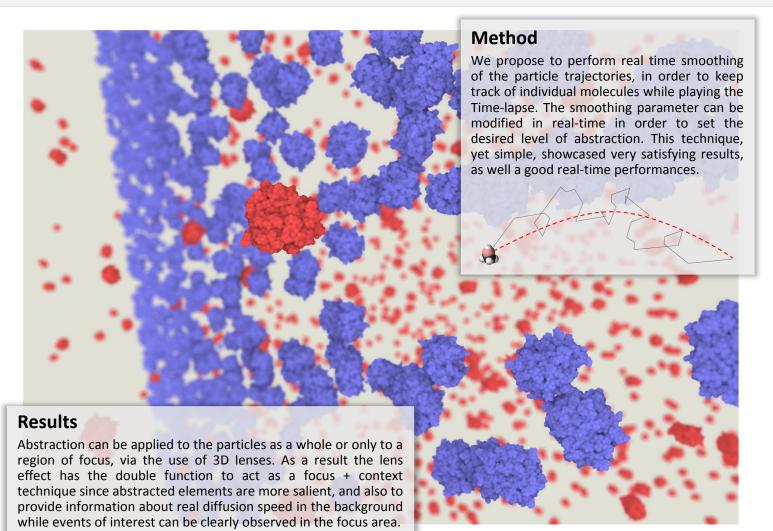
Illustrative Visualization of Biochemical Processes Featuring Multiple Temporal Scales

Towards interactive storytelling from computational biology data

Mathieu Le Muzic¹, Julius Parulek², Manuela Waldner¹, Ivan Viola¹


¹ Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria ² Department of Informatics, University of Bergen, Norway

Motivation

Our goal is to improve visualization technology that communicates complex biological processes in a comprehensive way. In order to achieve our goal we want to exploit scientific data for automatic interactive and animated storytelling. In computational biology, particlebased modelling [1] provide spatial information about individual molecules, i.e. 3D position. This offers a lot of potential for automated creation of animated illustrations, because usually molecular behaviour has to animated manually by scientific illustrators in traditional movie production pipeline.

Challenges

Current techniques in mesoscale visualization [2] already provide ways to directly visualize results of particle-based simulation in a 3D scenes. This type of modelling technique can produce a very large number of frames due to very small simulation time steps. Viewing every single frame would simply take too much time. For this reason it is common to display only a frames at a certain time interval, in a Time-lapse fashion. The outcome in this case features a lot of visual clutter due to large diffusion displacements between two visualized frames, which is impractical for storytelling.

Acknowledgments

This project has been funded by the Vienna Science and Technology Fund (WWTF) through project VRG11-010 and additionally supported by EC Marie Curie Career Integration Grant through project PCIG13-GA-2013-618680. Additionally, this work has been carried out within the PhysioIllustration research project #218023, which is funded by the Norwegian Research Council.

References

 PLIMPTON S. J., SLEPOY A.: ChemCell: a particle-based model of protein chemistry and diffusion in microbial cells. Physical biology 1, 3 (2004), 137.
FALK M., KLANN M., REUSS M., ERTL T.: Visualization of signal transduction processes in the crowded environment of the cell. In Proceedings of IEEE PacificVis 2009 (2009),pp. 169–176.

