
Visual Parameter Exploration in GPU Shader Space

Peter Mindek
Vienna University of

Technology
Austria

mindek@cg.tuwien.ac.at

Stefan Bruckner
University of Bergen

Norway
stefan.bruckner@uib.no

Peter Rautek
King Abdullah University

of Science and
Technology

Saudi Arabia
peter.rautek@kaust.edu.sa

M. Eduard Gröller
Vienna University of

Technology
Austria

groeller@cg.tuwien.ac.at

ABSTRACT
The wide availability of high-performance GPUs has made the use of shader programs in visualization ubiquitous.
Understanding shaders is a challenging task. Frequently it is difficult to mentally reconstruct the nature and types
of transformations applied to the underlying data during the visualization process. We propose a method for the
visual analysis of GPU shaders, which allows the flexible exploration and investigation of algorithms, parameters,
and their effects. We introduce a method for extracting feature vectors composed of several attributes of the shader,
as well as a direct manipulation interface for assigning semantics to them. The user interactively classifies pixels of
images which are rendered with the investigated shader. The two resulting classes, a positive class and a negative
one, are employed to steer the visualization. Based on this information, we can extract a wide variety of additional
attributes and visualize their relation to this classification. Our system allows an interactive exploration of shader
space and we demonstrate its utility for several different applications.

Keywords
parameter space exploration, shader augmentation

1 INTRODUCTION
In data visualization, GPU shader programs are often
used to process large amounts of data and to create suit-
able visual representations. In this case, the shaders
usually implement algorithms which provide a map-
ping between the data and the intended visual repre-
sentation. The way how the data is displayed depends
on the shader program and its input parameters. The
vector of values of the input parameters is a point in
the corresponding parameter space. An interpretation
of the resulting image requires knowledge of the rela-
tionships between the parameter space of the underly-
ing algorithm and the visualization. These relationships
might not be trivial to grasp given only the source code
of the shader implementing the algorithm and the re-
sulting image.

Data visualization algorithms implemented as GPU
shaders can be investigated from various perspectives.
Rendered images (i.e., image space), are presented to
the user. The mapping process from data space to im-
age space is specified in a shader program. We refer to

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

the combination of possible shader programs and their
parameters as shader space. While the image space
is usually interesting for the domain expert for whom
the visualization mapping was originally created, the
shader space is interesting for the visualization expert.
In situations where the shader program needs to be
modified, it is important for the visualization expert
to understand how the algorithm affects the resulting
visualization. Therefore, there is a necessity for tools
allowing for exploration of the shader space.
We propose a method that allows users to explore GPU
shader programs and their parameter spaces by assign-
ing semantic classifications to parts of the rendered im-
ages. This user-assigned information is subsequently
used to modify the visualization mapping by general-
izing it to the whole rendered image. In this way, the
influence of the examined parameters or data attributes
on the display of the features of interests becomes ap-
parent.
The shader exploration is facilitated by a well defined
domain specific language (DSL) that extends the shader
language under consideration. The DSL is used to an-
notate the shader program without changing its func-
tionality. The annotations are inserted as comments that
are parsed and interpreted by our system. This strat-
egy is similar to well known documentation tools like
Doxygen and JavaDoc. The benefits are:

• the annotations are kept close to the original code
(resulting in easier maintainability)



• the annotations are transparent to the host language.

We refer to the insertion of comments that include com-
mands from the DSL as shader augmentation. The aug-
mented shader can either be run unmodified to fulfil its
original purpose, or be transformed for the shader space
exploration. This provides functionality for the explo-
ration of desired parameters and data attributes. As the
additional functionality is part of the augmented shader,
it is executed on the GPU, which benefits the perfor-
mance of the system.

The main contributions of this paper are:

• a method for translating semantic classifications
from image space to shader space and using them
to explore the effects of parameters on the rendered
images

• a parameter exploration language (PEL), which is
used to extract values of relevant parameters and
data attributes from the shader program for further
parameter-space exploration

• a graphical user interface for the automatic and
transparent generation of PEL code.

While the PEL can be employed by visualization ex-
perts, the graphical user interface allows the shader-
space exploration even without knowledge of the shad-
ing language, which might be a benefit for domain ex-
perts.

2 RELATED WORK
Our method is designed for exploring parameter spaces
of various visualization algorithms. The method is par-
ticularly applicable to volume rendering. Volume ren-
dering algorithms are usually complex and it is diffi-
cult to predict the effects of their parameters and data
attributes. In this work, we focus mainly on volume
rendering as a possible application area for our method.

In volume rendering, the mapping between data and
rendered images is usually adjusted using transfer func-
tions. A transfer function maps one or more data at-
tributes to optical properties. It enables users to visu-
ally examine these attributes of the data. Wu and Qu
[20] present a framework for interactive transfer func-
tion design based on genetic algorithms and image sim-
ilarity, where the user edits direct volume rendered im-
ages. Another approach is presented by de Moura Pinto
and Freitas [3]. It is based on dimensional reduction of
the voxel attributes using self-organizing maps. Correa
and Ma [1] propose visibility-driven transfer functions
for enhancing the visibility of important features in vol-
ume data. Tzeng and Ma [19] propose an interface for
data classification in a cluster space of different materi-
als present in the data.

Tzeng et al. [18] propose a volume data classification
approach based on machine learning. This approach
employs a sketch-based interface to select a primary
classification, which is then used as a training set for
a machine learning algorithm. Similar work is also pre-
sented by Guo et al. [7]. Their WYSIWYG (What
You See Is What You Get) approach allows definition
of one-dimensional transfer functions by direct interac-
tion with the rendered images. Yuan et al. [21] present
a method for sketch-based volume segmentation. Vi-
sualization mapping based on semantics is proposed by
Rautek et al. [14]. In this method, the mapping of the
data attributes to visual styles are described by domain
experts in the natural language. An extension of this
work [15] allows to use interaction-dependent rules for
specifying the visualization mapping.

Gavrilescu et al. [5] present a work on user interfaces
offering information on the effects of parameters that
are adjusted by these interfaces. Our method also en-
ables to explore the effects of the parameters. How-
ever, we provide a possibility to observe the effects on
specified features in the visualization. This makes our
method useful not only in data exploration, but also in
the exploration of the visualization algorithms and their
behaviour.

The visualization-algorithm analysis capabilities of our
method can be used for debugging purposes as well.
Various systems for analyzing and debugging visualiza-
tion software have been presented [4] [8] [16]. Crossno
and Angel [2] present a case study on debugging of vi-
sualization software. Meyer-Spradow et al. [13] pro-
pose a framework for rapid prototyping of visualization
algorithms by connecting modules into a data-flow net-
work. The framework also provides debugging abili-
ties by displaying outputs of the individual modules.
Our method allows to visually identify effects of par-
ticular shader parameters and data attributes on the ren-
dered images. Rather than displaying values of indi-
vidual variables, it provides visual feedback on how the
values correspond to the user-defined classification of
the rendered image. These findings can be compared
to expected behaviours for debugging purposes or the
visualization-algorithm analysis. Our method can be
used as a complementary tool to existing shader debug-
ging solutions.

Our work is related to data-exploration methods, since
it uses similar principles to explore the shader space of
the visualization algorithms. Jankun-Kelly et al. [10]
propose a model for the visualization exploration pro-
cess. McCormick et al. [11] propose Scout - a vi-
sualization system utilizing the GPU for exploration
and visualization by applying queries directly to the
data. Gerl et al. [6] propose a method where proper-
ties of visualization mappings are rendered, and brush-
ing is used on these rendered images to explicitly spec-



Visualization 
Mapping

Data

PEL

Parameter visualization 
module

Visualization

Shader
augmentation 
engine (SAE)

PEL

Shader 
program Feature vector 

editor (FVE)

Pixel classi�cation

Figure 1: Overview of the visual shader-space explo-
ration.

ify semantics for volume visualization. McDonnel and
Elmqvist [12] present the concept of using the GPU
for information visualization. They propose an inter-
face for creating visualizations on the GPU without
shader-programming knowledge. Jankun-Kelly and Ma
[9] propose an interface for parameter space explo-
ration using a spreadsheet-like visualization. The au-
thors show several renderings with different parame-
ter settings which can be used to explore the parameter
space. We apply our method to investigate the effects of
parameters of particular visualization algorithms on the
resulting image. Knowledge gained from this process
can be used in the exploration of other datasets using
the visualization algorithm.
The goal of our method is to allow comprehensible
analysis of visualization algorithms. Our approach is
conceptionally similar to some of the mentioned tech-
niques which allows to specify the mapping from data
attributes to visual representation in a flexible manner.
In contrast, our method allows to modify an existing vi-
sualization mapping by generalizing user-defined posi-
tive and negative examples in the rendered image, while
influence of examined parameters and data attributes is
taken into account. This possibility makes our method
capable of complex exploration of the shader space,
which is difficult to carry out using the existing methods
for explicit specification of the visualization mapping.

3 VISUAL SHADER-SPACE EXPLO-
RATION

The usual way to explore visualization algorithms is
through examination of the results, i.e., rendered im-
ages. The effects of various isolated parts of the visual-
ization algorithm are difficult to comprehend by look-
ing at the image space only. However, if the rendered
image reveals features of the visualized data, the user
can identify areas of the image where the features are
visible and areas where they are occluded or not dis-
played correctly. These areas are positive and negative

examples of the visualization-algorithm behaviour. For
the purpose of visualization-algorithm exploration, it is
interesting to identify variables of the algorithm which
could be used for generalizing the behaviour from the
positive examples for the whole rendered image. We
propose a method for fast determination of whether a
particular set of variables can generalize behaviour of
the algorithm in a given positive example area for the
whole image.

In our visualization-algorithm exploration-method
the user interaction is limited to the identification of
positive and negative examples in the rendered image,
and isolating one or more parameters or data attributes
which should be used to generalize those examples.
The goal is to help emphasize relationships between
various parameters of the visualization algorithms
and data features displayed by them. The purpose of
the method is to help analyze visualization mappings
provided by GPU shader programs and to find ways
how the mappings could be enhanced. We call our
method visual shader-space exploration (VSSE).

Figure 1 shows the overview of VSSE. An image is cre-
ated by transforming the data through the visualization
mapping. The visualization mapping is implemented
by a shader program. Subsequently, the visualization
mapping can be modified by the user. In order to mod-
ify the visualization mapping, the parameters of the
original shader which are to be examined are selected.
This can be done either using the Parameter Exploration
Language (PEL) which is embedded into the original
shader code, or using the Feature Vector Editor (FVE).
The FVE also generates PEL code, so the PEL and the
FVE can be used simultaneously. The PEL code in the
original shader is then parsed with the Shader Augmen-
tation Engine (SAE) and an augmented version of the
shader is generated.

The augmented version of the shader provides the orig-
inal visualization as well as the possibility to select sev-
eral pixels in the rendered image (i.e., image space of
the visualization) where features of interest are visible,
and several pixels where they are occluded. We refer to
the pixels displaying the features of interest as the pos-
itive class, while the other ones constitute the negative
class. Subsequently, the way how selected parameters
and data attributes are used in the visualization map-
ping is modified so that the selected examples are gen-
eralized to the whole image. This approach constitutes
simple yet effective means for analysing the influence
of the parameters and the data attributes to features ob-
served in the rendered image.

For every classified pixel a feature vector based on the
values of the examined parameters is extracted. The
classification of the pixel is then assigned to the ex-
tracted feature vector. VSSE provides means to calcu-
late a fuzzy classification, or a membership degree of a



(a) (b) (c)

Figure 2: An example demonstrating the usage of
VSSE with a simple shader. In (a), no pixels are clas-
sified, opacity is 0.5. In (b), a positive pixel is selected
(green circle), opacity is 1 for the whole image. In (c)
additionally a negative pixel (red circle) is selected.

feature vector to either the positive or the negative class
in any state of the execution of the shader. The mem-
bership degree is in the interval [0,1], where 0 means
association with the negative class and 1 means associ-
ation with the positive class. The value of the member-
ship degree can be freely used in the shader to modify
the visualization mapping so that the classification of
the rendered pixels is displayed. We also refer to the
membership degree as confidence.

Figure 2 demonstrates our method on a simple shader
displaying a texture. In this case, the feature vectors
are composed of texel luminance and coordinates. The
confidence is used to modulate the opacity of the tex-
els. In Figure 2(c), two corners of the texture have been
classified, one as a positive example, another one as a
negative example. The result is a clear separation of the
black (top left) from the white (top right) squares. The
white square is fully opaque, while the black square is
completely transparent. In this example, VSSE shows
how texel luminance and its coordinates affects various
parts of the rendered texture and how the parts can be
separated by setting up one positive and one negative
example.

4 PARAMETER EXPLORATION IN
SHADER SPACE

In VSSE, the shader-space exploration is carried out
by visualizing how parts of the examined shader influ-
ence displayed data features. Every pixel of the final
image is calculated by a single instance of the visual-
ization shader. The instance is described by a feature
vector. The feature vector consists of values extracted
during execution of the particular shader instance. Any
expression of the shading language can be used for
these values. In this way it is possible to extract values
of variables or functions at particular positions within
the shader program, even in loops or conditional state-
ments. It is also possible to extract multiple feature vec-
tors for a single instance. In that case, every feature vec-
tor describes a particular state of the shader program.
For instance, in volume rendering, the color of every

pixel is determined by compositing several data sam-
ples along a ray. For each data sample, a feature vector
describing the current sample can be extracted.

The user can classify some of the extracted feature vec-
tors as positive or negative examples. Our method en-
ables the generalization of this classification to all fea-
ture vectors extracted during the rendering of the final
image. We propose to employ this generalization to
modify the visualization mapping. This way, the in-
fluence of the selected parameters, data attributes, and
intermediate results of the shader on the rendered image
can be explored without rewriting the shader. A benefit
of our method is also the possibility of taking values of
previous executions of the shader into account. Without
using our method, this would have to be implemented
manually by writing values to the GPU memory and
reading them back.

4.1 PEL - Parameter exploration lan-
guage

We propose a parameter exploration language (PEL),
which is the language of shader annotations used for
the parameter exploration. The purpose of the PEL
is to mark which parameters or data attributes used
in the shader program should be examined and how
should their effects on the visualized data be displayed.
The advantage of using PEL over simply rewriting the
shader program in the desired way is that the PEL al-
lows to store multiple values of the examined param-
eters and data attributes during the shader execution.
These values can be stored, classified as positive or neg-
ative examples, and used in subsequent executions of
the shader program. By using the PEL, this function-
ality is added to the shader program automatically and
there is no need in explicitly creating it.

The PEL can be embedded into the shader source code
as shading language comments. Both line and block
comments are supported. Comments starting with a
dot are intepreted as PEL annotations. They are trans-
formed to regular shader code by the shader augmenta-
tion engine. This way, expressions of the PEL and the
shading language can be easily combined.

A feature vector can be extracted using the following
annotation:

//. vector p[0]; ... p[n]; weight

This annotation is replaced by code that evaluates the
expressions p[0], ... p[n] and weight and extracts them
as the corresponding feature vector.

To allow a flexible specification of how to visualize ef-
fects of the examined parameters, the keyword confi-
dence can be used in PEL annotations. This keyword



is replaced with a function that evaluates the member-
ship degree for the most recently extracted feature vec-
tor. The value represents likeliness of the current shader
program state to belong to the positive or the negative
class. This value can be arbitrarily displayed by the
shader program.

The following listing shows a part of the fragment
shader source for the example in Figure 2:

vec4 color = texture2D(tex, co.st);
//.vector color.r; co.s; co.t; 1.0
fragColor = vec4(vec3(color.r),

1.0 /*. - confidence */);

In the listing the texel luminance (color.r) and coordi-
nates (co.s, co.t) define a feature vector. In this exam-
ple, one feature vector is extracted for every rendered
pixel. Some of the pixels are user-classified as negative
or as positive. For every other pixel, the confidence of
the respective feature vector is calculated and used as
opacity (confidence keyword) for the pixel.

A feature vector can be extracted in every stage of the
shader program. During the execution of the shader,
the feature vector may be extracted multiple times for
a single pixel. The pixel can be classified as a positive
or a negative example by the user. Since the color of
the pixel depends on all of the extracted feature vec-
tors, they have to be composited into one feature vector
representing the pixel. We refer to it as pixel feature
vector. The pixel feature vector is assigned the clas-
sification that was specified for the pixel by the user.
Various user-selectable composition algorithms, or ac-
cumulation types, can be applied. These are defined
using accumulation keyword of the PEL. The default
accumulation type is weighted average using weights
assigned to individual extracted feature vectors.

The composition of feature vectors is helpful for ap-
plications where the color of the pixel is influenced by
multiple data samples, for example volume rendering.
The accumulation type should reflect the strategy used
for calculating the color of the pixel. Assigning a classi-
fication to the pixel feature vector ensures that the posi-
tive or negative example is suitably placed in the feature
vector space.

The augmented version of the shader can be switched
to one of two modes. The first mode is the rendering
mode without processing of user input. In this mode,
feature vectors are extracted, and the membership func-
tion is evaluated for the most recently extracted feature
vector. The extracted feature vectors are not compos-
ited into pixel feature vectors and no classification is
assigned to them. The second mode is the classification
mode. In this mode, one pixel and its user-defined clas-
sification has to be selected. For the pixel that is being
classified, extracted feature vectors are composited into

Figure 3: Feature vector editor (FVE).

a classified feature vector at the end of the execution of
the shader. The purpose of this design is to enable the
host application to use the same shader for rendering as
well as user-input processing (classification of feature
vectors).

4.2 FVE - Feature vector editor
The PEL offers a high degree of flexibility when de-
signing a parameter exploration scenario for a particu-
lar shader program. However, it requires users to actu-
ally understand the shader source code in order to create
meaningful PEL annotations. To address this issue, we
propose a Feature vector editor (FVE). It is a graphical
user interface which allows users to create and extract
feature vectors from the shader without having to un-
derstand it. The FVE interface is shown in Figure 3.

The FVE parses the shader source code and extracts
all floating point variables. The extracted variables are
then presented to the users so that they can pick any
of them to form a feature vector. In the shader code,
the formed feature vector is extracted after the last of
the selected variables is defined. This means that the
variables used for the feature vectors should be initial-
ized with a meaningful value. This is one of the lim-
itations of the FVE. It is not as flexible as using PEL
directly, where the user can extract feature vectors from
any place in the shader code. Another limitation is that
the user can take only variables for the feature vectors,
while in PEL any language expression is possible.

The FVE displays the names of the variables as ex-
tracted from the shader source code. These names may
be confusing for the user and documentation is needed
for the effective usage of the FVE. Therefore, we have
included two special annotations, name and desc in the
PEL. These annotations are provided for programmers
to document individual variables directly in the shader
source code so that it is convenient to explore the shader
program using FVE. These annotations can change a
displayed name of a particular variable and add a de-
scription to it. The following listing shows an example:

//. name Brightness
//. desc Brightness of the pixel
float br;



(a) (b)

Figure 4: A scatterplot matrix displaying feature vectors. Positive vectors are marked with green circles, negative
ones with red circles. (a) shows a magnetic resonance angiography dataset of a human brain, where a pixel
displaying a vessel was classified as positive (green circle). In (b), a pixel inside the brain matter is classified
as negative (red circle), which results in an enhanced view of the vessels. VSSE confirmed that the explored
parameters can effectively classify blood vessels in the brain.

The two PEL annotations in the first two lines cause
FVE to display Brightness instead of float br; in the list
of variables. Additionally, the FVE displays a pop-up
text with the given description on hovering the mouse
over the variable.

This mechanism creates a level of abstraction between
the shader program source and the parameter explo-
ration. It is the responsibility of the programmer of the
shader to provide names and descriptions of variables
so that a domain expert can understand them. By using
reasonable names and descriptions, the domain expert
can explore the shader space without shading-language
knowledge, or without a deep understanding of the par-
ticular shader program.

We designed our method in such a way that it can bene-
fit domain experts and visualization experts. Visualiza-
tion experts can use PEL or FVE for analysing their
shaders by examining effects of selected parameters.
The FVE can be also employed for fast prototyping of
new algorithms or visualization mappings derived from
the original shader without recompiling the host appli-
cation.

The visualization expert can prepare the shader for the
exploration carried out by the domain expert by adding
reasonable domain-specific variable names and descrip-
tions using PEL annotations without actually renaming
the variables. The domain expert can then use FVE
for exploring the visualization mapping by changing re-
lationships between its parameters and data attributes.
The shader program is transparent to the domain expert
because the FVE shows the domain-specific names and
descriptions of individual variables available for the ex-
ploration.

The flexibility of the FVE is not as high as the one pro-
vided by PEL directly. In case the FVE is not sufficient
in a certain scenario, it is possible to use the PEL an-

notations together with the FVE. Naturally, in this case
knowledge of the shader program is needed.

4.3 Visualization of parameter space
During classification, many potentially multi-dimensio-
nal feature vectors are stored in the GPU memory. In
addition to visualizing their effects on the rendered im-
age, it is also useful to examine their relationships. For
instance, when VSSE is used for identifying suitable
parameters for a multi-dimensional transfer function,
the parameters of the examined shader program are se-
quentially chosen for the feature vectors. When a good
set of parameters is identified, it is necessary to check
whether some of the parameters are correlated. If a pair
of the parameters correlates, one of them can be omitted
from the designed transfer function.

We introduce a visualization module which is able to
depict all positively and negatively classified feature
vectors, as well as extracted feature vectors for the
currently selected pixels as a context. The visualiza-
tion module uses a scatterplot matrix, which provides
an overview of the bilateral relationships between ele-
ments of the vectors.

The visualization module is shown in Figure 4. In this
case, feature vectors are composed of following val-
ues: scalar data value (scalar_value), gradient mag-
nitude (gradient_magnitude), distance from the virtual
camera (distance_from_eye). The goal is to determine
whether these three data attributes can be used for effec-
tive classification of blood vessels in an MRA scan of
a brain. A part of a displayed blood vessel is classified
as a positive example for being a vessel. Part of brain
matter is classified as a negative example for being a
vessel. The opacity of all rendered voxels now depends
on how close their attributes are to the specified positive
and negative examples.



The user of our method selects examples for the posi-
tive and the negative class manually. It is possible to
classify several different materials as a positive or neg-
ative class. In this case, our method can reveal if the
selected variables of the feature vector can provide uni-
fied description of these materials.

The visualization module shows the relation of each
pair of variables of the feature vector in a scatterplot
matrix. For every user-defined classification, multiple
values of the variables are extracted and composited
into a feature vector. The visualization module can be
used to determine the best composition strategy for cal-
culating the feature vectors. In the example of Figure
4, the scatterplots with the distance to the virtual cam-
era on one of the axes show peaks on the positively
classified pixel, while there are no peaks in the nega-
tively classified one. As the axis of the scatterplots is
the distance to the virtual camera, the scatterplots actu-
ally show ray profiles. The ray profiles of both the posi-
tive and the negative example begin with values close to
zero. This means the feature vectors should be compos-
ited using a weighted average, otherwise the positive
and the negative examples could not be distinguished.

5 FEATURE VECTORS
The user can classify multiple pixels in one session.
Therefore, the shader has access to multiple feature vec-
tors associated with either class. At any point of the ex-
ecution of the shader, this information can be used to
calculate the confidence that a most recently extracted
feature vector belongs to the positive or the negative
class. The confidence is determined by a membership
function.

The membership function is used for an automatic clas-
sification of pixels that have not been classified by
the user as either positive or negative. The function
should be smooth and it should not be sensitive to slight
changes in its inputs, since these are provided only with
a certain accuracy through interaction in image space.
For this purpose, Euclidean distances of the classified
feature vectors to the pixel feature vector can be em-
ployed.

The membership function is defined for pixel feature
vectors x̄i as f (x̄i) = ci where ci is the user defined clas-
sification for the feature vector of pixel i. The classifi-
cation is given as follows:

ci =

{
1 if positive
0 if negative (1)

For feature vectors not classified by the user (x̄ 6= x̄i),
the membership function is defined as follows:

f (x̄) =
∑

n
i=1(ci

1
‖x̄−x̄i‖p )

∑
n
i=1(

1
‖x̄−x̄i‖p )

(2)

(a) (b)

Figure 5: Visualization of a two-dimensional case of a
membership function for (a) p = 1 and (b) p = 5. Black
color means association with the negative class, white
color means association with the positive class. Green
circles denote positive feature vectors, red circles de-
note negative ones.

where x̄1..n are the user-classified feature vectors. p
is an additional parameter that adjusts softness of the
membership function. This fine-tuning is useful when
the VSSE is applied to different types of data. Figure
5 gives an example of a two-dimensional feature-vector
membership-function with p = 1 and p = 5.

If there are no user-classified feature vectors yet, the
confidence for any feature vector cannot be evaluated.
In this case, the membership function is defined as
f (x̄) = 0.5.

6 IMPLEMENTATION
The system is implemented in C++ using the Qt library.
It provides an application programming interface for
an easy integration into existing host visualization sys-
tems.

The shader augmentation engine is able to enhance
shaders written in the GLSL language by replacing PEL
annotations with GLSL code. The inserted GLSL code
uses the EXT_shader_image_load_store extension for
storing and loading feature vectors in OpenGL textures.

When there is a request from the host application to
classify a pixel, the host application has to provide the
augmented shader with the screen space coordinates
and the desired class (positive or negative) of the se-
lected pixel. The augmented shader is then automati-
cally switched to the classification mode. The pixel has
to be rendered in this mode, so that its pixel feature vec-
tor is calculated, classified, and stored. Other pixels can
be rendered in the classification mode as well, but the
code for feature vector extraction would be ignored for
any pixel with different screen space coordinates from
the pixel that was selected (e.g., by mouse clicking on
the rendered image).

The parameter visualization module is implemented us-
ing GLSL shaders to access extracted feature vectors
and render them in a scatterplot matrix. A geometry



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Visualizations of the dual-modality data with positively classified brain and negatively classified oc-
cluding tissues for different feature vectors. Feature vectors consist of these attributes: (a) voxCT; (b) gmCT; (c)
voxDiff; (d) gmCT, voxDiff; (e) voxMRI; (f) gmDiff, voxMax; (g) gmDiff, gmMax; (h) gmMax, voxDiff

shader is used to create the visualization from the data
stored in the GPU memory to minimize data transfer
between GPU and CPU.

7 USE CASES
In the following section we present two use cases of
VSSE. We apply our method to two distinct shader pro-
grams to demonstrate its versatility. In both examples,
our method is used to examine an existing algorithm
with different goals.

7.1 Volume Rendering
To demonstrate the shader-space exploration-abilities
of our method, we employ it for the exploration of a di-
rect volume rendering algorithm. For this use case, we
use dual modality data - a co-registered CT and MRI
scan of a human head. The MRI data is displayed on
the screen, while the CT data is used only to extract ad-
ditional data attributes. We use VSSE to find out which
of the data attributes can be employed to design a trans-
fer function for the effective classification of the brain
in this type of data.

We identified several data attributes to be taken under
consideration. The data attributes are: scalar value
from the MRI data (voxMRI), scalar value from the
CT data (voxCT), gradient magnitude from the MRI
data (gmMRI), gradient magnitude from the CT data
(gmCT), difference of the two scalar values (voxDiff),
difference of the two gradient magnitudes (gmDiff),
maximum of the two scalar values (voxMax), maximum
of the two gradient magnitudes (gmMax).

Using VSSE, we extract feature vectors for every pro-
cessed voxel. The feature vectors are formed from var-
ious combinations of these data attributes. The method
for the composition of the feature vectors is weighted
average. The weight for every feature vector is the con-
tribution of the respective voxel to the final pixel color.
Therefore, feature vectors composited using this strat-
egy accurately describe the pixels. Finally, we use the
confidence value to modulate the opacity of every pro-
cessed data sample. This means that data samples with
feature vectors from the negative class do not contribute
to the pixels of the rendered image, thus they do not oc-
clude areas of interest.

Using the FVE we select a set of variables represent-
ing the data attributes to form a feature vector. We try
various different feature vector setups in order to find
most suitable ones. Using a clipping plane, we reveal
brain in the visualization of the MRI data. We posi-
tively classify one pixel inside the brain. Additionally,
three pixels in the skull and other occluding tissues are
classified negatively. We use the same user-specified
classification for every feature vector setup. Since we
classified a pixel displaying the brain as positive, and
pixels displaying occluding tissues as negative, the re-
sulting visualization should reveal the brain. If this is
not the case, we can conclude that the current set of data
attributes would not be suitable for designing a transfer
function for the desired visualization mapping. By try-
ing different sets of data attributes, we identify those
suitable for classifying brain. Figure 6 shows the re-
sults. The best choices are shown in Figure 6(d) and
Figure 6(h), where the brain is revealed as expected.



7.2 Image processing
To demonstrate the generality of our method, we show
how it can be used to analyse an extension of an image
processing algorithm. The goal is to determine whether
the extended algorithm is capable of generalising be-
haviour specified by positive and negative examples.

In this example, a shader implementing a bilateral fil-
ter [17] is used. The bilateral filter smooths images
while preserving edges. It replaces every pixel of the
input image with weighted average of surrounding pix-
els. The weights are determined by a two-dimensional
Gaussian function and a color difference between the
original and the surrounding pixel. If the difference is
higher than a threshold, the weight of the pixel is zero.

The bilateral filter has two parameters: blurring radius
and threshold. Higher radius will result in removal of
more high-frequency noise, while the threshold deter-
mines how strongly should the edges be preserved.

We use our method to explore possibilities of extending
the bilateral filter algorithm by using different thresh-
old for every pixel of the rendered image. The goal
is to see how the extended algorithm could emphasize
features or areas of interest of the images from differ-
ent application domains. Our method is used to specify
these features by classifying several pixels of the image
as the positive and the negative examples. Afterwards,
it is observed how the classification has been general-
ized for the rest of the image to evaluate the usefulness
of the extended algorithm.

Since the threshold controls how edges are preserved,
we apply the Sobel operator to calculate gradient mag-
nitude for every pixel and use it as a feature vector. The
gradient magnitude is high for edges and low for flat
areas of the image. In this setup, the user can select ex-
amples of edges (positive examples) and flat areas (neg-
ative examples) by clicking on them. These examples
are subsequently generalized for calculating the thresh-
old for each pixel.

Figure 7 shows two different selections of edge exam-
ples as well as the original image. In 7(b) only strong
edges are visible. In 7(c), a more subtle edge was se-
lected as a positive example. The thresholds were mod-
ified so that more edges are visible. Our method shows
the potential of the proposed extension of the bilateral
filter algorithm for preserving only the edges with a spe-
cific significance.

8 DISCUSSION AND LIMITATIONS
Our proposed method is intended for analyzing existing
visualization algorithms in order to gain better insight
into their inner working. As we show in section 7.1,
our method enables rapid exploration of shader space
of an visualization algorithm resulting in identification

(a) (b) (c)

Figure 7: Using VSSE for exploring possibilities of
variable threshold of a bilateral filter. In (a) the original
image is shown. In (b) and (c) one positive example of
an edge was chosen (green circle) and one negative (red
circle). The thresholds for individual pixels are modi-
fied so that the examples are generalized for the whole
image.

of data-attributes combinations interesting for a spe-
cific field. Achieving this goal by simple shader pro-
gramming would have to be carried out by cumbersome
manual evaluation of effectiveness of transfer functions
for each visualization mapping. In section 7.2 we show
that our method can be employed for a different type of
shader analysis as well.

There are several limitations in our method that should
be addressed in future work. Currently, the shader aug-
mentation engine is able to parse only GLSL shaders.
However, the presented concepts do not depend on us-
ing shaders. There is no principal obstacle to provide
implementations for other languages implementing the
visual mapping.

We have evaluated the performance of the system on a
volume rendering shader displaying various datasets.
For a dataset of 424x279x190 voxels and a window
size of 800x600 pixels, the shader was running at
around 120 FPS. After augmenting the shader with
the PEL annotations and classifying five pixels using
three-dimensional feature vectors, the FPS dropped
to approximately 20 FPS. This performance drop is
caused by additional GPU memory accesses for ex-
tracting values for the feature vectors and reading them
back to the CPU for the calculation of the classification
of every processed voxel. The timings were obtained
with a GeForce GTX 480 graphics card.

9 CONCLUSION
We have proposed visual shader-space exploration, a
method for the visual analysis of GPU shader programs.
The method enables users to explore effects of various
parameters of visualization algorithms. It provides a
visual feedback based on user-specified semantic clas-
sification of parts of the rendered images. We have im-
plemented the method as a set of C++ classes that are
independent of the underlying visualization system.

The implementation could be further enhanced by
adding support for different language back-ends (such
as OpenCL or CUDA). Various optimizations would



also be possible to improve performance on large
datasets, e.g., using caching for the membership
functions.

10 ACKNOWLEDGMENTS
The work presented in this paper has been partially sup-
ported by the ViMaL project (FWF - Austrian Research
Fund, no. P21695) and by the Aktion OE/CZ grant
number 64p11.

11 REFERENCES
[1] C. D. Correa and K.-L. Ma. Visibility his-

tograms and visibility-driven transfer functions.
IEEE Transactions on Visualization and Com-
puter Graphics, 17:192–204, 2011.

[2] P. Crossno and E. Angel. Visual debugging of
visualization software: a case study for particle
systems. In Proceedings of the conference on Vi-
sualization ’99, VIS ’99, pages 417–420. IEEE
Computer Society, 1999.

[3] F. de Moura Pinto and C. M. D. S. Freitas. De-
sign of multi-dimensional transfer functions using
dimensional reduction. In Eurographics - IEEE
VGTC Symposium on Visualization, pages 131–
138, 2007.

[4] N. Duca, K. Niski, J. Bilodeau, M. Bolitho,
Y. Chen, and J. Cohen. A relational debugging
engine for the graphics pipeline. ACM Transac-
tions on Graphics, 24(3):453, 2005.

[5] M. Gavrilescu, M. M. Malik, and M. E. Gröller.
Custom interface elements for improved param-
eter control in volume rendering. In 14th Int.
Conf. on System Theory and Control 2010, pages
219–224, 2010.

[6] M. Gerl, P. Rautek, T. Isenberg, and E. Gröller.
Semantics by analogy for illustrative volume visu-
alization. Computers & Graphics, 36(3):201–213,
2012.

[7] H. Guo, N. Mao, and X. Yuan. Wysiwyg (what
you see is what you get) volume visualization.
IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):2106 –2114, 2011.

[8] Q. Hou, K. Zhou, and B. Guo. Debugging
gpu stream programs through automatic dataflow
recording and visualization. ACM Trans. Graph.,
28(5), 2009.

[9] T. J. Jankun-Kelly and K.-L. Ma. Visualization
exploration and encapsulation via a spreadsheet-
like interface. IEEE Transactions on Visualization
and Computer Graphics, 7(3):275–287, 2001.

[10] T. J. Jankun-Kelly, K. L. Ma, and M. Gertz. A
model for the visualization exploration process.
In Proceedings of the conference on Visualization

’02, VIS ’02, pages 323–330. IEEE Computer
Society, 2002.

[11] P. S. McCormick, J. Inman, J. P. Ahrens,
C. Hansen, and G. Roth. Scout: A hardware-
accelerated system for quantitatively driven vi-
sualization and analysis. In Proceedings of the
conference on Visualization ’04, VIS ’04, pages
171–178. IEEE Computer Society, 2004.

[12] B. McDonnel and N. Elmqvist. Towards utiliz-
ing gpus in information visualization: A model
and implementation of image-space operations.
IEEE Transactions on Visualization and Com-
puter Graphics, 15(6):1105–1112, 2009.

[13] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and
K. Hinrichs. Interactive design and debugging of
gpu-based volume visualizations. In Computer
Graphics Theory and Applications, pages 239–
245, 2010. short paper.

[14] P. Rautek, S. Bruckner, and E. Gröller. Se-
mantic layers for illustrative volume rendering.
IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1336–1343, 2007.

[15] P. Rautek, S. Bruckner, and M. E. Gröller.
Interaction-dependent semantics for illustrative
volume rendering. Computer Graphics Forum,
27(3):847–854, 2008.

[16] M. Strengert, T. Klein, and T. Ertl. A hardware-
aware debugger for the opengl shading lan-
guage. In Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, GH ’07, pages 81–88. Eu-
rographics Association, 2007.

[17] C. Tomasi and R. Manduchi. Bilateral filtering
for gray and color images. Sixth International
Conference on Computer Vision, pages 839–846,
1998.

[18] F.-Y. Tzeng, E. Lum, and K.-L. Ma. An intelligent
system approach to higher-dimensional classifica-
tion of volume data. IEEE Transactions on Visual-
ization and Computer Graphics, 11(3):273–284,
2005.

[19] F.-Y. Tzeng and K.-L. Ma. A cluster-space visual
interface for arbitrary dimensional classification
of volume data. In Eurographics - IEEE TCVG
Symposium on Visualization, 2004, pages 17–24,
2004.

[20] Y. Wu and H. Qu. Interactive transfer function
design based on editing direct volume rendered
images. IEEE Transactions on Visualization and
Computer Graphics, 13(5):1027–1040, 2007.

[21] X. Yuan, N. Zhang, M. X. Nguyen, and B. Chen.
Volume cutout. The Visual Computer (Special Is-
sue of Pacific Graphics 2005), 21(8–10):745–754,
2005.


