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Figure 1: Overview of the RadEx interface, an integrated analysis and exploration platform for gynecological cancer data.

Abstract
Better understanding of the complex processes driving tumor growth and metastases is critical for developing targeted treatment
strategies in cancer. Radiomics extracts large amounts of features from medical images which enables radiomic tumor profiling
in combination with clinical markers. However, analyzing complex imaging data in combination with clinical data is not trivial
and supporting tools aiding in these exploratory analyses are presently missing. In this paper, we present an approach that
aims to enable the analysis of multiparametric medical imaging data in combination with numerical, ordinal, and categorical
clinical parameters to validate established and unravel novel biomarkers. We propose a hybrid approach where dimensionality
reduction to a single axis is combined with multiple linked views allowing clinical experts to formulate hypotheses based on all
available imaging data and clinical parameters. This may help to reveal novel tumor characteristics in relation to molecular
targets for treatment, thus providing better tools for enabling more personalized targeted treatment strategies. To confirm the
utility of our approach, we closely collaborate with experts from the field of gynecological cancer imaging and conducted an
evaluation with six experts in this field.

CCS Concepts
• Applied computing → Health informatics; •Human-centered computing → Visualization design and evaluation methods;

1. Introduction

The World Health Organization announced in 2018 that cancer is
globally the second leading cause of death after cardiovascular dis-

ease [BFS∗18]. There are numerous forms of cancer and they arise
in all kinds of cells in the human body. When exploring imaging
features, radiomic tumor profiling may be performed [BGE∗18].
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Gillies et al. state that the goal of radiomics is to harvest high di-
mensional data from clinical images which serve as a basis for fur-
ther analysis, e.g., in terms of predictive value for predicting clini-
cal outcome and response to targeted therapy [GKH16]. This anal-
ysis is by no means an easy task and often involves working with
multiple modalities or multiple parametric images. For endometrial
cancer, which is the most common gynecological tumor in industri-
alized countries [AMN∗05], preoperative staging by multiparamet-
ric magnetic resonance images (MRI) and results from endometrial
biopsy routinely guide choice of surgical procedure and adjuvant
therapy.

Tumor regions of interest (ROIs) can be manually placed on the
different MRI sequences to quantify tissue features (e.g., diffusion
properties on apparent diffusion coefficient (ADC) maps, perfusion
markers on dynamic contrast enhanced (DCE)-MRI/parametric
maps), and these tumor characteristics have been shown to aid in
predicting metastases or tumor progression [FBYH∗18, HSG∗14,
HS16, BFM∗16]. However, manual tumor segmentations and anal-
yses of ROI data are time consuming, and thus presently unfeasible
in daily routine. A main challenge when analyzing cohorts of pa-
tients is to unravel the most relevant imaging patterns that are linked
to clinical parameters and patient outcome. Furthermore, analysis
of the high dimensional value domain resulting from the combina-
tion of the clinical parameters consisting of histological markers,
radiological findings, and outcome related parameters and multi-
parametric imaging data is challenging.

In current clinical research, imaging modalities are typically an-
alyzed individually, and the tumors are analyzed based on manu-
ally placed ROIs. As a part of ongoing research of our collabora-
tors, convolutional neural networks are used to perform a machine
learning based segmentation of tumors. In addition, an automatic
co-registration of all available modalities is performed. This allows
integrative analysis of all voxels of the tumor, with the potential to
empower clinical researchers with more targeted and capable anal-
ysis platforms. Tumor textural features based on manually placed
ROIs and only for single modalities have already been proven to
be related to high-risk histological subtypes in endometrial can-
cer [HSG∗14, FBYH∗18, YHDL∗18]. Analysis tools for different
ROI measurements taking multiple modalities and all tumor voxels
into account are not available. Nonetheless such an analysis would
likely improve comparability between different patients and across
different hospitals.

To further support cohort analysis in radiomic tumor profiling,
we provide a tool which supports both data preprocessing steps
for cohort analysis as well as an integrated dashboard for cohort
analysis and hypothesis generation. The application targets cancer
imaging research where radiomic tumor profiling is carried out and
where multiparametric imaging data is acquired. We provide an in-
teractive analysis platform that enables gynecological cancer re-
searchers to analyze cohort data with the goal of hypothesis forma-
tion. The overall aim of the application is to provide a tool for vi-
sualization, exploration, and identification of complex relations be-
tween radiomic tumor profiles and clinical and histological mark-
ers.

Our main contributions are the following: (1) We present an in-
teractive cohort analysis application that targets hypothesis forma-

tion in radiomic tumor profiling workflows that includes imaging
data and clinical parameters. (2) We provide a workflow that en-
ables validation of manual or automatic machine learning-based
tumor segmentations and validation of automatic co-registration
of multi-parametric imaging data. (3) To show the utility of our
approach, we evaluated our system with six experts in gyneco-
logical cancer imaging research, using the System Usability Scale
(SUS) [Bro04] and a qualitative evaluation.

2. Medical Background

Endometrial cancer is the most common pelvic gynecological ma-
lignancy in high-income countries. The endometrium comprises
the innermost lining of the uterine cavity, and patients typically ex-
perience abnormal vaginal bleeding. The diagnosis is confirmed by
an endometrial biopsy establishing the histological-/molecular tu-
mor subtype/grade, and subsequently a preoperative pelvic MRI is
routinely performed for local staging. However, analyzing complex
imaging data in combination with clinical-/tissue data is not trivial.
Imaging data is often multiparametric, allowing the visualization of
different aspects of tumor physiology related to, e.g., tumor micro-
circulation and microstructure, which reportedly are closely linked
to the observed clinical phenotype in cancer [HSG∗14,FBYH∗18].
Extracting whole volume multiparametric imaging data simultane-
ously may also be done through radiomic tumor profiling.

Radiomic tumor profiling plays an emerging important role in
the new era of precision medicine [GKH16]. This field of research
aims to produce high-dimensional feature vectors from clinical im-
ages [RBR∗18] to find tumor markers with a higher predictive
value. The typical workflow consists of image acquisition, image
reconstruction, tumor segmentation, feature extraction and quali-
fication, and finally analysis and model building. One challenge
in this regard is feature selection which may be performed a pri-
ori or from dimensionality reduction. Radiomics features are ex-
tracted from a region of interest representing the tumor. Hence,
a high quality tumor segmentation is a crucial step [RBR∗18].
Manual segmentation is often used as the ground truth for tumor
segmentation although some inter-reader variability is inevitably
present [RBR∗18].

Tumor texture parameters derived from MRI scans have been
shown to be associated with high-risk disease and reduced survival
in endometrial cancer [YHDL∗18]. Parameters like kurtosis, en-
tropy and mean of positive pixels (MPP) from the ADC map and the
T1 contrast-enhanced images have been shown to predict high-risk
histological subtypes and advanced stage, e.g., deep myometrial in-
vasion in endometrial cancer [YHDL∗18,FBYH∗18]. Furthermore,
tumor tissue markers have been compared with tumor markers from
parametric maps (based on dynamic contrast-enhanced MRI) find-
ing that reduced tumor blood flow in MRI reflects increased mi-
crovascular proliferation in the tumor samples and predicts poor
survival in endometrial cancer [HSG∗14, FBYH∗18].

3. Related Work

Traditionally, gynecological cancer biomarker research employs
statistical analysis tools like SPSS [GS10] or RStudio [RSt20]. Vi-
sualization approaches for targeted cancer diagnosis often focuses
on techniques for representing biomarkers or imaging data but there
is only a small body of work combining clinical cohort data with
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multiple imaging sequences per patient. Raidou et al. [RVD∗15]
introduced a visual analytics approach for the exploration of tu-
mor tissue characterization featuring a 2D t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [vH08] dimensionality reduction
also taking tumor characteristics into account. Although their ap-
proach is similar, we differ in multiple aspects in that we do not fo-
cus on pharmacokinetic parameter maps but rather visualize high-
dimensional radiomic tumor texture features. In contrast to their
approach, we use a 1D t-SNE dimensionality reduction and our vi-
sual exploration approach aims for the identification of complex re-
lations between radiomic tumor profile and clinical and histological
markers. To the best of our knowledge, there is no related literature
where a 1D t-SNE dimensionality reduction has been used in com-
bination with a clinically meaningful parameter on the other axis.
Compared to the other approaches presented here, we preserve one
axis of the 2D visualization to present a meaningful value selection,
which is not the case when applying a 2D t-SNE dimensionality re-
duction.

Image-Centric Cohort Visualization Closely related to our ap-
proach is the work by Steenwijk et al. [SMB∗10], where the au-
thors used multiple linked views including scatterplots and parallel
coordinate plots combined with imaging data for each patient. One
major difference is that they are limited to displaying two images
per patient without a link to the imaging data in their visualiza-
tion application. Klemm et al. [KOJL∗14] introduced an epidemi-
ological approach which is also image-centric and involves seg-
mentations and hypothesis formulation. However, they do not vi-
sualize the original imaging data in their application and mainly
focus on model-based visualization in their application. Jönsson et
al. [JBF∗19] introduced a cohort analysis platform which also al-
lows for group comparison and incorporates imaging data for each
patient as well as clinical parameters. In contrast to our approach,
they do not use multiparametric imaging data, and they do not work
with radiomic tumor features.

Visual Cohort Analysis Preim et al. [PL20] provided an exten-
sive overview of visual analytics approaches for public health data
in their survey. Further related work in the field of visual analytics
of patient cohorts includes the work of Angelelli et al. [AOH∗14].
The authors presented a prototype aiming for cohort-based hypoth-
esis formulation for heterogenous data. Eckelt et al. [EAZ∗19] pre-
sented a visual analysis tool enabling statistical analysis of tabu-
lar data, cancer drug target discovery, and closing the gap between
visualization and statistical analysis. Raidou et al. [RCMA∗18]
introduced a visual analytics application which allows for analy-
sis on both cohort level and patient level for radiotherapy induced
bladder toxicity. Bernard et al. [BSM∗15] presented a data cen-
tered approach for analyzing large amounts of patients using mul-
tiple linked views and selective analysis. When dealing with large
amounts of patient data, user guidance could be implemented, as
discussed by Ceneda et al. [CGM∗17, CGM19]. Further related
work in the field of cohort construction includes the work of Krause
et al. [KPS16]. In the field of cancer characterization, the work of
Turkay et al. [TLS∗14] is relevant to our approach. In contrast to
these approaches, we combine multiparametric imaging data, ra-
diomic tumor profiling data and clinical parameters in one applica-
tion.

Co-Registration and Segmentation Validation As we work with
co-registered data which partially features machine learning-based
segmentation masks, the data needs to be validated by experts be-
fore further analysis. Hastreiter et al. [HE98] proposed to use fused
visualization methods. Jenkins et al. [JBBS02] suggested that over-
laying of prominent edges provides a usable co-registration check.
More complex and automatic co-registration validation methods
include the work of Schnabel et al. [STCS∗03], which validates
nonrigid image registration using finite-element methods. Our ap-
proach adds a parameter-based pre-selection of cases where the
co-registration outcome is suspicious to first present these cases to
medical researchers for further analysis.

Automatic segmentation methods are available, but often they
do not meet the acceptance criteria needed for usage in clinical co-
hort studies. Therefore, a validation step has to be employed before
using them as a source of analysis [VBK∗13]. Von Landsberger
et al. [VBK∗13] introduced a user guided automatic segmenta-
tion method where algorithm parameters are set intuitively by us-
ing visual analytics tools. Karimov et al. [KMAB15] introduced
an approach for interactive segmentation correction based on his-
togram dissimilarities. Haehn et al. [HKT∗18] proposed a segmen-
tation proofreading technique and demonstrated that expert proof-
reading has increased performance and speed over manual expert
segmentation. In contrast to these approaches, we benefit from var-
ious features measured by radiologists which allow us to spot po-
tentially incorrect automatic segmentation. Adding these cases to
the training set of automatic algorithms allows for an incremental
improvement of the segmentation mask result.

4. Data and Tasks

Endometrial cancer classification is highly dependent on the data
used. For our clinical collaborators, multiparametric imaging data
and histological data as well as further clinical parameters of the
patients are available. Due to our close collaboration with both ra-
diologists and experts in the field of molecular biomarkers we were
able to gather insight in this highly specialized field of research.
In a clinical setting, potential patients who typically face symp-
toms such as vaginal bleeding, have an endometrium biopsy which
serves as the basis for a histological investigation. If the biopsy
confirms an endometrial cancer diagnosis, preoperative pelvic mul-
tiparametric contrast-enhanced MRI is routinely performed. Imag-
ing findings guide the choice of treatment, normally consisting of
surgery in all cases, followed by adjuvant chemo- and/or radiation
therapy in high-risk patients. After treatment, the patients have reg-
ular clinical follow-ups to detect recurrent disease/tumor progres-
sion, and progression-free survival is recorded.

4.1. Clinical Parameters

The following clinical parameters are available for analysis:

• Tesla: Field strength value of the MRI scanner used for the
screening, either 1.5 or 3 Tesla.
• Segmentation: Indicator of manual or machine learning segmen-

tation of the tumor.
• FIGO2G: International Federation of Gynecology and Obstetrics

(FIGO) [BBCF∗19] classification of the tumor. FIGO I and II are
one group and FIGO III and IV represent the other group. The
grouping is performed based on tumor aggressiveness.
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• MyomInf2G: Myometrial infiltration of the tumor with infiltra-
tion of <=50% and >50%.
• CervixAffHyst: Tumor extending to the uterine cervix.
• HistType: Endometrial or non-endometrial subtype.
• HistGrade2G: High-grade and low-grade tumors.
• MetNodes: Histologically confirmed lymph node metastasis, no

metastases or not investigated.
• Status: Last known status of the patient, category one combines

the following possible states of the patient: alive and well, dead
from other causes or dead with but not due to active disease,
second category is alive with active disease, and third category
indicates dead from disease.
• Prog_and_or_recur: Progression or recurrence of disease after

surgery.
• TumorFree: Tumor free at the most recent follow-up meeting.

4.2. MRI Specifics

MRI imaging includes different sequences depicting tumor extent
(using T1- and T2- weighted MRI) and microstructural tumor char-
acteristics (e.g., in diffusion weighted imaging (DWI)). First in-
troduced by Rofsky et al. [RLL∗99], the Volumetric Interpolated
Breath-hold Examination (VIBE) facilitates a 3D gradient-echo se-
quences that produces T1 weighted images. The advantage of this
approach is improved resolution in the Z-axis which enables high-
quality multiplanar reconstruction. In DWI, highly cellular tissue
features a lower diffusion coefficient [KM04]. A quantitative as-
sessment of the diffusion may be performed with the generation of
apparent diffusion coefficient (ADC) values obtained at different b-
values [KP06]. When using an intravenous contrast agent, the dy-
namic contrast-enhanced (DCE) MR perfusion is recorded. Typical
measurements during this examination are the peak enhancement
(PE) measuring the relative enhancement in contrast after the up-
date of the contrast agent and the time to peak (TTP) [GPME∗14].
The area under the peak enhancement curve (AUC) is also a typi-
cal measurement [GPME∗14]. In total, we have seven MR imaging
sequences available.

4.3. Specifics of the Application Domain

Gynecological cancer imaging research consists of multiple steps.
Data of several MRI sequences must be analyzed, currently done
separately and partly only for specific regions within the tumor. The
overall goal of our medical collaborators is to examine and explore
tumor biomarkers which potentially have a larger predictive value
for clinical outcome than well-established ones. These biomarkers
may help to further improve treatment of patients and increase per-
sonalization. Recent research of our collaborators already includes
the analysis of tumor texture, which relies on prior segmentation
of the tumor [HSG∗14, FBYH∗18, YHDL∗18]. The gold standard
in this segmentation approach is a manual segmentation performed
by a trained radiologist. One aspect to consider in this regard is
that this step comprises intra-operator variance. Due to the very
time-consuming process of segmenting each volumetric slice this
process is only performed using one of the seven MRI sequences.
Therefore, our collaborators aim for a complete automation us-
ing machine learning algorithms. Another step already performed
by our collaborators is the co-registration of all seven sequences
present. For both steps our collaborators are looking for a valida-
tion possibility to assess data quality before analysis. The analysis

of the imaging data and clinical parameters involves several tasks:
group selection, tumor texture feature analysis, data quality valida-
tion, and hypothesis formation. To the best of our knowledge there
is no application available which combines these tasks in an easy
and intuitive way without having to export and import data multiple
times.

4.3.1. Machine Learning Segmentation

One of our co-authors applied a 3D convolutional neural net-
work (UNet3D [ÇAL∗16]), using Keras [GP17] and Tensor-
flow [ABC∗16] as backend engine, to facilitate automatic segmen-
tation of the tumor data in endometrial cancer patients. The net-
work was trained using 139 expert segmentations based on preop-
erative pelvic imaging. The network can retrieve tumor volumes
which are comparable to human expert level and a set of segmen-
tation masks with human agreement not differing from inter-rater
agreement. Although this algorithm is very promising for further
analysis of the segmented tumor volumes and masks, proofreading
by a radiologist is still necessary. Common tools used in clinical
practice and research allow for such a validation but quickly finding
cases where the segmentation might be wrong is desirable but not
supported yet. After this processing step, the tumor segmentation
is still only available on one sequence. To analyze the tumor on ev-
ery given sequence, co-registration is necessary. This process was
performed automatically but needs to be validated since a segmen-
tation of non-tumor-regions would potentially introduce a critical
error in data analysis. Examples of incorrect segmentations can be
seen in the accompanying video and figures.

4.3.2. Automatic Co-registration

Our collaborators performed the co-registration automatically us-
ing FMRIB’s Linear Image Registration Tool (FLIRT) [JS01,
JBBS02] without optimization and only performing geometric
alignment in scanner coordinates. However, this automatic regis-
tration method may not always find a perfect transformation for
each modality and therefore must be validated. The employed co-
registration algorithm features a relatively low failure rate but for
a meaningful analysis spotting cases where it might have failed is
crucial. Our medical collaborators request for an intuitive way to
find and validate these cases. Having all sequences co-registered
and the segmentation prepared, radiomics feature extraction is the
next step. Examples of incorrect co-registrations are presented in
the additional materials.

4.3.3. Radiomics Feature Extraction

Radiomics feature extraction takes volumetric imaging data and the
volumetric tumor mask as input and generates a high-dimensional
feature vector describing the tumor in each parametric imaging se-
quence. We merge the generated data afterwards with the clinical
parameters. In recent work by our collaborators [YHDL∗18] tu-
mors textural features were analyzed using TexRad [Ltd20] soft-
ware. The number of features in this approach is limited and the
feature generation algorithms are not open source. Therefore, our
medical collaborators expressed interest in a transparent and more
controllable data handling method. Based on prior research, tumor
texture features are interesting measurements, believed to be cor-
related with aggressiveness of tumors [YHDL∗18, FBYH∗18]. To
further support this hypothesis, we calculate potential features for
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homogeneity analysis, including normalized inverse difference mo-
ment, contrast, short run emphasis and long run emphasis. The in-
formation content contribution of each sequence is not known a
priori and therefore an explorative analysis of single sequences and
their combinations is of interest for our collaborators.

4.4. Task Abstraction

We performed a task abstraction using the task framework proposed
by Brehmer and Munzner [BM13]. We assessed the current status
of clinical research in gynecological cancer during multiple inter-
views with our collaborators. We also encouraged them to envision
new workflows including results of convolutional neural network-
performed segmentations and the possible parallel analysis of all
sequences after co-registration. During the interviews, we identi-
fied two phases. Phase one deals with ensuring data quality and
phase two with cohort analysis. Two tasks (T1 and T2) handle the
need for a segmentation and co-registration validation. Task T3 re-
flects a common practice in medical research, namely group selec-
tion. Finally, tasks T4 and T5 provide analysis functionality. Dur-
ing discussions, our collaborators mentioned that they commonly
use R or SPSS for statistical analysis and that they would like to
continue doing so. Therefore, we exclude statistical analysis capa-
bilities from our application design.

T1–Discover Invalid Co-Registrations Our medical collabora-
tors classify co-registrations as invalid based on the misalignment
of the given volume. Bladder filling and other physiological pro-
cesses in the body cause a shift of the organs and therefore au-
tomatic methods may not result in a completely perfect align-
ment of these images. However, finding cases where automatic co-
registration fails to find a sufficient transformation is crucial to sup-
port productive and time-efficient analysis. The analysis platform
should allow the user to discover misaligned volumes and to ana-
lyze data in detail to identify potential causes of the misalignment.

T2–Discover Incorrect Machine Learning Tumor Segmenta-
tions Manual volumetric segmentation of endometrial tumors is
a tedious and time-consuming task. This task could be automated
using machine learning techniques, for example based on convo-
lutional neural networks. Although the algorithm employed by our
collaborators features a low failure rate and a comparable precision
as the medical experts, the results still must be validated before
further analysis. Spotting cases where the segmentation is poten-
tially wrong is challenging and browsing through all patients is not
time efficient. The user wants to discover potential faulty cases and
identify the cause of the incorrect segmentation mask.

T3–Group Selection and Comparison Group identification and
selection is a common and important task in clinical research.
When analyzing a cohort of patients, it is of great interest to spot pa-
tients which share similar features, e.g., in imaging or histological
analysis results. During the analysis of such cohort data, different
groups can be selected and the medical researchers would like to
compare them with each other.

T4–Homogeneity Analysis Heterogeneity is putatively linked to
aggressive cancer phenotype supported by previous studies link-
ing specific textural features to high-risk histological subtypes in
endometrial cancer [YHDL∗18, FBYH∗18]. An exploratory plat-
form allowing an assessment of textural features reflecting tu-
mor heterogeneity derived from the different sequences/parametric

Pre-
Processing

T1 – Discover Invalid Co-
Registrations

T3 – Group Selection 
and Comparison

T4 – Homogeneity 
Analysis

T5 – Analysis of 
Radiomic Features

T2-Discover Incorrect 
Machine Learning Tumor 

Segmentations

Phase 1: Data Quality check

Phase 2: Search and Query

Figure 2: The RadEx workflow based on our task abstraction. The
flow is denoted by arrows consists of two phases. Phase One: Dis-
cover invalid co-registrations and segmentation masks. Phase Two
(Search and Query): When the data quality is ensured ,users are
able to search and query the whole cohort. The arrows depict that
there is no pre-defined ordering of the tasks: each task can be exe-
cuted in any order in the search and query section.

maps interactively would potentially be clinically useful. Brows-
ing through further homogeneity measurements over all available
imaging modalities and comparison of predictive value is interest-
ing for our collaborators.

T5–Analysis of Radiomics Features Radiomics feature genera-
tion is a promising way to generate characteristics which might fa-
cilitate a predictive value of specific clinical parameters. Experts
would like to have a look at individual parameters, but also at
the analysis of multiple combined parameters. They want to locate
specific combinations or single parameters to identify a predictive
value to previously defined groups, based on clinical parameters.

5. RadEx Workflow and Interface

Figure 2 illustrates the workflow of RadEx when analyzing un-
processed cohort data. The first two interactions with the appli-
cation ensure data quality for further analysis steps. Before an-
alyzing the data within RadEx, a pre-processing step is required
pre-calculating all slices per patient and tumor extent. The analysis
workflow within the RadEx application starts with co-registration
validation, followed by machine learning segmentation validation.
These two steps ensure the data quality and deliver valuable feed-
back to our collaborators to further improve the segmentation and
registration output. After this step, clinical researchers can analyze
the cohort data. They can focus on different aspects, for example,
browsing, exploring, or locating specific feature. Group selection is
performed as a first step, users can explore different homogeneity
measurements or radiomics feature combinations. If the users are
interested in specific characteristics, they can browse for possible
groupings. The number of patients currently included in our appli-
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ADC

VIBE

(a) Outliers in the co-registration view of the parallel coordinate plot in-
dicate misaligned volumes after co-registrations. If acquisitions are not
registered, segmentation output based on a single sequence will not be
correct for other sequences. This leads to unexpected derived values.

(b) The ADC map value is comparable between patients and therefore rou-
tinely measured in gynecological cancer cases. A correlation analysis to the
mean ADC value within the tumor segmentation could raise suspicion with
regards to segmentation accuracy.

Figure 3: Typical cases where co-registration (a) or tumor segmentation (b) failed. Finding these cases is not an easy task and browsing
through all patients would be very time-consuming. Therefore, the parallel coordinate plot in the co-registration view enables a quick search
for potential erroneous cases.

cation is already a high number for this type of studies, therefore we
chose our visualization techniques to cope with the given number
of patients.

5.1. Central Scatterplot View

The central scatterplot view presented in Figure 1 reveals the whole
cohort at a glance. This view plots a homogeneity measurement
against a one-dimensional t-SNE dimensionality reduction of se-
lected radiomics features allowing for an overview of the data.
Each patient is marked with a gray circle. According to Cleveland
et al. [CS87], three factors determine effective scatterplot design:
(1) the marks are designed with preattentive features in mind, (2)
the detection of individual objects is in focus, and (3) the distance
between the objects presents a notion of similarity. We use these
features to guide our scatterplot design. As shown in Figure 1, each
mark representing a single patient contains a small glyph repre-
senting the shape and the size of the tumor. We generate this small
image by finding the slice with the largest amount of tumor vox-
els and extract VIBE pixels within the segmentation mask. If the
tumor consists of multiple parts, these are still visible within the
circle. An example of these glyphs is shown in Figure 7. Hovering
over a glyph reveals a tooltip showing an image slice with the tumor
segmentation as a color overlay. The imaging modality as well as
the slice can be selected by the user. This gives the clinical experts
a direct relation to underlying imaging data and allows for a de-
tailed co-registration and segmentation validation. The tooltip view
presents details on demand by holding the Shift key while hovering
over a mark. In this detailed version of the tooltip, an overview over
all modalities is presented allowing the user to compare all seven
modalities (T1). Both tooltip versions are shown in Figure 4. The
tooltip is only shown on mouse hover over a glyph of interest rep-
resenting a single patient. At this point the user is interested in ex-
ploring data of this single patient, occlusion of other patient glyphs
is therefore less problematic. This method for tooltip display does
not introduce a visual focus change for the user and is therefore the

appropriate placing for it. By scrolling through the modalities or
by using the detailed tooltip version, a co-registration check and a
segmentation validation can be performed (T1-2).

Figure 4: Top: The simple tooltip reveals an image slice with seg-
mentation information as a color overlay. Bottom: The extended
tooltip visualizing all available modalities with tumor segmenta-
tion overlay and a red border around the selected modality.

A large amount of data and large marks in the scatterplot lead
to overplotting, which can be avoided by various methods. Marks
or position could be changed locally to reduce overplotting on de-
mand. We use a simple zoom and pan interaction because it is effi-
cient, and our collaborators are already familiar with these interac-
tions. The methods are also easy to understand and execute while
keeping the position of the dots in the scatterplot space static. We
also added an option to reset the zoom and pan to its original state
on demand.

Selection of the axes is crucial in scatterplots. As inhomogene-
ity is an essential but rather new measurement that is believed to
correlate with tumor aggressiveness, we display this on the x-axis
(T4). Following the description of Cleveland et al. [CS87] we use
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A B

Figure 5: A: t-SNE calcualation only taking size into account. B:
Both size and ADC_value_tumor_cons are taken into account in the
1D dimensionality reduction. Selecting large tumors and different
ADC value ranges for both groups indicate that the ADC value
in large tumors could correlate with aggressiveness. A pattern is
visible revealing in the scatterplot that patients are separated by
ADC value.

the x-axis to bring patients with a similar homogeneity closer to
each other to enable clustering. For the y-axis we aim to allow for
clustering patients according to similarity in the higher dimensional
feature space consisting of clinical parameters and radiomic tumor
features (T5). To this end, we display a 1D dimensionality reduc-
tion result using t-SNE [vH08]. During our development process
we also used a 1D principal component analysis (PCA) which de-
livered less convincing results. Therefore we chose t-SNE dimen-
sionality reduction for our specific scenario, but this choice might
not be the best option for other problem domains. Our scatterplot
layout delivers an overview of the interplay between imaging data
and clinical parameters for the purpose of radiomic tumor profil-
ing. One example is presented in Figure 3(a). In Figure 5A only
the size influences the t-SNE and in Figure 5B both size and the
ADC value of the tumor are considered. As the y values of the dots
change, different groupings are visible. In Figure 5A only size re-
lated clusters can be found while in Figure 5B the ADC value has
an influence and new clusters are present. This interactive dimen-
sionality reduction enables hypothesis generation relating imaging
and clinical parameters.

5.2. Parameter Overview

In addition to the imaging data represented in the central scatter-
plot view, clinical parameters are also a focal point in cohort analy-
sis. These parameters consist of numerical, ordinal, and categorical
data. Visualizing multiple data types together in one visualization
can cause problems, because not all data types are compatible with
all visualization idioms. Therefore, we opted for splitting these into
two different visual representation. For the numerical data, we em-
ploy a parallel coordinate plot and for the categorical and ordinal
data we use unit charts. As our tool was collaboratively developed
with domain experts, we received iterative feedback on their abil-
ity to understand and work with selected visualization techniques
during development.

Feature Dimension View A parallel coordinate plot (PCP) is an
effective tool to analyze correlations between different feature di-
mensions [ID90]. Every patient represents one line in the parallel
coordinate plot and each axis shows one feature dimension. The
decision which axes/dimensions to use in the PCP is very impor-
tant [ID90]. They serve as visual anchor and allow for use of ticks
and descriptions. The ordering is also important, because it is dif-
ficult to compare dimensions which are further apart in the plot.
Therefore, we decided to put specific axes next to each other where
the correlation serves a specific purpose, e.g., the size of the tu-
mor measured by the experts in the VIBE modality and the amount
of voxels derived from the tumor mask. If the correlation between
these two measurements is suspicious for certain patients, there
might be something wrong with the data (T2). The PCP dimen-
sions can also be selected for validation purposes specifically. If
the user is performing segmentation or registration validation, the
mean values of all modalities within the tumor are visualized. This
enables detection of outliers, which may be caused by a misaligned
segmentation mask (T1, T2).

Clinical Parameter View Unit charts are one of the simplest
visualization methods and have already been described by Neu-
rath in the early 1930’s [Neu36]. More recent work by Park et
al. [PDFE18] states that this type of visualization can provide infor-
mation that matches the user’s mental model and allows for novel
interactions. The unit chart representation is used for all categorical
and ordinal parameters. Each dot in each column of the visualiza-
tion represents exactly one patient. The color of each dot represents
the value of the parameter for that specific patient. In addition, we
use a tooltip to present imaging data when hovering with the mouse
over the marks. Missing values are at the bottom of the chart and
colored in dark gray. The other dots follow a quantitative grayscale
colormap. The values in the unit chart are ordered according to ex-
pected outcome severity, meaning that values that have a negative
influence on the outcome, e.g., life expectancy and suspected qual-
ity of life after treatment, are positioned on top of the chart (T3-5).

5.3. Settings and Interaction Techniques

Our application features a group selection feature where the user
can select two different groups (T3). User can select which group is
active and if selected patients should be combined using an ’AND’
or ’OR’ function. This allows for a detailed group selection. Using
the ’AND’ option, the user can select patients that, e.g., have mul-
tiple clinical parameters in common. In contrast, the ’OR’ connec-
tion allows for selecting patients that, have a large tumor and my-
ometrial invasion, but do not necessarily need to have both proper-
ties. The group selection interaction is supported across application
views. Selection operations can be performed in the scatterplot by
brushing with a rectangular selection box, in the PCP by selecting
along an axis, or in the clinical parameter view by clicking one of
the dots representing a specific value. Selections can be reset using
a clear function. The user is further able to change the x- and y-axis
properties. When changing the settings, the scatterplot updates with
an animation, to improve context preservation. This allows users to
locate parameter ranges to maximize selected target group separa-
tion. In the settings, the user is also able to change the modality
presented in the tooltip and to swap the PCP to the registration and
segmentation validation view.
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6. Implementation

Our web-based application is composed of modules. The main part
of the preprocessing, namely the data extraction and feature gen-
eration, is developed in Python. We use the PyRadiomics, a li-
brary developed by Gillies et al. [GKH16]. The library supports
first-order statistical features such as voxel-intensity histogram-
based features, e.g., the median, the standard deviation or the maxi-
mum and the minimum value. In addition, also second-order statis-
tics are supported. These include, for example, features based on
the gray level co-occurrence matrix or the gray level run length
matrix [GKH16]. We use the Visualization Toolkit from Kit-
ware [SKL06], to create the tumor icons and the tooltip informa-
tion for further analysis. Numpy [Oli06] is used for working with
the high dimensional radiomic tumor feature arrays and data han-
dling within Python. We handle csv data handling using the Python
library OpenCV [Bra00].

The web-based part of our application is implemented in
Javascript. The scatterplot and the parallel coordinate plot are
both implemented using D3 [BOH11]. Our implementation of the
unit chart visualization is based on the approach by Park et al.
[PDFE18]. For our dimensionality reduction, we use the t-SNE
implementation TSNEJS provided by Karpathy [Kar16], which is
based on the original work from van der Maaten [vH08].

7. Case Studies

The RadEx application is visible in Figure 1 and consists of multi-
ple components as described in the Section 5. To demonstrate the
utility of our application, we showcase its functionality in three
case studies, developed in close collaboration with our collabora-
tors. We identified three major areas of application for our tool,
namely the exploration of tumor characteristics, the co-registration
validation functionality, and the machine learning segmentation
check. Data of 330 patients is provided by two of our co-authors.
Before including them in the application 12 patients have been ex-
cluded because the co-registration did not work, due to imaging
quality problems. 97 patients were excluded because the machine
learning based segmentation mask was completely misplaced or
much too small. In the end 221 patients are included for further
analysis. For 92 patients a manual created segmentation mask is
available and for 129 patients a machine learning created segmen-
tation mask is used. For every patient seven MRI sequences created
by either a 1.5 Tesla or 3 Tesla MRI scanner, ten clinical parame-
ters, and five measures from radiologists are available.

7.1. Explorative Radiomic Tumor Profiling

Radiomic tumor profiling involves the calculation of high-
dimensional feature vectors that need to be analyzed to discover
tumor characteristics that are marker for possible outcome or to
evaluate existing ones. Typical use cases in tumor profiling include
homogeneity analysis of the imaging data and analyzing the asso-
ciation between various radiomics features with respect to different
clinical parameters. In our application clinical experts can select
two groups, one with low aggressiveness and one with higher ag-
gressiveness. Aggressiveness can be measured, e.g., by presence of
metastases or if the patient has already died from disease or had re-
currence. Also, the time between the surgical removal of the tumor
and a possible recurrence is an indicator for aggressiveness.

All modalities

Selected modalities

Figure 6: Textural tumor features include several homogeneity
measurements believed to correlate with tumor aggressiveness. We
support a selection of homogeneity measurements and combine up
to seven MRI sequences resulting in one measurement presented
on the x-axis. Changes in parameter selection result in animated
transitions.

During the exploration of different settings for the x-axis, the
group selection stays the same and gives a clear picture if the group
separation improves or not, Figure 6 reveals two possible group
separations using different x-axis values. Allowing the user to try
out different homogeneity measurements enables interactive explo-
ration and assessment of the differences between each of the mea-
sures for this patient cohort. While exploring different measures,
e.g., the homogeneity measurement based on the normalized in-
verse difference moment as described by Gillies et al. [GKH16],
we found a separation of a group of patients that features a low
aggressiveness while having a low homogeneity.

Preliminary exploration revealed that the derived textural homo-
geneity can separate patients with high-risk disease from these with
low-risk disease, demonstrating the usefulness of this tool for iden-
tification of imaging markers to be further explored. After select-
ing different feature combinations for dimensionality reduction, we
are able to find different patient clusters that have different distinc-
tive clinical parameters, such as for example the cluster shown in
Figure 6 in orange. This cluster features patients presenting with
large tumors, which is known to be associated with increased risk
of metastases and death from disease. This association is already
well known, and our application can show this link. The status for
these patients tells that they are either alive with active disease or
dead from disease. The presence of metastases which evolve from
the primary tumor is also an indicator for an aggressive tumor phe-
notype.

7.2. Registration Validation

Co-registration of multi-parametric images is an essential part of
the data processing step needed for our application. The result of
a successful co-registration is a set of perfectly aligned volumes.
When dealing with high number of patients where most of the co-
registration works well and which fails only in a small portion of
cases, it is important to support visualization of likely outliers or
error cases. To support such a filtering, the dimension selection vi-
sualized in the feature dimension view in the lower center of our
application can be used to support the registration check. When do-
ing so, the chart visualizes the median values of the tumor in each of
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the seven imaging parameters. This view allows for a quick check
of outliers in the graph which might highlight segmentation masks
that do not mask the tumor adequately due to misaligned volumes.
The segmentation is then also misaligned because the segmentation
mask is only available for one modality in our case. One example
for such an operation is shown in Figure 3(a), where outliers in the
ADC value range revealed potential errors in the co-registration.

7.3. Segmentation Validation

Tumor segmentation masks crated by machine learning algorithms
need to be validated by experts before using them in the data anal-
ysis step. Before validating all segmentation masks, experts could
first find outliers where the algorithm did a bad job and those could
be used to further improve the algorithm. There are multiple ways
to find these outliers. One way is to validate if the number of vox-
els in the tumor mask align with the size measured by the clinical
experts. Both parameters are present in the feature dimension view
in neighboring positions. Selecting a small number of voxels and a
larger size measured by the experts or vice versa points to potential
error cases. To validate if the segmentation is deficient, the user can
hover over highlighted glyphs in the scatterplot and slice through
the imaging volume. In the view presented in Figure 4, we use a
semi-transparent red overlay of the tumor segmentation mask on
top of the various imaging sequences. Another possibility to find
potential misaligned tumor segmentation masks is to select mea-
sured ADC mean values from our radiomics approach and compare
them to the representative ADC value measured by the clinical ex-
perts. The experts indicate one representative region within the

Figure 7: One possible measure to find incorrect segmentation
masks is the size, which in our case is measured in our case by ra-
diologists and our application pre-processing phase based on the
VIBE image and on the segmentation mask. These measures have a
natural correlation and unexpected relations might indicate incor-
rect segmentation.

tumor and one region in the healthy endometrium to compare these
throughout patients. If there is a major discrepancy, these cases
should be investigated more closely. One such case is shown in
Figures 3(a) and 3(b). A third method to inspect segmentation qual-
ity is to inspect the segmented tumor symbols in the scatterplot.
When selecting very large tumors and seeing very small symbols
on the scatterplot dots, it is an indication that the segmentation may
be incorrect. Similarly, any discrepancy between selected features
and visible segmentation symbols would lead to detection of ques-
tionable segmentation quality. Figure 7 reveals such a case. The
segmentation validation feature of our tool is of major interest for

the machine learning experts working on implementing automatic
segmentation algorithms since it allows for quick and intuitive val-
idation that spurs on further development of automated methods.
8. Evaluation

To further evaluate the utility of our interactive exploration and
analysis platform, we invited six gynecological cancer imaging re-
search experts to validate our tool. E1 is a professor in radiology
and expert in gynecologic and abdominal radiology. She has over
14 years experience in this field and is one of the co-authors on this
paper. E2 is a radiologist since 2006 and holds a medical doctors
degree. She is currently a PhD student in gynecological imaging,
has over 10 years of experience in MRI reading, and is a co-author
of the paper. E3 is a medical physicist in radiology and is a PhD
student in medical physics with over 13 years of experience. E4
holds a masters degree in cell biology since 2010 and a PhD in
neuro-oncology since 2015. E5 has 4 years of experience in pelvic
imaging and holds a medical doctors degree. E6 has 5 years ex-
perience in MRI reading of gynecological cancer, holds a medical
doctors degree, and is currently a PhD student.

In the beginning of the evaluation we demonstrated the appli-
cation to the experts worked through the different use cases. Our
application works with data provided by E1 and another co-author
which was not part of the evaluation. Afterwards, we invited them
to try out the tool themselves. During the evaluation we asked the
experts to discuss their experience and to talk about benefits and
disadvantages of the system compared to their current workflow.
After this phase, which took roughly 40 minutes we asked the ex-
perts to fill out a questionnaire with 34 questions discussion dif-
ferent aspects of our application. The questions are structured in
the following groups: general (G1-7), tumor visualization (V1-5),
group selection (S1-7), homogeneity (H1-5), dimensionality reduc-
tion (D1-5), and segmentation and co-registration validation (C1-
5). In addition to our evaluation form, the experts filled out the sys-
tem usability scale (SUS) provided by Brook et al. [Bro04]. All
statements are evaluated based on a 5-point Likert scale. We also
included negatively formulated questions.

8.1. Evaluation Results

The result of the evaluation is shown in Table 1. Questions marked
with a star have originally been negatively formulated and here we
present them in their positive form. The results for these questions
are also inverted. In general, the application got positive feedback
overall. All experts would like to contribute to the future develop-
ment of the application and 5 out of 6 experts would like to use
the application in the future. The tumor icons and tooltips received
overall a good feedback. One expert (E2) mentioned that the tooltip
pictures could be enlarged. E3 mentioned that the size of the tumor
icons made it difficult to perceive shape, however, other participants
agree that shape is also visible in our design. E5 also mentioned that
the size of the tumor icons makes it difficult to compare based on
icons alone.

All experts are in favor of the group selection. All questions,
except one have an average value of at least 4,5. Only selecting
specific properties in the Unit Chart or clinical parameter view has
a value of 4,33. Regarding this point, we received the feedback that
the dots used in the chart are challenging to click on. The homo-
geneity view also received strongly positive feedback overall. E3
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Table 1: Response of the experts on a 5-point Liker scale. The meaning of the values on the scale are: 1: strongly disagree, 2: disagree, 3:
neither agree nor disagree, 4: agree and 5: strongly agree. Statements marked with a star were rephrased to present the positive form in this
table and the scores have been inverted. On the right end of the table the average value over all experts is presented and in the last row the
result of the system usability scale questionnaire is presented. 1paper co-authors.

Statements: E11 E21 E3 E4 E5 E6 Avg.
G1 The linked interactions between the scatterplot and the parallel coordinate plot are well established and intuitive 4 5 5 5 5 4 4,67
G2 The linked interactions between the scatterplot and the unit chart are well established and intuitive* 5 5 5 5 5 4 4,83
G3 The selection interactions between the unit chart and the parallel coordinate plot are well established and intuitive 5 5 5 5 5 4 4,83
G4 I see myself using RadEx in the future 3 5 5 4 5 4 4,33
G5 I would like to contribute in the future development of the application* 5 5 5 5 5 5 5,00
G6 I would like to use RadEx for exploring clinical cohort data 4 5 5 5 5 4 4,67
G7 The export funcionality helps me to further analyze the group selections in my statistics tool of choice* 4 5 5 5 4 4 4,50
V1 The small tumor icon enables a quick comparison between the tumors of different patients 5 4 4 5 2 4 4,00
V2 The tumor icons give me more information than only the size of it* 5 4 2 5 3 4 3,83
V3 The tooltip allows me to analyze the imaging data and the tumor segmentation* 5 3 5 4 5 4 4,33
V4 The extended tooltip is helpful to validate the tumor segmentation 5 3 5 4 5 4 4,33
V5 The extended tooltip is helpful to validate the co-registration* 5 3 5 5 4 4 4,33
S1 The group selection in the scatterplot view is easy to understand and to carry out 5 5 5 5 4 5 4,83
S2 I can select specific patients an add them to an existing group in the scatterplot* 5 5 5 4 5 5 4,83
S3 Selecting specific properties in the Unit chart view is easy to understand and to carry out 4 5 5 4 4 4 4,33
S4 I can select patients having specific states in different clinical parameters* 5 5 5 5 5 4 4,83
S5 Specifying a patient group including multiple clinical parameter manifestations is easy 5 4 5 5 5 4 4,67
S6 Selecting a group in the parallel coordinate plot is easy to understand and carry out* 4 4 5 5 5 4 4,50
S7 The applications makes it easy to select two different groups 5 4 5 5 4 4 4,50
H1 The homogeneity imaging modality selection in combination with the group selection helps me to identify important modalities* 5 4 2 4 4 4 3,83
H2 Trying different homogeneity measurements is easy and fast* 4 5 5 5 5 4 4,67
H3 The animation of the data when changing settings helps me to track the changes 5 5 4 5 5 4 4,67
H4 Havin the important measure homogeneity on the x-Axis of the scatterplot makes interpretation of the visualization easy 4 4 4 5 4 4 4,17
H5 I can imagine using this application to formulate hypothesis for future studies about homogeneity* 5 5 4 5 4 5 4,67
D1 The y-Axis in the scatterplot shows me interesting clusters of patients 5 4 5 5 5 4 4,67
D2 The dimensionality reduction allows me to analyze multiple clinical parameters* 5 5 5 5 5 4 4,83
D3 The selection of dimensions taking into account for the y-Axis allows me to explore my clinical data* 5 5 5 5 5 4 4,83
D4 I can imagine using this application to formulate hypothesis for future studies 4 5 5 5 4 4 4,50
D5 Exploring patients that are clustered by the t-SNE is interesting and potentially valuable for further investigation* 5 5 5 4 5 4 4,67
C1 I can select machine learning performed segmentations and validate their correctness 5 1 5 5 4 4 4,00
C2 Selecting potentially wrong segmentations is possible 5 3 5 4 4 4 4,17
C3 Exporting wrongly segmented patients is possible* 5 3 5 5 5 4 4,50
C4 The co-registration view enables me to spot potential wrong co-registrations* 4 5 5 5 4 4 4,50
C5 The tooltip view helps me to validate segmentations and co-registration results 5 3 5 5 4 4 4,33

SUS System usability scale result 75,00 90,00 92,50 95,00 87,50 77,50 86,25

mentioned that it is difficult to prove if a modality is important or
not and mentioned that the question is formulated too narrowly.
However, she is still in favor of the functionality. Our dimensional
reduction got the most positive feedback with all average values
over 4,5. All experts could imagine using the 1D dimensionality
reduction to analyze the cohort data to spot potential groupings of
patients. The co-registration and segmentation validation also re-
ceived positive feedback overall. One expert (E2) mentioned that
the tooltip images could be larger to make the validation easier.
Another possibility for a more detailed validation could be to use
a second screen to show the imaging data of specific patients in a
view more like what radiologists are used to (E2, E4-6).

System Usability Scale Scores Our SUS scores are presented at
the end of the evaluation result Table 1. The results range from
77,5 to 95. In average our application reached a SUS score of 86,2.
Bangor et al. [BKM09], introduced different ways of interpreting
SUS scores including the acceptability range, a grade scale (like
in education), and an adjective rating scale. Our acceptance rate is:
Acceptable (best score), grade scale: A (best score), and an adjec-
tive rating of Excellent (best score).

8.2. Evaluation Conclusion

We conclude from our results that our application is valuable for
experts in gynecological cancer imaging research. All statement
groups received positive feedback and the experts think the fea-
tures are useful. E1 already thinks about using our application in
a research setup to further evaluate machine learning-based seg-
mentation masks and to train radiologists to perform segmentations
and compare them to segmentation masks created by experts. E4
can also imagine using the application to validate results with new

imaging series and E6 would like to use the application for his co-
hort data. Overall, we can say that the application has substantial
potential in gynecological cancer imaging research.

9. Discussion

Experimental group selections performed in our application re-
vealed that there is potential in further analysis of different homo-
geneity measures to separate patients with high-risk disease from
those with low risk. Our application is also able to show well known
coherence patterns, e.g., between the size of the tumor and clinical
phenotype. This shows us that there is a potential to influence fu-
ture analysis steps in gynecological cancer research and that our
application may have an impact in the targeted domain.

For the group comparison we do not offer a feature that deter-
mines statistical significance values to prevent p-value significance
fishing. Any hypothesis formulated using our application should be
validated using an independent study cohort. After performing seg-
mentation validation with our tool, we were able to spot tumor seg-
mentation masks that did not meet the acceptance criteria, e.g., due
to the presence of multiple tumors within the same region. The co-
registration validation also highlights cases which would not have
been suspicious at first sight. The involved machine learning expert
therefore also sees potential in working with our application to fur-
ther refine his machine learning algorithms to deliver even better
results. The 1D dimensionality reduction is in the current version
only supported by t-SNE but could also be performed using other
dimensionality reduction methods such as PCA.

10. Conclusion and Future Work

We present RadEx, an interactive analysis platform and workflow
for medical researchers which supports integrated exploration of ra-
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diomics and clinical features. By using multiple linked views, inter-
active group selection methods and custom feature selections, we
empower researchers to explore new and validate existing tumor
biomarkers. Close collaboration with gynecological cancer imag-
ing and machine learning research experts resulted in several case
studies for our application. The benefits brought by our work range
from validation of machine learning results to validating and ex-
ploring new tumor characteristics. Being able to selectively include
and exclude different sequences from the radiomic tumor explo-
ration makes the analysis transparent and intuitive for the medical
researchers. Our experimental findings of different patient groups
allowed visualization of e.g. well-established association between
large tumor size and high-risk disease but also showed potentially
interesting new associations. The evaluation of our application re-
vealed a positive response from the target audience reflected both
by the qualitative evaluation and SUS score.

Potential future developments include adding an intuitive way
to perform a landmark based registration. This could help to eas-
ily correct the registration for patients where the automatic co-
registration fails. In addition, we plan to widen the scope of the
application to different tumor types including cervical cancer. The
goal of our efforts is that every single patient should benefit from
the findings from cohort analysis to get one step further in the di-
rection of personalized medicine.
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