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Figure 1: Molecular surface visualization of 717K atoms rendered at real-time frame rates (PDB ID: 4V4G). Our method is able to render
this and even larger structures fully interactively without any preprocessing.

Abstract
Molecular surface representations are an important tool for the visual analysis of molecular structure and function. In this
paper, we present a novel method for the visualization of dynamic molecular surfaces based on the Gaussian model. In contrast
to previous approaches, our technique does not rely on the construction of intermediate representations such as grids or
triangulated surfaces. Instead, it operates entirely in image space, which enables us to exploit visibility information to efficiently
skip unnecessary computations. With this visibility-driven approach, we can visualize dynamic high-quality surfaces for molecules
consisting of millions of atoms. Our approach requires no preprocessing, allows for the interactive adjustment of all properties
and parameters, and is significantly faster than previous approaches, while providing superior quality.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Visibility; Point-based models;

1. Introduction

Particle-based simulations are a widely used tool in many fields.
Molecular dynamics (MD) simulations, for instance, are employed
to simulate biomolecules such as proteins. They are commonly used
for the investigation of protein-ligand or protein-protein interactions,
with important applications in fields such as drug design.

An MD simulation can, for example, calculate the behavior of a
molecule and a ligand, and output a set of consecutive spatial atom

configurations known as trajectories. These simulations can gener-
ate very large time-dependent data sets composed of hundreds of
thousands of time steps and potentially millions of atoms per frame.
MD simulations are now at a point where the achieved scales begin
to be compatible with biological processes [HGO∗15]. Visualization
is a fundamental tool for interpreting these results, but it is essential
that methods are able to handle the ever-increasing size of the data.
A common way to visualize such dynamic data sets is by depicting
their van der Waals surface, i.e., the union of spheres defined by the
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van der Waals radii of the respective atoms. The main advantage of
this approach is that each atom can be treated independently – the
union operation is performed using the graphics hardware’s z-buffer,
enabling fast high-quality rendering on current GPUs. While this
simple approach is attractive due to its efficiency, more advanced sur-
face representations offer several advantages in conveying relevant
molecular properties and structure. Such surface representations can
be particularly helpful in the identification of cavities or channels
accessible by a solvent or other specific molecules, as well as the
analysis of binding sites or hydrophobic and hydrophilic regions,
which may impact the protein characteristics.

However, these types of representations are more difficult to han-
dle, as the surface definition is typically based on the neighborhood
of an atom. In contrast to the van der Waals representation, where
each atom simply corresponds to a single sphere, the presence and
shape of a surface between two atoms is based on their distance.
Common approaches for visualizing such surfaces typically con-
struct an intermediate data structure in order to accelerate rendering,
which is challenging when dealing with time-dependent data, as this
costly processing step needs to be executed for every frame. For
large molecules, this is often prohibitive in terms of computational
load and memory consumption.

In this paper, we present a novel approach for the visualization of
molecular surfaces based on the Gaussian model. In contrast to pre-
vious methods, which typically rely on an intermediate volumetric
grid which is then either triangulated or rendered using ray casting,
our approach aims to defer surface construction to the rendering
stage, where visibility information can be exploited. As molecular
data is typically dense, only a fraction of the actual surface will be
visible. This enables us to avoid a majority of the computational
load of object space methods, enables the handling of dynamic data
without any overhead, and lets us change the surface parameters
on-the-fly without additional costs. To the best of our knowledge,
our method is the first to enable the interactive rendering of dynamic
molecular surfaces for structures consisting of millions of atoms,
without any prior data reduction.

2. Related Work

Our research aims to enable the real-time visualization of
high-quality molecular surfaces for dynamic data. Kozlíková et
al. [KKF∗17] provide a comprehensive overview of approaches
for the visualization of molecular data. One of the most common
molecular surface representations is the Solvent Excluded Surface
(SES) [Ric77], which is the surface traced out by a spherical probe
rolling over all atom spheres. The first practical approach for com-
puting the SES was presented by Connolly [Con83], who provided
an analytical description based on three types of patches as well as
an algorithm for their extraction.

Due to the costly nature of this initial algorithm, a significant
amount of research has been devoted to finding alternative solutions.
Totrov and Abagyan [TA96] presented the contour-buildup method,
which extracts the patches of the SES from the Solvent Accessible
Surface (SAS). Varshney et al. [VBWW97] developed a parallel
approach based on power diagrams. The reduced surface, proposed
by Sanner et al. [SOS96], is an intermediate representation to ac-
celerate the computation of the analytical SES. Later developments

made increasing use of multi-core CPUs and GPUs to further im-
prove the performance of SES generation. Lindow et al. [LBPH10]
presented a parallel version of the contour-buildup method for multi-
core CPUs, and Krone et al. [KGE11] described a GPU adaptation
of the algorithm, achieving interactive computation times for smaller
molecules of up to 10K atoms. These approaches use GPU-based
ray casting for rendering the individual patches [KBE09]. In an
alternative approach, Parulek and Viola [PV12] proposed an im-
plicit formulation of the SES which can be rendered directly, but its
performance is limited by the costly evaluation. Parulek and Bram-
billa [PB13] subsequently presented a faster implicit approximation
of the SES.

Due to the limited scalability of analytical approaches, several
approximate methods which rely on an intermediate grid repre-
sentation have been presented. These methods are generally faster,
but require more memory. Examples include the method of Can et
al. [CCW06] which employs a level-set-based approach for SES
computation, and recent work by Hermosilla et al. [HKG∗17] who
use an incremental scheme to mask the latency until the final sur-
face has been computed. As an alternative to the SES, Gaussian
surfaces offer many practical advantages, while still conveying im-
portant molecular properties [BC10]. Originally introduced as a
general modeling approach in computer graphics termed Metaballs
by Blinn [Bli82], the Gaussian model has also been used for visu-
alizing particle-based data outside the context of molecular visual-
ization. Müller et al. [MGE07] presented a multi-pass image-space
approach, but did not achieve interactive performance beyond a
few thousand particles. The method by Kanamori et al. [KSN08]
used a GPU-based approach based on a Bezier approximation of the
Gaussian density surface, achieving interactive frame rates for up
to several thousand spheres with a five-fold speedup compared to
a CPU implementation. Their approach has conceptual similarities
to our method, but suffers from the use of depth peeling which
requires the rendering of a large number of spheres, which they
partially address by using occlusion queries and CPU-based inter-
section testing based on image-space tiles. Fraedrich et al. [FAW10]
sampled particles from Smoothed Particle Hydrodynamics (SPH)
data on a perspective grid which was then rendered using ray cast-
ing. Knoll et al. [KWN∗14] presented a CPU-based framework for
the rendering of large particle data sets. Their approach focuses
on direct volume rendering with radial basis function kernels and
uses a bounding volume hierarchy constructed in a preprocessing
step. The approach by Hochstetter et al. [HOK16] uses an adaptive
sampling scheme to perform volume rendering of dynamic particle
sets driven by a user-controlled screen space error tolerance. Dos
Santos Brito et al. [dSBVeSTT18] presented a ray tracing method
for particle data that achieves several frames per second for millions
of particles. Zirr and Dachsbacher [ZD18] proposed an on-the-fly
voxelization method for particle data as well as an accelerated ray
casting approach for rendering that achieves a considerable speedup
compared to the method by Fraedrich et al. [FAW10]. While these
approaches focus on more general particle data, several techniques
specifically targeted at molecular visualization have been presented.
The method by Dias et al. [DG11] uses a CUDA-based approach for
the generation of a density grid and subsequent surface extraction
using Marching Cubes [LC87]. QuickSurf was presented by Krone
et al. [KSES12] and is currently known to be one of the fastest
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approaches for molecular surface extraction [KKF∗17]. The method
is conceptually similar to the work of Dias et al. [DG11], but due
to their use of a gathering instead of a scattering approach for grid
generation, it is able to achieve over a ten-fold speedup, which en-
ables its application to dynamic data. However, the technique is
still heavily constrained by the resolution of the intermediate vol-
ume. Coarse grid resolutions can result in a significant loss of detail
for larger molecules, while for higher resolutions, both, the cost of
the volume generation and the resulting vast number of triangles,
prevent interactive performance.

The approach presented in this paper aims to address these draw-
backs of object space methods and enable the interactive visual-
ization of Gaussian surfaces for large dynamic molecular data. A
concept closely related to our method is the notion of an output-
sensitive algorithm, i.e., an algorithm whose running time is mainly
determined by the size of its output – in our context the complexity
of the output on the image plane, as opposed to the number of atoms
in the molecule. Falk and Weiskopf [FW08], for instance, developed
a largely output-sensitive technique for 3D line integral convolu-
tion, and Šoltészová et al. [ŠBS∗17] presented an output-sensitive
approach for the filtering of streaming volume data.

3. Visibility-Driven Molecular Surface Rendering

A Gaussian molecular surface is an implicit surface based on a
density function ρ(x) defined as

ρ(x) = ∑
i

e
−s‖x−ci‖2

ri2 (1)

where ci are the atom positions, ri are their van der Waals radii, and
s is a user-defined scaling factor > 0 that controls the appearance of
the surface. The surface is the locus of all points x such that ρ(x)−
t = 0, where t is a suitably-chosen threshold. By decreasing the
parameter s, the individual Gaussian curves become wider, causing
nearby atoms to smoothly merge into a single structure. In the
context of molecular visualization, this emulates the behavior of
the SES which closes gaps between atoms that cannot by entered
by the spherical probe, and it has been shown that an appropriate
parametrization leads to a good approximation of the SES [LCL15].

The typical approach for the visualization of such a surface is to
first sample ρ(x) into a volumetric grid, which can subsequently
be rendered directly using isosurface ray casting or triangulated to
create a surface mesh for a specific threshold. In both cases, there
are several disadvantages. First, the choice of the grid resolution
represents a difficult trade-off between performance and surface
quality. This is especially problematic since a significant proportion
of the computational resources is potentially spent on regions of the
volume that may not be visible from the current viewpoint. In partic-
ular when we are considering time-dependent data, the grid needs to
be recomputed for every new timestep. Methods based on volume
ray casting, which typically rely on spatial acceleration data struc-
tures to skip empty space, need to regenerate these data structures
for every frame or forego such optimizations. Triangulation-based
approaches, on the other hand, also need to recompute the surface
mesh which may contain a large number of triangles if a sufficient
surface quality is desired.

(a)

(b)

(c)

(d)

(e)

Figure 2: Illustration of our intersection list generation pass. The
Gaussian surface can only occur where two or more spheres of
influence (indicated by the outer circles) overlap, as is the case for
the red (a) and green (b) spheres. Overlaps located behind a van
der Waals sphere (indicated by the filled inner circles) do not need
to be considered, so the orange (d) and purple (e) spheres are not
stored in the list for the depicted ray, as they are occluded by the
blue sphere (c).

In order to avoid these issues, our approach aims to evaluate
the density function directly, without an intermediate discretization.
Instead, we construct a compact on-the-fly data structure for every
rendered frame that allows for fast visibility-based traversal. This
view-dependent list-based data structure is then used in order to
compute the intersection with the visible surface. By avoiding a
majority of the computations for occluded parts of the molecule, our
method provides real-time performance even for large and dynamic
data. The remainder of this section is subdivided according to the
three main steps of our method. First, in Section 3.1, we present our
approach for quickly identifying the atoms that potentially contribute
to the visible surface. Next, in Section 3.2, we present a simple
algorithm for visibility-based ray traversal that allows us to further
minimize the amount of computation devoted to occluded regions of
the data. Finally, we detail how to efficiently evaluate intersections
between the viewing ray and the Gaussian surface in Section 3.3.

3.1. List Generation

A main challenge in the efficient rendering of Gaussian surfaces is
the identification of contributing atoms. For every point in space,
the surface is modeled as a sum of Gaussian functions. As we are
interested in visualizing a representation that smoothly envelopes
the van der Waals spheres, we can assume that the final surface
will always be a union of the Gaussian surface and the van der
Waals surface. While, in principle, the Gaussian footprint of an
atom has infinite support, as is common, we specify a cutoff radius
after which the contribution of a particular atom is considered zero.
Hence, each atom is defined by its center ci, its van der Waals radius
ri, and the radius of its sphere of influence ri

′. Since an atom will
not contribute to the density function outside its sphere of influence,
the contributions of the density function to the final image can only
occur in regions where two or more spheres of influence overlap.
Furthermore, for each viewing ray, only those overlaps that are not
occluded by a van der Waals sphere can potentially contribute to the
surface, as illustrated in Figure 2.

Therefore, as an important first step, we can identify the first
intersection of every viewing ray with any van der Waals sphere,
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which simply amounts to rendering the entire molecule as spheres.
We use the standard approach of rendering only one vertex per
atom, constructing a quad according to the screen space bounding
box of the corresponding sphere, and computing the ray-sphere
intersection analytically [SWBG06]. Next, for each viewing ray,
we need information about which of the spheres of influence that it
intersects actually overlap. For each atom, we render its sphere of
influence in the same manner as the van der Waals spheres. However,
instead of only storing the first intersection, all intersection points
that are not occluded by a van der Waals sphere are recorded. To
achieve this, we use an approach similar to the generation of an
A-buffer for order-independent transparency [KKP∗13, JPSK16],
where a linked list of intersections is stored for each pixel. Each entry
in the intersection list for a pixel stores the near and far intersection
depths with the atom’s sphere of influence, the center position of the
atom, an attribute field, as well as the index of the previous list entry.
The attribute field contains the element ID of the atom which is used
to retrieve its radius, as well as other attribute information such as
residue ID and chain ID, which are used for mapping additional
quantities to the surface.

3.2. Ray Traversal

After generating the list of intersections with the unoccluded spheres
of influence for all atoms, our approach now proceeds by traversing
viewing rays for each pixel in a front-to-back manner. In order to do
so, the obvious next step would be to sort the list of intersections for
each ray accordingly. However, considering the fact that the data is
quite dense, sorting the entire list before proceeding further is rather
inefficient, as we are only interested in the first intersection with
the Gaussian surface. Instead, if we interleave surface intersection
and sorting, we can terminate as soon as an intersection with the
Gaussian surface has been detected, avoiding the need to sort the
remainder of the list.

For this purpose, we use an adaptation of selection sort, which
has the advantageous property that after the i-th iteration, the first
i elements are always correctly sorted. This means that after itera-
tion i = 1 (assuming zero-based indices), we can proceed to check
whether the first two spheres of influence intersected by our ray
overlap. If this is not the case, the sorting process continues. Oth-
erwise, we are at the beginning of a span, i.e., two or more atoms
whose spheres of influence overlap and which therefore need to be
considered when testing for intersection with the Gaussian surface.
As all overlapping atoms constituting the span need to be known, the
intersection test can only commence once the end of a span has been
reached, i.e., once we have identified that the current atom’s sphere
of influence does not overlap with the first sphere of the span, or if
we have reached the end of the list. In both cases, we then initiate
the intersection test, which is detailed in the next section. As soon as
an intersection has been detected, the sorting loop can be terminated.
While more efficient sorting algorithms could be used when the
entire list has to be sorted (e.g., in the case of transparency), for
opaque rendering this approach provides superior performance.

In practice, at the beginning of the ray traversal, we scan the
intersection list once and store the indices into the global memory
pool in a local array for more efficient access. In this way, during
sorting, we only need to swap the locally stored indices instead of

Input: an array of count intersection point indices ii,
referring to the near and f ar intersection depths of
the respective atom spheres of influence

1 ss = 0
2 for i = 0 to count−1 do
3 k = i
4 for j = i+1 to count−1 do
5 if nearii[ j] < nearii[k] then k = j
6 end
7 swap(ii[i],ii[k])
8 if ss < i then
9 if i≤ count−1 or f arii[ss] < nearii[i] then

10 if intersect(ss,i) then break
11 ss = ss+1
12 end
13 end
14 end

Algorithm 1: Pseudocode of our algorithm for visibility-driven
ray traversal.

the larger list entries. The pseudocode for our simple algorithm is
given in Algorithm 1. Its inputs are an array of unsorted intersection
indices ii corresponding to the list entries for the current ray, as
well as the list of near and far intersection depths for the spheres
of influence. In each iteration, the algorithm finds the smallest near
intersection depth in the remainder of the array and swaps it with
position i, which means that the entries of ii from 0 to i are then
correctly sorted. The span start index ss tracks the beginning of the
current span. As soon as the end of a span has been detected, or all
list entries have been traversed, intersection testing is performed for
the corresponding interval of, now sorted, indices from ss to i.

3.3. Surface Intersection

Obviously, the algorithm described in the previous section requires
an efficient procedure to determine the intersection of a ray with the
Gaussian surface generated by a set of atoms. In general, the roots
for a sum of an arbitrary number of exponential functions cannot be
found analytically. In his original work on Metaballs [Bli82], Blinn
therefore suggests the use of standard iterative methods such as
Newton iteration and regula falsi. While Newton iteration converges
relatively rapidly, it may diverge if the initial guess is not sufficiently
close to the real solution. Regula falsi is guaranteed to converge if
the initial interval contains a root, but typically considerably more
slowly, and may not converge to the first root which would be desir-
able for ray casting [Har93]. Hence, most approaches begin with a
root isolation phase, which divides the search interval into segments
containing only a single root. Then, a root refinement phase uses a
faster method to approach the root until the desired precision has
been reached. As our intersection test will have considerable im-
pact on the overall performance and quality, it is thus important to
identify the best possible choice.

Hart [Har96] introduced sphere tracing as an efficient approach
for rendering implicit surfaces based on signed distance functions. If
a distance bound for an implicit function is available, the approach is
guaranteed to converge linearly to the first root in the interval without
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Figure 3: Plots of the Gaussian density function ρ(x)− t (in blue) and the corresponding distance function ρ̂(x)− t̂ (in orange) for different
values of s and t for two atoms positioned at -1 and 1. As can be seen, the behavior of the distance estimate is close to linear, and the roots of
both functions are the same.

a b

c d

Figure 4: Capsid protein (PDB ID: 6B0X) with CPK element color-
ing using (a) s = 1, (b) s = 2, (c) s = 4, and (d) s = 8 – as the value
of s is increased, the surface approaches the van der Waals spheres.

ever penetrating the surface. It has therefore been widely used for
distance-function based modeling, and has shown to be a fast and
robust approach for rendering as compared to more general methods.
For Gaussian surfaces, Hart suggested the use of a polynomial
approximation [WT90], for which a distance bound can be easily
found. However, as we target molecular visualization, we want to
preserve the appearance and properties of Gaussian surfaces.

Following Hart, a function f : R3→R is a signed distance bound
of its implicit surface f−1(0), if and only if

| f (x)| ≤ d(x, f−1(0)) (2)

where d is the point-to-set distance between point x ∈ R3 and a set
A⊂ R3 defined as

d(x,A) = min
y∈A
‖x−y‖ . (3)

Examining Equation 1, we see that for a single atom an ideal dis-
tance function can be easily obtained by applying the transformation√
− ln(·)s−1 to both sides of the equation ρ(x) = t, as this will give

us the normalized Euclidean distance to the center of the atom with
an appropriately adjusted threshold. However, the same approach
also works for multiple atoms, as the real roots of the equation will
be unaffected by this transformation.

Given a density function ρ(x) and corresponding threshold t as
defined in Equation 1, our signed distance estimate is then

dρ (x) = ρ̂(x)− t̂ (4)

with

ρ̂(x) =
√
− ln(ρ(x))

s
(5)
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and

t̂ =

√
− ln(t)

s
. (6)

The function ρ̂(x)− t̂ has the same roots as ρ(x)− t, but pro-
gresses almost linearly for positions farther away from the surface,
as can be seen in Figure 3 which shows the original function ρ(x)−t
in blue and our distance estimate ρ̂(x)− t̂ in orange for different
combinations of s and t. While the infinities visible for s = 1 may
seem problematic, we note that they only occur for negative values,
i.e., inside the object, and therefore do not affect the outcome.

While Equation 4 allows us to reproduce the results of existing
methods which use different values for s and t, not all combinations
of these values produce meaningful results. Hence, in practice it has
proven to be more convenient to fix t̂ and let the user only specify
s directly, which then simultaneously also adjusts t. In our imple-
mentation, we use t̂ = 1, which then means that due to Equation 6, t
is always set to e−s. Intuitively then, when s is increased the result-
ing surface will smoothly approach the van der Waals surface, as
demonstrated in Figure 4.

This also leads us to a way to estimate an atom’s sphere of influ-
ence, which we have so far omitted. The simplest approach, used by
most common grid-based methods, is to use a fixed cutoff distance
beyond which the contribution of an individual Gaussian in Equa-
tion 1 is assumed to be zero. As an alternative, we instead propose
to set this distance according to an estimate of how many atoms will
on average influence each position in space. The sphere of influence
for each individual atom can then be chosen such that, if less than
N atoms contribute to the density at a position, the sum of their
contributions will be below the threshold. Assuming a base atom
radius ri, we thus want to find the sphere of influence radius ri

′ such
that

Ne
−sri
′2

ri2 − t = 0. (7)

Solving for ri
′, we obtain

ri
′ = ri

√
ln
(N

t
)

s
. (8)

Hence, using this approach we specify the radius of influence
of an atom ri

′ as its van der Waals radius ri multiplied by the sec-
ond term on the righthand side of Equation 8. As to be expected,
this multiplier approaches infinity as s approaches zero (where the
Gaussian density is constant), and smoothly approaches one as s
increases. Figure 5 plots of the behavior of this function with respect
to s for different values of N. For all the results in this paper, we use
a value of N = 32, which results in ri

′ ≈ 2.11ri for s = 1.

Using this approach, we can now use Hart’s sphere tracing ap-
proach for intersection computation, and, due to the close-to-linear
behavior of our function will do so at a rapid pace. The intersection
function takes as input an interval of overlapping atom indices [i, j]
which are already sorted according to the closest intersection with
the sphere of influence by Algorithm 1. Since we have informa-
tion on the overlapping spheres, we can additionally set relatively
tight bounds on the search range. As the Gaussian surface can only

N=16
N=32
N=64
N=128

0 1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

s

ri
’

Figure 5: Sphere of influence radius ri
′ using N ∈ {16,32,64,128}

for different values of s according to Equation 8 with r = 1 and
t = e−s.

be intersected where the corresponding spheres overlap, only the
range from neari+1 to f ar j−1 needs to be considered. As an itera-
tive method, sphere tracing requires the specification of a tolerance
value. We use a value of 0.0125 Å – roughly 1% of the van der Waals
radius of an hydrogen atom – which we determined experimentally
to have no detectable impact on the quality, and all results in this
paper were generated with this value.

We use a standard implementation of sphere tracing. During
each iteration, the value of ρ(x) is computed by summing up the
respective contributions of each atom, and then ρ̂(x)− t̂ is compared
against the tolerance value, and, if larger, the ray is advanced in
viewing direction by ρ̂(x)− t̂. Since the exponential function is its
own derivative, the normal at a point x can be computed analytically
as

dρ

dx
= ∑

i
−2s(x− ci)

ri2
e
−s‖x−ci‖2

ri2 , (9)

which only consists of quantities that are needed during the evalua-
tion of the density function anyway, i.e., the normal can be computed
during the summation process by simply weighting the vector from
the center of the current atom to the point x accordingly.

Likewise, any additional quantities to be mapped onto the sur-
face, such as colors or charges, can be easily interpolated in the
same manner using the Gaussian weights for the respective atom.
Using the actual Gaussian weights at the intersection points can
have a considerable beneficial impact on the visual quality of the
result images compared to triangulation-based methods, where there
barycentric interpolation over the triangles can result in the diamond-
shaped artifact well-known from Gouraud shading, as can be seen
in Figure 11.

4. Implementation

Our method was implemented using C++ and OpenGL and runs
completely on the GPU. Apart from the necessary boilerplate C++
code, the main steps of our technique are written in GLSL. The
only input required are the atom positions and radii. To allow for a
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a b

Figure 6: Structure of the human 80S ribosome (PDB ID: 4V6X) consisting of 237K atoms with CPK element coloring rendered for (a) s = 1
and (b) s = 2 using distance-based blending between the molecular surface and the van der Waals spheres.

a b

Figure 7: Structure of the phycobilisome from the red alga Griffithsia pacifica (PDB ID: 5Y6P) consisting of 1.2M atoms rendered with chain
coloring for (a) s = 0.5 and (b) s = 1.

more flexible mapping of molecular attributes to optical properties,
we store the atom positions as well as an attribute field in a single
4-component vertex buffer object. The attribute field is then used to
look up the atom radii and any optionally mapped quantities from a
set of uniform buffer objects. Our current implementation supports
color mapping of element ID (see Figure 6), chain ID (see Figure 7),
and residue ID, but other attributes can be added easily.

The vertex and geometry shaders for van der Waals sphere render-

ing and list generation are identical, but the fragment shader differs.
For the van der Waals spheres, the depth, normal, and attribute field
are stored in a framebuffer object. The list generation fragment
shader does not write to the framebuffer, but instead uses an image
object (initialized to zero) to store the index of the last list entry
for each pixel, as well as a shader storage buffer object to store the
intersection data. This buffer contains a single counter for the total
number of allocated entries (initialized to zero), as well as an array
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a b

Figure 8: Atomic-level structure of the entire HIV-1 capsid (PDB ID: 3J3Q) consisting of 2.4M atoms using chain coloring from (a) outside
and (b) inside.

of the actual list entry structures. Each entry stores the near and far
intersection depths with a sphere of influence (one floating-point
value each), the atom’s center (3 floating-point values), the attribute
field (one integer), and the index of the previous list entry (one
integer), amounting to a total of 28 bytes per list entry. The memory
for this buffer is allocated as a fixed pool on startup and resized if
necessary.

At the beginning of the list generation fragment shader, the in-
tersection with the sphere of influence is computed. If the near
intersection depth is larger than the depth from the van der Waals
pass, the fragment is immediately discarded and no output is gener-
ated. Otherwise, a new list entry is allocated and the tail of the list
for the current pixel is updated. This requires the use of two atomic
operations to avoid race conditions: first, the total entry count is
atomically incremented to allocate a new list entry, and then the
returned value is atomically exchanged with the last entry index
for the corresponding pixel to update the tail of the list. The value
returned by the atomic exchange operation is then used to set the
previous index field of the new list entry.

The ray traversal is initiated by rendering a screen-filling quad.
At the very beginning, the tail buffer is read and if it is zero (i.e., the
list for the pixel is empty) the fragment is immediately discarded.
The normal and material value (using the attribute field) for the
current ray are initialized with the values from the van der Waals
pass to ensure that the van der Waals spheres are always rendered
when no other intersection occurs. The shader then proceeds as
described Section 3.2 and 3.3. After the ray traversal has terminated,
the surface normal and depth as well as the unshaded color are
written to two 4-component textures which are subsequently used for
deferred shading. Our prototype also supports screen space ambient
occlusion using the method of McGuire et al. [MML12] as well as
the depth-of-field technique by Bukowski et al. [BHOM13] which
are applied at the usual stages of the deferred shading pipeline. This
demonstrates that our approach can be easily integrated into modern
rendering pipelines. Furthermore, as these effects – in particular
screen space ambient occlusion – can be sensitive to normal and
depth discontinuities such as those due to triangulation, the result
images in this paper show that our method does not suffer from
these problems.

Since our method only needs atom positions, radii, and optional
attributes as input, handling time-dependent data such as molecular
dynamics simulations is straight-forward. The individual time steps

are stored in vertex buffer objects, and interpolation between two
time steps is easily possible by passing the positions of two con-
secutive time steps to the vertex shader for van der Waals sphere
rendering and list generation. Furthermore, if not all time steps can
be resident on the GPU, a double (or multiple) buffering strategy
can be used where the next time step is transferred asynchronously
while the current one is rendered.

While our current implementation exploits some features only
available in more recent OpenGL versions (e.g., uniform buffers and
shader storage blocks) as they simplify the code, our method does
not rely on any hardware capabilities that have not been available
for at least two prior generations of GPUs. We did not perform any
low-level optimizations, and the entire implementation comprises
less than 1000 lines of shader code. Our method was implemented
as a stand-alone prototype which we plan to make available to the
community under a permissive license to facilitate integration into
existing applications.

5. Results

In order to evaluate our approach, we performed extensive experi-
ments using data from the Protein Data Bank (PDB) ranging from
thousands to millions of atoms. Our test system was an Intel Core
i7-4939K 3.40 GHz CPU equipped with an NVIDIA GeForce 1080
GTX GPU. Figures 6, 7, and 8 show data sets consisting of 237K,
1.2M, and 2.4M atoms, respectively, all of which our method is able
to easily render at interactive frame rates. In Figures 6 and 7, we
show the visual effect of increasing s, which results in more surface
details, eventually smoothly approaching the van der Waals spheres
of the individual atoms. Figure 8 also demonstrates that there are no
restrictions on the viewpoint by showing an outside and an inside
view of the depicted structure.

In Table 1, we give the frame rates for a representative selection of
molecular data sets, all shown in this paper, ranging from relatively
small to large for different viewport sizes and values of s. The
bounding boxes of the data sets were scaled to fully fit within the
viewport dimensions to avoid any clipping of the model, and the
measurements represent minimum, maximum, and average frame
rates for 360 degree rotations of the model around its center along the
principal coordinate axes over 1080 frames (360 frames per axis).
As can be seen, our approach remains fully interactive even for
millions of atoms and high resolutions. Even for a viewport size of
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Table 1: Rendering performance of our method in frames per second (min
max avg) as measured on an Intel Core i7-4939K 3.40 GHz CPU equipped

with an NVIDIA GeForce 1080 GTX GPU. The bounding boxes of the data sets were scaled to fully fit within the viewport, and the frame rates
were computed for three full rotations of the model around its center along the principal coordinate axes over 1080 frames (360 frames per
axis).

PDB ID Atoms
7682 Viewport 10242 Viewport 12802 Viewport

s = 1 s = 2 s = 3 s = 4 s = 1 s = 2 s = 3 s = 4 s = 1 s = 2 s = 3 s = 4

6B0X 16 791 98
221148 175

504 350 228
777 538 297

990 708 63
161 94 121

335 228 169
507 366 184

649 472 53
127 77 111

276182 154
405 289 179

506 377
5VOX 34 724 97

201156 201
511 402 277

842 642 323
1089 821 70

129100 137
337 265 191

524 420 227
676 551 62

105 82 125
272 214 166

420 337 205
538 435

1AON 58 870 91
231150 182

510 357 241
773 538 254

933 678 55
137 93 110

323 225 165
476 347 183

587 435 51
113 76 105

266183 146
385 279 173

471 349
5OT7 154 665 80

129105 152
305 250 203

450 373 231
569 476 51

82 65 101
199154 129

301 241 165
376 311 43

64 53 92
159131 126

232193 148
294 247

4V6X 237 685 80
135111 148

317 262 197
461 381 229

566 474 51
87 67 101

210161 137
312 245 165

386 313 42
68 56 89

165137 118
245199 144

304 250
4V4G 717 805 106

261198 163
394 324 202

451 382 213
483 416 82

214154 136
347 271 160

406 333 180
436 365 75

178123 127
310 234 160

368 300 172
402 335

5Y6P 1 234 811 74
125100 117

210172 138
248 211 150

270 232 49
83 68 89

165138 115
210179 125

236 205 44
70 57 11

143116 76
187156 118

209180
3J3Q 2 440 800 57

88 71 87
128110 98

144127 106
155139 40

68 51 69
109 89 79

128108 88
136119 36

58 43 66
100 82 79

120102 85
131113

12802 and a dataset consisting of 2.4M atoms, we still achieve over
40 frames per second for s = 1. As can be seen, since our method is
visibility-driven, it scales sublinearly with the atom count. In some
cases, larger data sets may even achieve higher frame rates than
smaller ones. This is not unexpected, as it means that the specific
geometric arrangement has a heavier impact on the performance than
the number of atoms. For instance, 4V4G has a highly asymmetric
and elongated shape (see Figure 1), so its projection on the image
plane will cover less pixels than more spherical data sets. Of course
our approach is not completely independent of the atom count, as
the list generation phase still requires us to compute the intersection
with the van der Waals spheres and spheres of influence for all
atoms, but the much costlier intersection with the Gaussian surface
significantly benefits from our visibility-based method.

To analyze this further, we performed measurements for the in-
dividual phases of our technique. In Figure 9, we show how the
total render time is divided among the rendering of the van der
Waals spheres ("Spheres"), list generation ("List"), ray traversal
and surface intersection ("Surface"), and final shading ("Shading")
for the extremal values of s = 1 and s = 4 and a viewport size of
12802. For smaller data sets, sphere rendering and list generation
only account for a relatively small fraction of the total render time,
but as the number of atoms increases, their relative impact rises, in
particular for higher values of s as in these cases the ray traversal
will terminate more quickly. For s = 1, surface intersection still
dominates the render times even for the largest tested data sets. Fig-
ure 10 additionally depicts how the total render time scales with
increasing sphere of influence radius (corresponding to decreasing
values of s) for a viewport size of 12802. This figure additionally
includes measurements for s = 0.5 where our method approaches
its limitations with respect to interactivity, achieving 16 frames per
second for the largest data set.

The presented measurements include the costs for regular Phong
shading, but ambient occlusion and depth of field were disabled.
The overhead for these optional effects only depends on the image
size, and is around 1.5 ms each at a viewport size of 12802 in
our implementation. This means that for the largest dataset 3J3Q
with s = 1 and a viewport size of 12802, the performance drops
from 43 to 40 frames per second when both effects are enabled.

6B0X

5VOX

1AON

5OT7

4V6X

4V4G

5Y6P

3J3Q

Spheres List Surface Shading

0 ms 5 ms 10 ms 15 ms 20 ms 25 ms

6B0X

5VOX

1AON

5OT7

4V6X

4V4G

5Y6P

3J3Q

s = 1

s = 4

Figure 9: Distribution of the total render time among the different
phases of our method for a viewport size of 12802 and values of
s = 1 and s = 4.

The data sets listed in Table 1 were static, since we did not have
access to simulation data spanning a representative range of atom
counts. However, the handling of time-dependent data comes at
no additional costs with our method as everything is computed
on-the-fly for every frame, which we also verified experimentally.

We compare our method with Krone et al.’s QuickSurf ap-
proach [KSES12], as available in the popular software package
Visual Molecular Dynamics (VMD) [HDS96]. This heavily opti-
mized CUDA-based implementation uses a parallel gathering ap-
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render time

ri
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Figure 10: Scaling of the total render time with increasing sphere
of influence radius according to Equation 8 for a viewport size of
12802.

Table 2: Performance of the QuickSurf method in frames per second
as implemented in VMD 1.9.3 using a viewport size of 12802. The
column "Full" gives the total performance including computation
of the surface, while the column "Render" only gives the rendering
times once the surface has been computed.

PDB ID
Grid res. 1.0 Grid res. 0.7 Grid res. 0.5

Full Render Full Render Full Render

6B0X 74 120 29 96 12 44
5VOX 22 48 10 22 5 14
1AON 27 62 10 21 4 9
5OT7 12 29 4 5 3 8
4V6X 8 31 1 3 n/a n/a
4V4G 2 6 n/a n/a n/a n/a
5Y6P 2 5 n/a n/a n/a n/a
3J3Q 0.8 4 n/a n/a n/a n/a

proach for computing the Gaussian density grid, as well as a parallel
version of the Marching Cubes [LC87] algorithm. Accounting for
the differences in the used graphics hardware, the results we ob-
tained are consistent with the original experiments presented by
Krone et al. Per default, QuickSurf uses a rather coarse grid spacing
of 1 Å, which needs to be reduced if more surface details are desired,
so we measured the performance for grid spacings of 1, 0.7, and 0.5.
The results are shown in Table 2. As this method is an object space
approach, we give the frame rates for the total computation time
including grid computation and Marching Cubes (column "Full"),
which need to be performed for every time step in the case of dy-
namic data, as well as the rendering time alone (column "Render").
We used the same data sets and viewing setup as in Table 1. As the
main computational load of the QuickSurf approach (grid genera-
tion and Marching Cubes) is independent of the viewport size, we
only performed measurements for the largest size of 12802 for a fair
comparison. As can be seen, QuickSurf only performs on par with
our technique for the smallest of the data sets and the coarsest grid

a

b

c

Figure 11: Comparison of QuickSurf’s Marching Cubes surface
with a grid spacing of (a) 1 and (b) 0.5 to (c) our method (PDB ID:
1AON).

resolution, and as atom counts exceed 100K the interactivity of the
method becomes quite limited. It is interesting to note that for larger
molecules even the rendering frame rates without recomputation
are significantly lower than ours. This is likely due to the high ge-
ometry load caused by the excessive number of triangles produces
by Marching Cubes, whereas our method only requires one vertex
per atom. While we were able to measure the performance for all
the data sets using the default grid resolution, we were not able to
obtain results for fine resolutions of the larger data sets. When com-
paring our approach to the triangulated surfaces in terms of quality,
we also see that the default grid spacing of 1 exhibits the typical
artifacts caused by barycentric interpolation of surface properties
across triangles, as shown in Figure 11 (a), even if per-pixel lighting
is enabled. Finer grid resolutions remedy this to some degree, as
depicted in Figure 11 (b), but the appearance is still more blurry
than for our method shown in Figure 11 (c).

Table 3 lists the mean values for maximum and average number
of entries per pixel in the intersection list (a longer intersection
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Table 3: This table lists the mean values for maximum and average
number of intersection list entries per pixel, as well as pixel coverage
and memory consumption measured for a viewport size of 12802

and s = 1.

PDB ID Max. entries Avg. entries Coverage Memory

6B0X 60.30 1.17 13.63% 47.20MB
5VOX 76.52 0.85 9.37% 34.24MB
1AON 57.56 1.04 12.01% 42.18MB
5OT7 67.59 1.37 15.30% 55.54MB
4V6X 68.69 1.22 13.76% 49.38MB
4V4G 67.79 0.31 3.26% 12.43MB
5Y6P 66.89 0.89 10.02% 35.88MB
3J3Q 71.43 1.09 11.99% 43.92MB

list will result in lower performance, as it bounds the number of
iterations that need to be performed in Algorithm 1) as well as
the memory required to store all list entries for the largest tested
viewport size of 12802 and s = 1, averaged in the same manner as
for Table 1. The table also gives the average percentage of viewport
pixels covered by the model. In Figure 12 (b), we also show an
example of how the number of entries in the intersection list is
distributed over the image. As can be seen in Table 3, the size of the
intersection lists is independent of the atom count, and results in a
very modest memory consumption of only around 50 MB. Together
with the memory requirements for the framebuffers, which vary
depending on whether any additional postprocessing steps such as
screen space ambient occlusion are used and are similar to those of
any other deferred shading pipeline, the total memory footprint of
our technique is only about 150 MB for a viewport size of 12802.
This means that our method is also suitable for lower-end GPUs
such as those available on laptop computers which typically have
less memory.

We would like to note that QuickSurf is a highly capable solution
for the generation of triangulated surfaces from molecular data,
that outperforms other implementations by orders of magnitude,
and is among the best methods for extracting surfaces for analysis
purposes. However, for the visualization of dynamic surfaces our
method represents an attractive alternative in terms of performance,
quality, flexibility, and memory consumption.

As our method is fully dynamic, it is also straight-forwardly
possible to vary surface parameters in a view-dependent manner.
As an example, we implemented a magic lens tool which varies the
s parameter continuously based on the image space distance from
the mouse cursor. While very simple, the result is quite compelling
as the surface dynamically and gradually shrinks towards the van
der Waals spheres of nearby atoms, as demonstrated in Figure 13.
Similarly, we could employ a seamless abstraction approach to
adjust surface details based on the viewing distance [PJR∗14] or
other properties.

6. Discussion and Limitations

As we have shown, our approach is capable of rendering even large
molecules with high quality and performance, and only a modest

66

0

a b

Figure 12: Structure of an elongation factor G-ribosome complex
(PDB ID: 5OT7). (a) Rendering for s = 1. (b) Number of list entries
per pixel mapped to color.

memory footprint. As it is fully dynamic, we are able to handle
time-dependent and even procedurally generated data sets without
any overhead. One limitation of our method is that its performance
is dependent on the scaling factor s – as we showed, lower values of
s, where a larger neighborhood of atoms is taken into account, will
reduce the achievable frame rates. As demonstrated in Figure 10,
reasonably interactive performance for the largest tested data sets is
still achievable at s = 0.5, but when the value is further reduced our
approach hits its limitations. For very large scale structures consist-
ing of tens of millions of atoms, this will limit the performance of
our method if a high degree of surface abstraction is desired. How-
ever, in such cases a prior generation of a level-of-detail hierarchy
by merging nearby spheres is a meaningful solution, since the pro-
jection of a single sphere is likely to only cover very few pixels. Our
method is fully compatible with such approaches and its dynamic
nature enables smooth blending between hierarchy levels. Further-
more, for approximating the SES with a standard probe radius of
1.4 Å, Bernstein et al. [BC10] give values of s close to 1 (note that
in their formulation, s is defined in a reciprocal manner). In addition,
it is relevant to mention that our method’s behavior is inverse to
grid-based methods with respect to this parameter, which generally
achieve better performance when a higher degree of smoothing is
performed, as coarser grid resolutions can be used.

While Gaussian surfaces are useful and have been shown to pro-
vide a meaningful and relevant representation for molecular visual-
ization [LCL15], it would nonetheless be desirably to have methods
of similar performance for other types of molecular surfaces. There
are cases when a Gaussian approximation is insufficient, and current
approaches for SES visualization are limited in their performance
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a

b

Figure 13: Dynamic lensing effect adjusting the value of s to reveal
detail structures for the lens positioned at (a) the top left, and (b)
the lower right of the image – the focus region additionally uses
coloring by chain (PDB ID: 5VOX).

and ability to handle large data. In future work, we therefore plan
to investigate the applicability of our approach to other types of
molecular surfaces, in particular the SES and the Molecular Skin
Surface (MSS) [Ede99]. While the list generation and ray traversal
phases of our method should be directly applicable, intersection
testing may be more complex as different types of patches need
to be identified and clipped. The SES, in particular, can exhibit
singularities [KBE09] that can only be resolved using non-local
information, which may prove challenging to do efficiently.

Finally, while our method was specifically developed in the con-
text of molecular visualization, we note that the technique itself is
applicable to other types of particle-based data. For instance, we be-
lieve that our approach could be valuable in the context of real-time
Smoothed Particle Hydrodynamics (SPH) fluid simulation, enabling
a fully GPU-based simulation and visualization loop.

7. Conclusion

We presented a novel approach for the visualization of Gaussian
molecular surfaces. By exploiting visibility information, we were
able to develop an efficient method which enables the rendering
of large dynamic data sets without the need for an intermediate
grid representation. Our technique uses an on-the-fly generated list
of intersections with the atoms’ spheres of influence, and inter-
leaves visibility sorting and intersection testing to avoid unnecessary
computations. Using real-world data sets including large structures
consisting of millions of atoms, we demonstrated that our method
achieves high performance and quality, while having only a small
memory footprint.

Acknowledgments

The research presented in this paper was supported by the MetaVis
project (#250133) funded by the Research Council of Norway.

References
[BC10] BERNSTEIN H. J., CRAIG P. A.: Efficient molecular surface

rendering by linear-time pseudo-Gaussian approximation to Lee–Richards
surfaces (PGALRS). Journal of Applied Crystallography 43, 2 (2010),
356–361. doi:10.1107/S0021889809054326. 2, 11

[BHOM13] BUKOWSKI M., HENNESSY P., OSMAN B., MCGUIRE M.:
The Skylanders SWAP Force depth-of-field shader. In GPU Pro 4: Ad-
vanced Rendering Techniques. 2013, pp. 175–184. 8

[Bli82] BLINN J. F.: A generalization of algebraic surface drawing.
ACM Transactions on Graphics 1, 3 (1982), 235–256. doi:10.1145/
357306.357310. 2, 4

[CCW06] CAN T., CHEN C.-I., WANG Y.-F.: Efficient molecular surface
generation using level-set methods. Journal of Molecular Graphics and
Modelling 25, 4 (2006), 442–454. doi:10.1016/j.jmgm.2006.
02.012. 2

[Con83] CONNOLLY M.: Analytical molecular surface calculation. Jour-
nal of Applied Crystallography 16, 5 (1983), 548–558. doi:10.1107/
S0021889883010985. 2

[DG11] DIAS S. E., GOMES A. J.: Graphics processing unit-based
triangulations of blinn molecular surfaces. Concurrency and Com-
putation: Practice and Experience 23, 17 (2011), 2280–2291. doi:
10.1002/cpe.1783. 2, 3

[dSBVeSTT18] DOS SANTOS BRITO C. D., VIEIRA E SILVA A. L. B.,
TEIXEIRA J. M., TEICHRIEB V.: Ray tracer based rendering solution
for large scale fluid rendering. Computers & Graphics 77 (2018), 65–79.
doi:10.1016/j.cag.2018.09.019. 2

[Ede99] EDELSBRUNNER H.: Deformable smooth surface design. Dis-
crete & Computational Geometry 21, 1 (1999), 87–115. doi:10.1007/
PL00009412. 12

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Efficient high-
quality volume rendering of sph data. IEEE Transactions on Visualization
and Computer Graphics 16, 6 (2010), 1533–1540. doi:10.1109/
TVCG.2010.148. 2

[FW08] FALK M., WEISKOPF D.: Output-sensitive 3D line integral
convolution. IEEE Transactions on Visualization and Computer Graphics
14, 4 (2008), 820–834. doi:10.1109/TVCG.2008.25. 3

[Har93] HART J. C.: Ray tracing implicit surfaces. SIGGRAPH 1993
Course Notes: Design, Visualization and Animation of Implicit Surfaces,
1993. 4

[Har96] HART J. C.: Sphere tracing: a geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Computer 12, 10
(1996), 527–545. doi:10.1007/s003710050084. 4

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1107/S0021889809054326
https://doi.org/10.1145/357306.357310
https://doi.org/10.1145/357306.357310
https://doi.org/10.1016/j.jmgm.2006.02.012
https://doi.org/10.1016/j.jmgm.2006.02.012
https://doi.org/10.1107/S0021889883010985
https://doi.org/10.1107/S0021889883010985
https://doi.org/10.1002/cpe.1783
https://doi.org/10.1002/cpe.1783
https://doi.org/10.1016/j.cag.2018.09.019
https://doi.org/10.1007/PL00009412
https://doi.org/10.1007/PL00009412
https://doi.org/10.1109/TVCG.2010.148
https://doi.org/10.1109/TVCG.2010.148
https://doi.org/10.1109/TVCG.2008.25
https://doi.org/10.1007/s003710050084


S. Bruckner / Dynamic Visibility-Driven Molecular Surfaces

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD: Visual
molecular dynamics. Journal of Molecular Graphics 14, 1 (1996), 33 –
38. doi:10.1016/0263-7855(96)00018-5. 9

[HGO∗15] HOSPITAL A., GOÑI J. R., OROZCO M., , GELPÍ J. L.:
Molecular dynamics simulations: advances and applications. Advances
and Applications in Bioinformatics and Chemistry 8 (2015), 37–47.
doi:10.2147/AABC.S70333. 1

[HKG∗17] HERMOSILLA P., KRONE M., GUALLAR V., VÁZQUEZ P.-
P., VINACUA À., ROPINSKI T.: Interactive GPU-based generation of
solvent-excluded surfaces. The Visual Computer 33, 6 (2017), 869–881.
doi:10.1007/s00371-017-1397-2. 2

[HOK16] HOCHSTETTER H., ORTHMANN J., KOLB A.: Adaptive sam-
pling for on-the-fly ray casting of particle-based fluids. In Proc. High-
Performance Graphics (2016), pp. 129–138. doi:10.2312/hpg.
20161199. 2
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