) DVR, (b) MIDA, and (c)
MIP. The same color and opacity transfer functions are used and all
three techniques combine the individual channels using Equation 2.
While considerable parts of the stained tissue are occluded in DVR,
MIDA and MIP clearly depict the stained neurons. MIDA, however,
provides more anatomical context and spatial cues. We allow the user
to smoothly transition between these three methods [8].

4.2 Geometry Enhancement

In the targeted application, geometric objects corresponding to seg-
mented anatomical structures are displayed immersed in volumetric
data. While the volume data is important as it provides the spatial
context, it is undesirable that it fully occludes the geometry. Opac-
ity could be adjusted to prevent occlusion, but it is cumbersome to
tune transfer functions individually. Inspired by the MIDA approach
to volume rendering, we employ a similar concept to enable the user to
see-through the volume even if it would completely occlude intersect-
ing objects. Based on the technique presented by Luft et al. [29], we
apply an unsharp masking operation to the depth buffer established
during rendering of the geometry. Their spatial importance function
∆D is defined as the difference between the low-pass filtered version
of the depth buffer and the original depth buffer. This simple approach
gives information about spatially important edges, e.g., areas contain-
ing large depth differences.

In our approach, we use ∆D to modulate the accumulated opac-
ity and color along a viewing ray based on the absolute value of ∆D.
The result is then blended with the geometry’s color contribution.
Additionally, as proposed by Luft et al. [29], we can apply depth-
enhancement by darkening and brightening the geometry color based
on ∆D with no additional cost. The effect of this simple approach is
that regions which feature depth discontinuities shine through the vol-
ume rendering most. Thus, while giving the user the ability to identify
objects immersed in the volume, this methods still indicates occlusion
relationships.

An example is shown in Figure 4 – the template brain tissue is de-
picted together with several neural clusters which are mostly occluded
in Figure 4 (a) where no geometry enhancement is applied. In Fig-
ure 4 (b) the transfer function was adjusted to make the geometry more
visible. Figure 4 (c) clearly depicts the geometry as well as the vol-
ume data while still indicating occlusion relationships using our see-
through approach.

5 VISUAL QUERIES

While a traditional database browsing approach is useful for analyz-
ing specific known structures, neurobiological research frequently re-
quires access to the data based on spatial relationships. For example,
the biologist may wish to identify neurons or other structures in the
vicinity, in order to classify specific objects and to begin to recon-
struct neural circuits. A specific case arises as new data is added to
the database: the biologist wants to compare it to existing structures in
order to decide whether it belongs to a known neuronal type. As there
may be substantial variations in individual shapes, it is necessary to
investigate all nearby objects to achieve a classification.

BrainGazer provides three basic types of visual queries: Semantic
queries give access to related structures using information stored in
the database. Object queries are based on the distance between whole
objects. Path queries are the most flexible method. Through an in-
tuitive freehand drawing interface, the user can search for proximal
structures. These types of queries can be arbitrarily combined. Object
and path queries can be used to amend or verify recorded semantic
information stored in the database. The user can interact with these
different query types through contextual hypertext labels which are
displayed in-window.

5.1 Semantic Queries

Semantic queries allow the user to quickly access contextual informa-
tion and data for an object of interest. They are initiated by simply
selecting an object in the visualization window through a mouse click.



(a) (b) (c)

Fig. 4: Neural clusters in the fly brain depicted together with the template volume using (a) no see-through enhancement, (b) no see-through
enhancement with an adjusted transfer function, and (c) see-through mode using the same transfer function as in the leftmost image.

If multiple objects overlap in depth, subsequent clicks at the same po-
sition allow cycling through them. As soon as a new object has been
picked, a contextual hypertext label appears on-screen and provides
the information stored in the database such as the name of the struc-
ture and comments. References to other related objects are displayed
as hyperlinks which can be used to access the associated structure.
This includes geometric objects, e.g., other cell body locations, neu-
ral projections, or arborizations of the same neuronal type, as well as
volumetric data such as the scan the object has been segmented from.
This setup can be used to navigate through the data. For instance, an
arborization may be part of one or several neuronal types. When se-
lecting the arborization, the label shows all neuronal types linked to the
arborization together with the cell body locations, neural projections,
and other arborizations as hyperlinks. Selecting another arborization
in one of these neuronal types will provide access to further structures
considered connected to this arborization. Hovering over a hyperlink
also highlights the corresponding objects if they already have been
loaded. If the objects are not already visible, activating the link by
clicking it will initiate a load operation. This simple approach allows
the user to quickly navigate known neural circuits using a familiar in-
terface.

5.2 Object Queries
In addition to providing access to semantic information already present
in the database, our system allows users quick access to spatial prox-
imity information in order to aid identification of new relationships.

For this purpose, we create a table which stores the minimum dis-
tances of an object to all other objects in a pre-processing step. We use
signed distance volumes generated for all objects in the database. The
minimal surface distance between two objects i and j is computed by
sampling the distance volume of j for every voxel along the surface of
i and vice versa. If the minimum is negative, we continue to compute
the volume of intersection between the two objects and record it as a
negative value. Table entries for each object are then sorted accord-
ing to ascending distance values. This table is loaded into memory at
startup and allows quick access to proximity information whenever an
object is selected.

The result of an object query is displayed in conjunction with the
semantic information in a contextual label when a picking operation
occurs. The label will display hyperlinks for all objects within a cer-
tain range from the selected structure. A slider widget integrated with
the label allows interactive filtering of the query results based on dis-
tance. When moving the slider, the label immediately updates. For
each object type, the number of objects within the specified distance
range is displayed followed by a list of their names (as retrieved from
the database). Each name represents a hyperlink which can be used to
load and highlight the object. These links are additionally color-coded
to quickly identify the object’s degree of spatial proximity.

5.3 Path Queries
Path queries are based on an intuitive freehand drawing interface: the
user sketches an arbitrary path on top of the visualization and gets

immediate feedback about nearby objects. The result of the query can
then be loaded into view for further inspection. Sketches were chosen
over more conventual selection tools such as rectangular or circular
regions as they allow a more accurate characterization of the region of
interest in the context of complex neural anatomy.

5.3.1 Index Generation

To facilitate fully interactive visual queries, we generate a spatial in-
dex which allows us to quickly retrieve the objects in the vicinity of a
specific location. In a pre-processing step we create a lookup volume
and a distance table. At runtime, the lookup volume is kept in memory
while the distance table may be accessed out-of-core. The distance ta-
ble grows with the number of objects in the database while the size of
the lookup volume remains constant. This is important for scalability
as significant growth in the number of annotated objects is expected.
For each voxel, the lookup volume stores an offset into the distance ta-
ble and the number N of proximal objects found for the voxel position
P. Each entry in the distance table corresponds to such a position in
the volume and contains a list of N <distance, identifier> pairs. The
pairs in the list are sorted according to their ascending distance from
P. Negative distances indicate that the point P is located inside of the
respective object. During pre-processing, the distances are determined
using signed distance fields stored for each object. As we are not in-
terested in objects located far from a queried point, all distances above
a certain threshold are ignored and not stored. In practice, a maximum
distance of 40 voxels has proven to be useful and is used in our current
implementation.

Using these data structures, during interaction objects close to any
voxel can be found by simply reading the offset and count from the
corresponding location in the lookup volume and then retrieving the
respective set of <distance, identifier> pairs from the distance ta-
ble. In order to enable efficient caching for subsequent accesses to
the distance table, it is advantageous to choose a locality-preserving
storage scheme. Many out-of-core approaches employ space-filling
curves for this purpose. In our current implementation, the entries of
the distance table are arranged based on the three-dimensional Hilbert
curve [19] which has been shown to have good locality-preserving
properties [21]. Figure 5 illustrates lookup volume and distance ta-
ble for the two-dimensional case.

Our concept also allows easy merging of distance tables and lookup
volumes for disjoint sets of objects which is practically needed when
new objects are inserted into the database. We merge the entries of the
distance tables with a union operation and resort them. The offsets and
counts in the lookup volumes can simply be added.

5.3.2 Query Processing

Using the described data structures, we can efficiently determine ob-
jects in the vicinity of a voxel. For performing path queries, it is there-
fore necessary to identify a corresponding 3D object-space position
for each 2D point along the path. Whenever a new point is added
to the path, we read the depth buffer at the corresponding 2D loca-
tion and use the inverse viewing transformation to transform it into



B

A

C

lookup volume distance table
0

1

28

30

4

2

25

22

5

10

12

19

6

8

15

17

1

1

2

1

1

2

3

3

1

2

3

3

2

2

2

2

offset count
1

1

0

0

0

1

1

0

1

0

0

1

0

1

2

1

B

B

B

B

B

B

A

B

A

A

A

A

C

B

B

C

2

2

1

2

1

2

2

1

2

1

2

C

A

B

A

B

B

C

C

A

C

C

2

2

2

2

C

B

B

A

Fig. 5: Lookup volume and distance table for a simple two-dimensional scene containing three objects – the city block distance metric is used
and distances above 2 are ignored. The Hilbert curve used to arrange the distance table is overlayed in light gray. An example lookup is indicated
with black outlines.

object space. For geometry rendering, this results in the position on
the surface of the object closest to the viewer. For volume rendering,
however, several samples along a ray may contribute to a pixel. For
each viewing ray, we therefore choose to write the depth of the sample
which contributes most to the final pixel color. Particularly in conjunc-
tion with the volume rendering technique described in Section 4.1 this
approach has proven useful – as stained tissues are presented visually
more prominent, the respective depth will give access to objects in the
vicinity of high-intensity volumetric structures. Using the depth buffer
in this way also ensures that there is always a good correspondence be-
tween the selected query locations and the actual visualization when
operations such as cropping have been applied or a slicing plane is
displayed in the 3D visualization.

As path queries are used to find structures which are not visible, all
currently displayed objects are ignored. During the query, we maintain
a sorted list of <distance, identifier> pairs for all objects encountered
along the path. When a new point is added, we retrieve its <distance,
identifier> pairs from the distance table and merge them into this list.
If an object has already been encountered along the path, the lower of
the two distances is stored. Similar lists are kept separately for each
object type. This information is then used to present the query results
to the user.

5.3.3 User Interaction

A path query can be initiated by the user by simply clicking on any
position in the window and painting the desired path while keeping
the mouse button pressed. A hypertext label pops up on the side of
the window and is constantly updated with current information on the
number and type of objects found. As soon as the user releases the
mouse button, the contextual label moves to the center of the screen
prompting the user to inspect the results. Activating a link by clicking
it loads and highlights the corresponding objects. Query results can be
discarded by right-clicking the label. The query results are displayed
in the same way as for object queries using an integrated slider widget
for interactive filtering.

During the query, the specified path is overlayed with proximity
clouds which provide an instant visual indication of close objects with-
out having to load the geometry first. For this purpose, for every point
of the path we draw a circle for each detected nearby object into an
offscreen buffer. The radius of each circle corresponds to the recorded
distance and each pixel inside the circle is set to this distance value –
entries for objects which intersect the point are drawn using a default
radius. Pixel values are combined using minimum blending. The re-
sult is a buffer which stores the closest distance to any object at each
pixel. These values are then mapped to colors and opacities and dis-
played semi-transparently as shown in Figure 6 (b). After the query,
when the user hovers over any of the hyperlinks the corresponding
proximity overlay is shown.

6 IMPLEMENTATION

The presented system was implemented in C++ using OpenGL and
GLSL. For the user interface, the Qt toolkit was used. The architec-
ture is based on a flexible plug-in mechanism which allows indepen-
dent modification or even replacement of system components. This
modular concept has proven to be very useful as it allows rapid pro-
totyping of new functionality. For instance, the traditional database
browsing components were implemented and deployed first. The vi-
sual query module uses the same interface which greatly simplified
integration and testing. As the system was developed within the scope
of an ongoing project, we expect to add new features such as inte-
gration with additional databases using the same procedure. The ap-
plication is designed to run on commodity PCs equipped with Shader
Model 3.0 capable graphics hardware. The system is used on a number
of different computers ranging from laptops to high-end visualization
workstations.

7 RESULTS AND DISCUSSION

Currently, the database contains several thousand individual confocal
scans, several hundred average Gal4 volumes, as well as hundreds
of geometric objects (cell body locations, neural projections, and ar-
borizations) with new data items being added on a regular basis. The
lookup volume is generated at a resolution of 384 × 384 × 82 voxels.
For each template (either brain or ventral nerve cord) the current dis-
tance table for a cutoff distance of 40 voxels requires approximately
200 MB of storage. The time required for adding a new object is
approximately 5 minutes including distance field generation, compu-
tation of distance and object tables, and subsequent merging of these
tables. These operations are performed in an offline batch process.

In order to gain estimates about the scalability of our approach, we
performed experiments with higher cutoff distances which result in a
larger number of entries per point. For a maximum distance of 256
voxels, the distance table requires 2 GB of storage thus approximately
simulating a growth of one order of magnitude in the number of seg-
mented structures. For the small distance table, the average times for
lookup and retrieval of all entries for a single location from the hard
disk are below 1 ms even without the use of an explicit caching mecha-
nism. In the case of the large table, the time increases to approximately
3 ms indicating that the approach is prepared to handle a substantial
increase in the number of objects.

A typical use-case of our visual query approach is illustrated in
Figure 6. Since it is difficult to depict an interactive process using
still images and because our user interface is designed for on-screen
viewing, we refer to the accompanying video for a sample of an inter-
action session. Initially, in Figure 6 (a), the brain template is shown
together with an average Gal4 volume which has been selected using
the database browser. A path query is then specified in Figure 6 (b).
The best match of the query – an arborization – is loaded and selected.
In Figure 6 (c), the contextual label gives access to semantic query re-
sults: the arborization’s neural cluster which contains one cell body lo-



a b

c d

e f

path query

semantic query object query

semantic query

Fig. 6: A simple interaction session using visual queries. (a) Initial state. (b) Path query and selection of an arborization. (c) Selection of the
arborization’s neuronal type. (d) Object query for nearby neural projection. (e) Selection of the projection’s neuronal type. (d) Final state.

cation, two neural projections, and two further arborizations, is loaded.
In Figure 6 (d), the object query information is used to load an addi-
tional intersecting neural projection. Finally, in Figure 6 (e) the neural
projection’s associated cluster is loaded using another semantic query
resulting in Figure 6 (f). This simple example demonstrates how our
approach – using a combination of semantic queries, object queries,
and path queries – allows intuitive navigation through complex data.

As BrainGazer was developed in an interdisciplinary effort together
with domain experts, the described techniques benefitted from con-
stant input by neurobiologists. The possibility of being able to quickly
access semantically related or proximal objects was an important goal.
We received very encouraging feedback on how the availability of such
a system will ease future research. In particular, the concept of pre-
senting query results directly in the visualization window using hyper-
text labels – as opposed to displaying them in a separate user-interface
widget – was appreciated, as it allows the user to remain focused on
the visualization. After initial demonstrations of our visual query ap-
proach several changes were made based on user comments. For in-

stance, we integrated the distance slider with the contextual label to
allow interactive filtering with immediate feedback. We also color-
coded the object names in the query results to give a better indication
of an object’s placement within the query range. Another request was
to leave the contextual label visible until explicitly discarded – ini-
tially, the label disappeared as soon as an object had been selected for
loading. The new behavior allows users to inspect all likely matches
sequentially before coming to a conclusion. As a neuronal type, for
example, may contain several neural projections which – with slight
variation – follow the same path, it is important to view them all when
judging connectedness.

We are currently using the techniques presented in this paper to as-
semble a cellular atlas of the network of neurons that express the fruit-
less gene (fru), which have been functionally linked to male courtship
behavior [15]. The BrainGazer system has proven invaluable in the
digital reconstruction of this network, which now comprises over 90
distinct neuronal types. We are now working towards expanding this
database to encompass an even broader range of neurons, while also



further developing the database and visualization software. Our aim
is to release these tools to the neuroscience research community in
the near future, in the expectation that they will similarly facilitate the
anatomical exploration of other neuronal circuits in the fly. Although
this system has been developed for analysis of the Drosophila ner-
vous system, the computational methods are equally applicable to any
species that exhibits a high degree of stereotypy in the cellular archi-
tecture of its nervous system, including most other prominent model
organisms in neurobiology research.

8 CONCLUSION

In this paper we presented a system for the interactive visualization,
exploration, and analysis of neural circuits based on a neurobiological
atlas. We discussed visualization techniques for the effective depic-
tion of multi-channel confocal microscopy volume data in conjunc-
tion with segmented anatomical structures. An intuitive visual query
approach for navigating through the available data based on semantic
as well as spatial relationships was presented. The system was de-
signed and implemented in collaboration with domain experts and is
currently in use to assist their research.

In the future we want to extend the scope of this project. Our goal is
to build a complete online atlas of neural anatomy. We plan to further
develop the BrainGazer system so that it fully integrates with this atlas
and make it freely available to researchers in the field. In particular, we
aim to enable the interactive definition, modification, and annotation
of semantic relationships between anatomical structures in the atlas
based on visual queries. We envision such a system to facilitate large
scale collaborative research in neuroscience.

Furthermore, we hope that making the system available to a larger
user base will enable us to study and improve the effectiveness of the
presented visualization and interaction techniques. One viable strategy
could be the automatic gathering of anonymized usage logs together
with evaluation forms directly in the application. Information derived
from this data could be employed to optimize the workflow and to
identify areas of future research.

ACKNOWLEDGMENTS

We thank Wolfgang Lugmayr for help in implementing the BrainGazer database. The
work presented in this publication was jointly supported by the Austrian Science Fund
(FWF) grant no. P18322, the City of Vienna through the VRVis Vienna Spot of Excellence
”Visual Computing Vienna”, and the Research Institute of Molecular Pathology (IMP)
funded by Boehringer Ingelheim.

REFERENCES

[1] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for information
exploration: An implementation and evaluation. In Proceedings of ACM CHI, pages
619–626, 1992.

[2] Amira. http://www.amira.com.
[3] R. S. Avila, L. M. Sobierajski, and A. E. Kaufman. Visualizing nerve cells. IEEE

Computer Graphics and Applications, 14(5):11–13, 1994.
[4] L. Bertrand and J. Nissanov. The neuroterrain 3D mouse brain atlas. Frontiers in

Neuroinformatics, 2, 2008.
[5] G. Bezgin, A. Reid, D. Schubert, and R. Kötter. Matching spatial with ontological

brain regions using java tools for visualization, database access, and integrated data
analysis. Neuroinformatics, 7(1):7–22, 2009.

[6] J. Bjaalie. Localization in the brain: New solutions emerging. Nature Reviews
Neuroscience, 3:322–325, 2002.

[7] A. H. Brand and N. Perrimon. Targeted gene expression as a means of altering cell
fates and generating dominant phenotypes. Development, 118(2):401–415, 1993.

[8] S. Bruckner and M. E. Gröller. Instant volume visualization using maximum inten-
sity difference accumulation. Computer Graphics Forum, 28(3):775–782, 2009.

[9] G. A. Burns, W.-C. Cheng, R. H. Thompson, and L. W. Swanson. The NeuARt II
system: A viewing tool for neuroanatomical data based on published neuroanatomi-
cal atlases. BMC Bioinformatics, 7:531–549, 2006.

[10] W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Computer
Graphics Forum, 18(3):359–368, 1999.

[11] M. Chicurel. Databasing the brain. Nature, 406:822–825, 2000.
[12] P. de Heras Ciechomski, R. Mange, and A. Peternier. Two-phased real-time ren-

dering of large neuron databases. In Proceedings of International Conference on
Innovations in Information Technology 2008, pages 712–716, 2008.

[13] W. de Leeuw, P. J. Verschure, and R. van Liere. Visualization and analysis of large
data collections: A case study applied to confocal microscopy data. IEEE Transac-
tions on Visualization and Computer Graphics, 12(5):1251–1258, 2006.

[14] M. Derthick, J. Kolojejchick, and S. F. Roth. An interactive visual query environment
for exploring data. In Proceedings of ACM UIST, pages 189–198, 1997.

[15] B. J. Dickson. Wired for sex: the neurobiology of drosophila mating decisions.
Science, 322(5903):904–909, 2008.

[16] Flybrain. http://flybrain.neurobio.arizona.edu.
[17] J. Fredriksson. Design of an internet accessible visual human brain database system.

In Proceedings of IEEE International Conference on Multimedia Computing and
Systems, volume 1, pages 469–474, 1999.

[18] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

[19] W. Gilbert. A cube-filling hilbert curve. The Mathematical Intelligencer, 6(3):78,
1984.

[20] H. Hauser, L. Mroz, G.-I. Bischi, and M. E. Gröller. Two-level volume rendering.
IEEE Transactions on Visualization and Computer Graphics, 7(3):242–252, 2001.

[21] H. V. Jagadish. Linear clustering of objects with multiple attributes. ACM SIGMOD,
19(2):332–342, 1990.

[22] A. Jenett, J. E. Schindelin, and M. Heisenberg. The virtual insect brain protocol: Cre-
ating and comparing standardized neuroanatomy. BMC Bioinformatics, 7(1):544–
555, 2006.

[23] A. E. Kaufman, R. Yagel, R. Bakalash, and I. Spector. Volume visualization in cell
biology. In Proceedings of IEEE Visualization, pages 160–167, 1990.

[24] D. Keim. Information visualization and visual data mining. IEEE Transactions on
Visualization and Computer Graphics, 7(1):100–107, 2002.

[25] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun. Gaussian
transfer functions for multi-field volume visualization. In Proceedings of IEEE Vi-
sualization, pages 497–504, 2003.

[26] S. H. Koslow and S. Subramaniam, editors. Databasing the Brain: From Data to
Knowledge (Neuroinformatics). Wiley, 2002.

[27] A. Kuß, S. Prohaska, B. Meyer, J. Rybak, and H.-C. Hege. Ontology-based visual-
ization of hierarchical neuroanatomical structures. In Proceedings of Visual Com-
puting for Biomedicine, pages 177–184, 2008.

[28] C. Lau, L. Ng, C. Thompson, S. Pathak, L. Kuan, A. Jones, and M. Hawrylycz.
Exploration and visualization of gene expression with neuroanatomy in the adult
mouse brain. BMC Bioinformatics, 9(1):153–163, 2008.

[29] T. Luft, C. Colditz, and O. Deussen. Image enhancement by unsharp masking the
depth buffer. ACM Transactions on Graphics, 25(3):1206–1213, 2006.

[30] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani,
W. Cleveland, S. Grannis, M. Wade, and D. Ebert. Understanding syndromic
hotspots - a visual analytics approach. In Proceedings of IEEE Symposium on Visual
Analytics Science and Technology, pages 35–42, 2008.

[31] A. Martin and M. Ward. High dimensional brushing for interactive exploration of
multivariate data. In Proceedings of IEEE Visualization, pages 271–278, 1995.

[32] N. L. Max. Computer rendering of lobster neurons. In Proceedings of ACM SIG-
GRAPH, pages 241–245, 1976.

[33] A. Maye, T. H. Wenckebach, and H.-C. Hege. Visualization, reconstruction, and
integration of neuronal structures in digital brain atlases. International Journal of
Neuroscience, 116(4):431–459, 2006.

[34] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser. Visualization of fibrous and thread-
like data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1165–
1172, 2006.

[35] S. Oeltze and B. Preim. Visualization of vasculature with convolution surfaces:
method, validation and evaluation. IEEE Transactions on Medical Imaging,
24(4):540–548, 2005.

[36] S. R. Olsen and R. I. Wilson. Cracking neural circuits in a tiny brain: new ap-
proaches for understanding the neural circuitry of drosophila. Trends in Neuro-
sciences, 31(10):512–520, 2008.

[37] W. Pereanu and V. Hartenstein. Neural lineages of the drosophila brain: A three-
dimensional digital atlas of the pattern of lineage location and projection at the late
larval stage. The Journal of Neuroscience, 26(20):5534–5553, 2006.

[38] W. A. Press, B. A. Olshausen, and D. C. V. Essen. A graphical anatomical database
of neural connectivity. Philosophical Transactions of the Royal Society, 356:1147–
1157, 2001.

[39] T. Rohlfing and J. C.R. Maurer. Nonrigid image registration in shared-memory mul-
tiprocessor environments with application to brains, breasts, and bees. IEEE Trans-
actions on Information Technology in Biomedicine, 7(1):16–25, 2003.

[40] G. Sakas, M. G. Vicker, and P. J. Plath. Visualization of laser confocal microscopy
datasets. In Proceedings of IEEE Visualization, pages 375–379, 1996.

[41] S. Schmitt, J. F. Evers, C. Duch, M. Scholz, and K. Obermayer. New methods for
the computer-assisted 3-D reconstruction of neurons from confocal image stacks.
NeuroImage, 23(4):1283–1298, 2004.

[42] A. Sherbondy, D. Akers, R. Mackenzie, R. Dougherty, and B. Wandell. Exploring
connectivity of the brain’s white matter with dynamic queries. IEEE Transactions
on Visualization and Computer Graphics, 11(4):419–430, 2005.

[43] M. Straka, M. Cervenansky, A. L. Cruz, A. Köchl, M. Šrámek, M. E. Gröller,
and D. Fleischmann. The VesselGlyph: Focus & context visualization in CT-
angiography. In Proceedings of IEEE Visualization, pages 385–392, 2004.


