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ABSTRACT
The use of GPUs and the massively parallel computing pa-
radigm have become wide-spread. We describe a framework
for the interactive visualization and visual analysis of the
run-time behavior of massively parallel programs, especially
OpenCL kernels. This facilitates understanding a program’s
function and structure, finding the causes of possible slow-
downs, locating program bugs, and interactively exploring
and visually comparing different code variants in order to
improve performance and correctness. Our approach en-
ables very specific, user-centered analysis, both in terms of
the recording of the run-time behavior and the visualization
itself. Instead of having to manually write instrumented
code to record data, simple code annotations tell the source-
to-source compiler which code instrumentation to generate
automatically. The visualization part of our framework then
enables the interactive analysis of kernel run-time behavior
in a way that can be very specific to a particular problem or
optimization goal, such as analyzing the causes of memory
bank conflicts or understanding an entire parallel algorithm.

1. INTRODUCTION
Debugging tools like NVIDIA NSight [5], Visual Profiler

[6] and VampirTrace [2] support debugging, profiling and
analysis of parallel programs. These tools provide facts on
application-level such as idle times of the processors, timings
of memory transactions, as well as facts on the kernel level,
such as warp divergence, memory bank conflicts, occupancy.
These statistics indicate potential program bottlenecks. Es-
sentially, the above mentioned tools show ”What is going
wrong”. In contrast, the aim of our research project [3, 4]
is to allow programmers to test their hypotheses on ”Where
and Why is something going wrong”.

2. APPROACH
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We have developed a system that conceptually consists of
three major components:

Domain Specific Language: A domain specific lan-
guage (DSL) that extends OpenCL with additional keywords
forms an integral part of the system. Our DSL provides con-
cise annotations of kernel code that trigger the generation
of additional data during kernel execution. This meta data
is read back to the host and prepared for interactive visual-
ization by the runtime component.

Compiler and Runtime Component: A source-to-
source compiler takes a program written in our DSL as input
and generates instrumented OpenCL code. The runtime
component triggers the just-in-time compilation of the code,
binds the buffers and sets the kernel arguments that are
necessary to run the kernel.

Visualization Framework: The resulting data that was
generated during the execution of the kernel is visualized
using a powerful framework capable of static as well as in-
teractive visualizations. By linking the visualizations with
source code, we provide insight into the program’s structure,
execution, and memory access patterns.

Figure 1: The interface of our integrated system: (a) shows
a domain view that depicts the output of a Sobel filter and
highlights corresponding to the hovered visual element, (b)
shows a global variable view, (c) shows a console, (d) shows
the visual explorer with different analysis views, (e) shows
the source code editor with highlights that also corresponding
to the hovered visual element.

By combining these three components into one integrated
visual exploration system, we enable fine-grained and spe-
cialized analysis. Due to the interactive nature of our sys-
tem a programmer can quickly iterate over a large number
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Branching Behavior

(a)

if(true) {
sdata[tid] = 0;

} else {
sdata[tid] = 2;

}
if(false) {

sdata[tid] = 3;
} else {

sdata[tid] = 4;
}

(b)

Figure 2: The code path view (a) shows an overview different
code paths that occur during the execution of the program
and reveals warp divergence. The code snippet (b) illustrates
the highlighting of code when the user hovers over a visual
element (red rectangle) that represents one specific code path.

of source code variations. The immediate interactive visu-
alization aids in developing a better understanding of the
program’s intrinsics.

Figure 1 depicts the graphical user interface of our inte-
grated system. The domain view is shown in Figure 1 (a),
which depicts, in this instance, the output of a Sobel filter.
For convenience, our system also integrates a global variable
view shown in Figure 1 (b) and a console shown in Figure
1 (c). An immediate visual response is shown in the visual
exploration panel in Figure 1 (d). The editor shown in Fig-
ure 1 (e) is used for the implementation of kernels in our
DSL, as well as for the generation of test input data and the
computation of kernels. When the program is run, it au-
tomatically translates the DSL to OpenCL code, interprets
the commands for the input generation, enqueues the kernel,
waits for the result, and visualizes the additional data that
was generated during the execution of the kernel.

The visualizations are generated using the D3 [1] visual-
ization framework and facilitate interactive exploration ca-
pabilities, such as highlighting and linking. For instance, in
Figure 1, a mouse event triggers the highlighting of a code
path determined by a specific control flow, which is reflected
with the highlighting in the source code and corresponding
elements in the visual explorer.

3. VISUALIZATION VIEWS
Parallel programs are typically designed for high-through-

put and performance. The complexity of the underlying
hardware architecture directly impacts the complexity of the
code. In many cases multiple implementations of the same
algorithm compete for optimal performance and memory us-
age. Our visualizations aim to enhance the understanding
of parallel programs, their competing implementations, and
their possible impact on performance.

Control flow statements in parallel programs potentially
lead to warp divergence, significantly affecting the perfor-
mance. Figure 2 shows the visualizations of different code
paths that occur during the execution of the program and
the occurrence of warp divergence.

In order to visualize the memory behavior, our system
traces the accesses of specified variables during the execution
of a program. The tracing results in a sequence of events
that are recorded for each thread of an execution. In the
memory view (see Figure 3) memory accesses as well as syn-
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Figure 3: Screenshot of the local memory view, which de-
picts memory accesses and memory banks. Hovering over
a memory bank reveals the corresponding memory accesses.
Multiple accesses of the same memory bank (red rectangles)
in one instruction of a warp indicate a potential bank con-
flict.

chronization barriers constitute events that are visualized
with colored blocks. This view facilitates the comparison
of different memory access patterns. Additionally, the de-
piction of related hardware components reveals the cause of
common performance issues, such as memory bank conflicts.

4. CONCLUSION
We present a tool for the visual exploration of parallel pro-

grams executed on the GPU. Our integrated system features
just-in-time compilation of kernels that collect additional
data about their execution. This information is visualized
using a powerful visualization framework. It provides the
programmer with immediate feedback and therefore enables
the quick exploration of a large number of variations of a
kernel.
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