
Chapter 21
Visualization in Connectomics
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Abstract Connectomics is a branch of neuroscience that attempts to create a
connectome, i.e., a complete map of the neuronal system and all connections between
neuronal structures. This representation can be used to understand how functional
brain states emerge from their underlying anatomical structures and how dysfunction
and neuronal diseases arise. We review the current state-of-the-art of visualization
and image processing techniques in the field of connectomics and describe a number
of challenges. After a brief summary of the biological background and an overview
of relevant imaging modalities, we review current techniques to extract connectivity
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information from image data at macro-, meso- and microscales. We also discuss data
integration and neural network modeling, as well as the visualization, analysis and
comparison of brain networks.

21.1 Introduction

Connectomics is a field of neuroscience that analyzes neuronal connections. A
connectome is a complete map of a neuronal system, comprising all neuronal con-
nections between its structures. The term ‘connectome’ is close to the word ‘genome’
and implies completeness of all neuronal connections, in the same way as a genome is
a complete listing of all nucleotide sequences. The goal of connectomics is to create
a complete representation of the brain’s wiring. Such a representation is believed to
increase our understanding of how functional brain states emerge from their under-
lying anatomical structure [89]. Furthermore, it can provide important information
for the cure of neuronal dysfunctions like schizophrenia or autism [83].

Different types of connectivity can be distinguished. Structural or anatomical
connectivity usually refers to the “wiring diagram” of physical connections between
neural elements. These anatomical connections range in scale from those of local
circuits of single cells to large-scale networks of interregional pathways [87]. Func-
tional connectivity is defined as “the temporal correlation between spatially remote
neurophysiological events” [32]. This can be seen as a statistical property; it does
not necessarily imply direct anatomical connections. Finally, effective connectivity
concerns causal interactions between distinct units within a nervous system [32].

Sporns et al. [89] differentiate between macro-, meso- and microscale connec-
tomes. At the macroscale, a whole brain can be imaged and divided into anatomically
distinct areas that maintain specific patterns of interconnectivity. Spatial resolution
at the macroscale is typically in the range of millimeters. One order of magnitude
smaller is the mesoscale connectome that describes connectivity in the range of
micrometers. At this scale, local neuronal circuits, e.g., cortical columns, can be dis-
tinguished. At the finest microscale, the connectome involves mapping single neu-
ronal cells and their connectivity patterns. Ultimately, connectomes from all scales
should be merged into one hierarchical representation [89].

Independently of the scale, the connectivity can be represented as a brain graph
G(N ;E) with nodes N and weighted edges E representing anatomical entities and
the degree of structural or functional interactions, respectively. Associated to each
abstract graph is a graph in real space that connects real anatomical entities. Neural
systems can be investigated by analyzing topological and geometrical properties of
these graphs and by comparing them. An equivalent way of representing an undi-
rected or directed brain graph is a connectivity or association matrix C , whose entries
ci j represent the degrees of interactions. Thresholding and sometimes also binarizing
them reveals the essential interactions. A spatial connectivity graph can be depicted
in real space, showing the actual physical structure of the neural system. A connec-
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tion matrix is usually visualized using a color-coded matrix view. For more details
and examples see, e.g., the recent reviews [12, 30].

In contrast to genomics, the field of connectomics is to a large extent based on
image data. Therefore, visualization of image data can directly support the analysis
of brain structures and their structural or functional connections.

In this chapter, we review the current state-of-the-art in visualization and image
processing techniques in the field of connectomics and describe some remain-
ing challenges. After presenting some biological background in Sect. 21.2 and an
overview of relevant imaging modalities in Sect. 21.3, we review current techniques
to extract connectivity information from image data at macro-, meso- and microscale
in Sects. 21.4–21.6. Section 21.7 focuses on integration of anatomical connectivity
data. The last section discusses visually supported analysis of brain networks.

21.2 Biological Background

Neural systems. Functionally, neurons (or nerve cells) are the elementary signaling
units of the nervous system, including the brain. Each neuron is composed of a cell
body (soma), multiple dendritic branches and one axonal tree, which receive input
from and transfer output towards other neurons, respectively. This transfer is either
chemical (synapses) or electrical (gap junctions). Generally, during synaptic trans-
mission, vesicles containing neurotransmitter molecules are released from terminals
(boutons) on the axon of the presynaptic neuron, diffuse across the synaptic cleft,
and are bound by receptors on dendritic spines of the postsynaptic neuron, inducing
a voltage change, i.e., a signal.

These basic building blocks can mediate complex behavior, as potentially large
numbers of them are interconnected to form local and long-range neural microcir-
cuits. At the meso-level, local neuron populations, e.g., cortical minicolumns, can
be identified that act as elementary processing units. At the macroscale, neurons in
the human cortex are arranged in a number of anatomically distinct areas, connected
by interregional pathways called tracts [89].

Model systems. An important neuroscientific goal is to understand how the human
brain works. However, due to its complexity (with an estimated 1011 neurons with
1015 connections [89]), brain function at the circuit or cellular level is often studied
in other organisms that are more amenable in complexity and size.

Conserved genes and pathways between different species offer the potential
of elucidating the mechanisms that affect complex human traits based on similar
processes in other organisms. This problem is particularly tractable in the round-
worm Caenorhabditis elegans, whose brain with 302 neurons has been completely
mapped [106], or in insects. In these organisms brain structure and function can be
studied at the level of single identifiable neurons. Classical insect model organisms
that are well understood and allow easy genetic manipulations are the fruit fly
Drosophila melanogaster and the honeybee. Drosophila, for example, has been
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shown to be an experimentally amenable model system even for the study of such
quintessential human physiological traits as alcoholism, drug abuse, and sleep [63].

Rodents, being mammals, have a brain structure that is similar but much smaller
than the human brain, and that therefore can be used to study cortical networks.
The mouse brain is an attractive model system to study, for example, the visual
system, due to the abundant availability of genetic tools allowing monitoring and
manipulating certain cell types or circuits [38]. The whisker-barrel pathway of the
rat is a relatively small and segregated circuit that is amenable to studying sensory
information processing at the molecular/synaptic, cell, and circuit/region levels.

21.3 Imaging Modalities Employed in Connectomics

We now provide an overview of imaging modalities that are used in obtaining connec-
tivity information. They differ in the spatial and temporal resolution at which connec-
tivity is captured. At the macroscale there is a wide range of structural and functional
imaging modalities, with applications in medical settings and anatomical research.
Functional imaging modalities include electroencephalography (EEG), magnetoen-
cephalography (MEG), functional magnetic resonance imaging (fMRI), and positron
emission tomography (PET). Modalities such as single-photon emission computed
tomography (SPECT) and magnetic resonance imaging (MRI) provide structural
information on the macroscale. Section 21.4 gives a detailed introduction to the rel-
evant modalities in the context of connectomics. At the mesoscale, light microscopy
(LM) techniques provide sufficient resolution to image single neurons. Most light
microscopy techniques focus on structural imaging. Techniques such as wide-field
fluorescence microscopy allow for the imaging of living cells, and computational
optical sectioning microscopy techniques [17] enable non-destructive acquisition
of 3D data sets. Section 21.5 provides further details about light microscopy tech-
niques. At the microscale, the sufficient resolution is offered by electron microscopy
techniques (EM) such as Transmission Electron Microscopy (TEM) and Scanning
Electron Microscopy (SEM). These methods require technically complex speci-
men preparation and are not applicable to live cell imaging. Imaging of 3D vol-
umes requires ultra-thin sectioning of the brain tissue followed by computational
realignment of the acquired images into one image volume [46]. More information
about electron microscopy in the connectomics setting can be found in Sect. 21.6.
Figure 21.1 provides an overview of the different imaging modalities and their spatial
and temporal resolution.

21.4 Macroscale Connectivity

First, we discuss the main acquisition techniques for revealing macroscopic func-
tional and structural connectivity. We start with MEG and EEG, as these were used
for functional connectivity before fMRI, then diffusion-weighted MRI for structural
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Fig. 21.1 Different brain imaging modalities and their spatial and temporal resolutions. For con-
nectomics, light-(LM) and electron microscopy (EM) are mostly performed in vitro. The color
indicates functional versus structural information in the acquired data

connectivity, and finally fMRI for functional connectivity. Besides the visualization
approaches discussed here, the reader is also referred to Sect. 21.8 for more detail
on network analysis and comparative visualization techniques.

21.4.1 EEG and MEG

Developed in the 1920s, electroencephalography (EEG) is the oldest noninvasive
functional neuroimaging technique, which records electrical brain activity from elec-
trodes on the scalp. Nowadays, the number of electrodes can be as large as 128 or
even 512; in that case one speaks of multichannel or high-density EEG [81, 93].
By contrast, magnetoencephalography (MEG) measures magnetic fields outside the
head induced by electrical brain activity [35]. The temporal frequency of these sig-
nals ranges from less than 1 Hz to over 100 Hz. The spatial resolution is lower than
that of fMRI. Sometimes, MEG is preferred over EEG because the electrical signals
measured by EEG depend on the conduction through different tissues (e.g., skull and
skin). However, EEG has much lower costs and higher equipment transportability
than MEG (and fMRI). Moreover, EEG allows participants more freedom to move
than MEG and fMRI. In Sect. 21.8 we will discuss the use of EEG to discover func-
tional brain networks. Therefore, we will focus on EEG for the remainder of this
section.

Electrical potentials generated within the brain can be measured with electrodes
at the scalp during an EEG recording. The measured EEG signals reflect rhythmical
activity varying with brain state. Specific brain responses can be elicited by the pre-
sentation of external stimuli. For EEG analysis, one often studies activity in various
frequency bands, such as alpha, beta, theta or delta bands. As a result of volume con-
duction, an electrical current flows from the generator in the brain through different
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tissues (e.g., brain, skull, skin) to a recording electrode on the scalp. The measured
EEG is mainly generated by neuronal (inhibitory and excitatory) postsynaptic poten-
tials and burst firing in the cerebral cortex. Measured potentials depend on the source
intensity, its distance from the electrodes, and on the conductive properties of the
tissues between the source and the recording electrode.

Several visualization methods are applied to assist in the interpretation of the
EEG [93]. In a conventional EEG visualization, the time-varying EEG data are rep-
resented by one time series per electrode, displaying the measured potential as a
function of time. Synchronous activity between brain regions is associated with a
functional relationship between those regions. EEG coherence, calculated between
pairs of electrode signals as a function of frequency, is a measure for this synchrony.
A common visualization of EEG coherence is a graph layout. In the case of EEG,
graph vertices (drawn as dots) represent electrodes and graph edges (drawn as lines
between dots) represent similarities between pairs of electrode signals. Traditional
visual representations are, however, not tailored for multichannel EEG, leading to
cluttered representations. Solutions to this problem are discussed in Sect. 21.8.

21.4.2 MRI

In magnetic resonance imaging, or MRI, unpaired protons, mostly in hydrogen atoms,
precess at a frequency related to the strength of the magnetic field applied by the
scanner. When a radio-frequency pulse with that specific frequency is applied, the
protons resonate, temporarily changing their precession angle. They eventually regain
their default precession angle, an occurrence that is measured by the scanner as
an electromagnetic signal. By applying magnetic field gradients throughout three-
dimensional space, protons at different positions will precess and hence resonate at
different frequencies, enabling MRI to generate volume data describing the subject
being scanned.

21.4.2.1 Diffusion-Weighted Imaging

Water molecules at any temperature above absolute zero undergo Brownian motion
or molecular diffusion [23]. In free water, this motion is completely random, and
water molecules move with equal probability in all directions. In the presence of
constraining structures such as the axons connecting neurons together, water mole-
cules move more often in the same direction than they do across these structures.
When such a molecule moves, the two precessing protons its hydrogen nucleus con-
tains move as well. When this motion occurs in the same direction as the diffusion
gradient q (an extra magnetic field gradient that is applied during scanning) of a
diffusion-weighted MRI scan, the detected signal from that position is weakened.
By applying diffusion gradients in a number of different directions, a dataset can be



21 Visualization in Connectomics

built up showing the 3D water diffusion at all points in the volume, which in turn is
related to the directed structures running through those points.

Diffusion tensor imaging. When at least six directions are acquired, a 3 × 3 sym-
metric diffusion tensor can be derived, in which case the modality is described as
Diffusion Tensor Imaging (DTI). Per voxel DTI, often visualized with an ellipsoid,
is not able to represent more than one major diffusion direction through a voxel.
If two or more neural fibers were to cross, normal single tensor DTI would show
either planar or more spherical diffusion at that point. The left image of Fig. 21.2
shows a 3-D subset of such a dataset, where each tensor has been represented with
a superquadric glyph [50].

DTI visualization techniques can be grouped into the following three classes [102]:
Scalar metrics reduce the multi-valued tensor data to one or more scalar values such
as fractional anisotropy (FA), a measure of anisotropy based on the eigenvalues of the
tensor, and then display the reduced data using traditional techniques, for example
multi-planar reformation (slicing) or volume rendering. An often-used technique is
to map the FA to intensity and the direction of the principal tensor eigenvector to
color and then display these on a slice. Multiple anisotropy indices can also be used
to define a transfer function for volume rendering, which is then able to represent
the anisotropy and shape of the diffusion tensors [49].

Glyphs can be used to represent diffusion tensors without reducing the dimen-
sionality of the tensor. In its simplest form, the eigensystem of the tensor is mapped
directly to an ellipsoid. More information can be visually represented by mapping
diffusion tensors to superquadrics [50] (see Fig. 21.2).

Vector- and tensor-field visualization techniques visualize global information of
the field. The best known is probably fiber tractography, where lines are reconstructed
that follow the tensor data in some way and hence are related to the major directions
of neural fibers. In its simplest form, streamlines, tangent to the principal eigenvec-

Fig. 21.2 On the left, superquadric glyphs have been used to represent the diffusion tensors in a
3-D region of a brain dataset (image courtesy of Gordon Kindlmann, University of Chicago). On
the right, the cingulum neural fiber bundle has been highlighted in a full-brain tractography [8]
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tors of the diffusion tensors, are extracted and displayed [2]. Care must to be taken
to terminate the streamlines in areas of isotropic or planar diffusion. Hyperstream-
lines take into account more of the tensor information [109]. Many tractography
approaches require one or more regions of interest to be selected before tracts can
be seeded starting only from those regions, while more recent efforts allow for full-
brain fiber tracking followed by more intuitive interactive selection within the brain’s
tracked fiber bundles [8, 85] (see the right image in Fig. 21.2 for an example). For a
simplified visual representation, the envelopes of clustered streamline bundles can be
shown [25], or illustrative techniques such as depth-dependent halos can be used [26].
With probabilistic tractography, local probability density functions of diffusion or
connectivity are estimated and can in turn be used to estimate the global connectivity,
that is, the probability that two points in the brain are structurally connected [4]. This
type of data is arguably a higher fidelity representation of structural connectivity.
Connectivity between two points can be visualized with, e.g., constant-probability
isosurfaces, with direct volume rendering of the probability field, or using topolog-
ical methods from flow visualization [82]. Calculating and effectively visualizing a
full-brain probabilistic tractography would be challenging.

DSI and HARDI. As explained above, DTI is not able to capture more than one
principal direction per sample point. In order to reconstruct the full diffusion proba-
bility density function (PDF), that is, the function describing the probability of water
diffusion from each voxel to all possible displacements in the volume, about 500
or more diffusion-weighted MRI volumes need to be acquired successively. This is
called diffusion spectrum imaging or DSI [34] and is the canonical way of acquir-
ing the complete 3-D water diffusion behavior. However, the time and processing
required to perform full DSI complicate its use in research and practice.

In High Angular Resolution Diffusion Imaging, or HARDI, 40 or more direc-
tions are typically acquired in order to sample the 3-D diffusion profile around every
point [95]. Based on such data, multiple diffusion tensors can be fit to the data [95],
higher order tensors can be used [69], or a model-free method such as Q-Ball imag-
ing [96] can be applied. Q-Ball yields as output an orientation distribution function,
or ODF. The ODF is related to the diffusion PDF in that it describes for each direction
the sum of the PDF values in that direction. It can be visualized as a deformed sphere
whose radii represent the amount of diffusion in the respective direction.

HARDI visualization follows much the same lines as DTI visualization, except
that the data are more complex. Analogous to DTI, HARDI scalar metrics, such as
generalized (fractional) anisotropy and fractional multifiber index, can be used to
reduce the data to one or more scalar values that can be visualized with traditional
techniques. Multiple diffusion tensors can be represented as glyphs, or the diffusion
ODF can be directly represented using a tessellated icosahedron or by raycasting
the spherical harmonics describing the ODF [70]. This results in a field of complex
glyphs representing at each point the diffusion profile at that position. In contrast to
DTI glyph techniques, regions of crossing fibers can in general be identified.

Although there are fewer examples, especially in the visualization literature,
(probabilistic) fiber tracking can be performed based on HARDI data [72]. More



21 Visualization in Connectomics

recently, HARDI glyphs have been combined dynamically with DTI glyphs and
fiber tracts based on local data characteristics [73].

21.4.3 Functional MRI

Blood-oxygen-level dependence, or BOLD, is a special type of MRI that is able to
measure increased levels of blood oxygenation [67]. Due to requiring more glucose
from the bloodstream, active neurons cause higher blood oxygenation in nearby
veins. Based on this principle, functional MRI, or fMRI, uses BOLD to image time-
dependent 3-D neural activity in the brain [68].

fMRI can also be used to derive functional or effective connectivity in the
brain. Functional connectivity is determined by calculating the temporal correla-
tions between the fMRI signals originating from different parts of the brain [32].
This is done either whilst the subject performs a specific task, in order to assess
how the brain network is applied during that task, or during resting state, in order to
derive the baseline functional brain network. Connectivity data can be determined
between a specific seed region or voxel and one or more other regions or voxels, or
exhaustively between all regions or voxels in the brain.

Effective connectivity, defined as the causal influence one neuronal system exerts
over another, is dependent on a model of the connectivity between the participating
regions. For example, the signal at one position could be expressed as the weighted
sum of the signals elsewhere [32]. If the model is invalid, the effective connectivity
derived from fMRI is also invalid.

Visualization of fMRI-derived connectivity information is quite varied, often
combining techniques from scientific and information visualization. Scatter plots
have been used to plot correlation strength over distance, dendrograms and multi-
dimensional scaling to represent correlations between regions in 2D [80], matrix
bitmaps to represent region-wise correlation matrices [28], 2-D and 3-D
(pseudo-) anatomical node-link diagrams to show the derived brain networks [107],
and coupled-view visual analysis techniques to explore resting state fMRI data [99].
When connectivity is determined between all pairs of voxels in the cortex, visual-
ization and knowledge extraction pose perceptual and computational challenges that
have not yet been fully explored.

21.5 Mesoscale Connectivity

Light microscopy was the first modality that allowed for imaging of single neuronal
cells. While the resolution of a light microscope is not sufficient to resolve synapses,
it allows for the identification of major cell parts, such as dendrites, somas, axons, and
also boutons as possible locations for synaptic connections. Imaging whole neuronal
cells and analyzing their geometry enables neuroanatomists to identify different types
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of cells and to come to conclusions about their function. Following the motto “the
gain in the brain lies mainly in the stain” [1], the three following main techniques
are employed to map neuronal circuits with light microscopy [60].

Single-cell staining by dye impregnation. This is the oldest staining method and
it laid the foundation for modern neuroscience. As neuronal tissue is densely packed
with cells, a complete staining of the whole sample would not allow one to dis-
criminate single cells in light microscopy images. Instead, the so-called Golgi stain
enables stochastic marking of just a few individual nerve cells. The stained cells
appear dark in the light microscopy images, discriminating them from a bright back-
ground formed by the unstained tissue. This staining method, combined with the
ability of the light microscope to focus on different depth of the sample, allows for
3D imaging of the cell geometry. The famous neuroscientist Cajal (1852–1934) was
able to identify different types of neurons and also describe connectivity patterns and
principles of neuronal circuit organization using Golgi’s method [60].

Diffusion or transport staining. Diffusion staining techniques enable biologists
to analyze the projective trajectory of brain regions. For this technique, different
staining markers are injected into different regions of the brain in vivo. The staining
is then diffused along the connected neurons. Finally, a sample of brain tissue is
extracted from a different region, in which no marker has been injected. The color
code in the staining of different neurons in this area then reveals the projection of
these neurons back to the initial staining areas, providing information about long-
distance connectivity [33]. The range of possible colors for this method is limited to
three or four different stainings.

Multicolor or brainbow. This staining technique does not involve application or
injection of staining to brain tissue. Instead, transgenic mice are bred to produce
photophysical fluorescent proteins. A confocal laser-scanning microscope activates
the fluorescent proteins with a laser beam and records an image with the expressed
light. Brainbow mice are bred to express three fluorescent proteins of different colors.
By different stochastic expression of these three colors, the single neurons of the mice
are colored with one out of >100 labels. The main advantage of this method is that
it allows one to uniquely identify dendrites and axons belonging to the same neuron
in densely colored tissue [60], see also Fig. 21.3.

All of these three staining methods allow imaging the geometry of neurons at
the micrometer scale. The different staining protocols all aim at visually separating
single neurons out of the complex and dense neuronal tissue. Visualization tech-
niques for connectomics need to enhance the visual separation further, e.g., by
providing contrast enhancement and enabling flexible mappings of image data to
varying amounts of transparency in the transfer function [51]. Especially for the
brainbow staining it is useful to have visual enhancement of color differences in
regions of interest where two neurons with a similar staining combination need to
be distinguished. For diffusion staining this problem is less pronounced than for
brainbow data, as typically only three to four easily distinguishable colors are used.
But this also leads to the challenge of distinguishing two neighboring cells that are
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Fig. 21.3 Brainbow image of
mouse cerebral cortex tissue.
The different color stainings
facilitate the differentiation of
neuronal cells. Image
courtesy of Jean Livet and
Jeff Lichtman

stained with the same color. This problem also arises in the Golgi stain, as only one
color is applicable for this staining. Thus, visualization needs to focus on providing
a good impression of the neurons’ geometry. The user needs to be able to access
the three-dimensional structure on different scale levels to infer the connectivity of
dendritic parts and axons. In order to analyze the neuron geometry further, dendritic
and axonal trees have to be identified and segmented. This task is typically performed
either semi-automatically or fully automatically with a final proof-reading step [97].

An additional major challenge for the visualization of microscopy data sets in the
field of connectomics is the large data volume required to analyze the geometry of
full neurons. Microscopes typically only record regions of interest at the required
resolution. Afterwards the acquired images or image stacks need to be stitched into
one large data volume. While this problem is well known and automatic methods
for image stitching and alignment exist [24, 74], these tools typically work offline,
assembling all images into one large image file for later visualization. But with
image volumes in the gigapixel range this method is no longer applicable. Instead,
visualization tools are required to perform operations like image stitching, alignment,
contrast enhancement, and denoising on-demand in the region of interest shown to
the user. To allow for interactive visualization, these operations do not only need to
be executed fast, but also on multiple scales, allowing the user to zoom in and out of
the displayed data volume. Recent work by Jeong et al. [41] provides this demand-
driven visualization approach and combines it with a client server architecture. The
client can visualize the data with user interaction and annotation while computations
are performed on a high-performance server transparently to the user. Multiple client
instances can connect to the same server to allow multiple users to access the data at
the same time and cooperatively work on the same data set.
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21.6 Microscale Connectivity

In contrast to light microscopy, which is limited in its resolution by the wavelength
of light, electron microscopy enables imaging of neuronal tissue at the nanometer
scale. Hence, electron microscopy is the only imaging modality so far that can resolve
single synapses. However, the sample preparation and image acquisition in electron
microscopy is labor-intensive and time-consuming. As a consequence, the analysis
of the connectivity between single neurons has been limited to sparse analysis of sta-
tistical properties such as average synapse densities in different brain regions [20].
Little is known about the complete connectivity between single neurons. Information
about the individual strength of synapses or the number of connections between two
cells can have important implications for computational neuroanatomy and theoret-
ical analysis of neuronal networks [98].

Recently, significant progress has been made in the automation of ultra-thin serial
sectioning [36] and automatic image acquisition [21, 52]. These techniques allow
neuroanatomists to acquire large datasets of multiple terabytes (TB) in size. With a
resolution of 5 nm per pixel, and a section thickness of 50 nm, one cubic millimeter of
brain tissue requires imaging of 20,000 sections with 40 gigapixels per image, leading
to an image volume of 800 TB. With data sets of this size new challenges emerge
for automatic computed analysis and visualization techniques. Important processing
tasks include demand-driven image stitching and alignment, cell segmentation and
3D reconstruction, as well as multi-scale visualization and multi-user interaction via
client server architectures.

Electron microscopy samples are typically densely stained. While in light
microscopy sparse staining is necessary to visually separate a cell of interest
from unstained background tissue (see Sect. 21.5), the fine resolution of electron
microscopy allows one to discriminate structures according to shape, size, and tex-
ture. Electron microscopy images are limited to gray scale and typically do not have
a uniform background. Instead, the background is noisy and highly variable, which
imposes an important challenge for the visualization of electron microscopy image
stacks. The image data cannot be visualized according to gray values alone, as the
densely stained tissue forms a nearly solid block. Instead, higher order features that
discriminate texture and shape, e.g., gradient histograms, are necessary to enhance
the visibility of different structures of interest in the visualization [42]. Ultimately,
full segmentation of the image data is necessary to allow the user visual inspection
of different biological structures, from small structures such as vesicles or mitochon-
dria to entire neuronal cells. Figure 21.4 shows example reconstructions of different
neuronal structures from electron microscopy images. A number of software pack-
ages have been developed to aid the user in manual segmentation of cell structures
in the images [14, 29, 37]. More recent semi-automatic methods greatly facilitate
this time-intensive process [16, 76, 77, 91].

Progress has also been made on fully automatic segmentation of EM brain images
[39, 44, 47, 48, 101, 103]. However, all methods developed so far require manual
interaction and inspection by users. Thus, visualization tools should not only provide
the ability to inspect the original EM data and the computed segmentations, but also
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Fig. 21.4 Three dimensional reconstructions of neuronal structures from electron microscopy data.
Left three dendrites (colored) and all intervening axons (transparent), right different axons (colored)
with vesicle filled boutons (yellow)

provide a user interface to detect and correct segmentation errors, a process called
proofreading.

Another interesting challenge for the visualization of neuronal microscopy images
is the concurrent display of light and electron microscopy data acquired from the
same sample. Correlative microscopy is a newly developing field, which allows for
inspection of the same neuronal tissue using both light and electron microscopes.
Thus the fine resolution of the electron microscopy images can be combined with the
advantage of color staining and information about long-range connectivity in, e.g.,
diffusion stained light microscopy images. Visualization of this data requires multi-
modal registration of both data sets, which has not yet been addressed for correlative
microscopy.

Currently, most research efforts in connectomics at the microscale concentrate
on the image acquisition and segmentation of electron microscopy images. Little
research has been done in the visualization of entire connectomes, i.e. the wiring
diagram of neurons, their types and the connectivity for detailed analysis of neuronal
circuits. Connectomes, like the manually reconstructed circuit of C. elegans, are
visualized by connectivity matrices or connection graphs [100].

21.7 Data Integration and Neural Network Modeling

As described in the previous sections, neurobiological data can be acquired from
many different sources. Relating these different kinds of data by integrating them in
a common reference frame offers interesting opportunities to infer new knowledge
about the relation between structure and function. In this section, we describe two
approaches and their visualization aspects for such data integration with the purpose
of inferring functional properties: brain mapping and network modeling by reverse
engineering.
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21.7.1 Brain Mapping

A major goal in neuroscience is to define the cellular architecture of the brain.
Mapping the fine anatomy of complex neuronal circuits is an essential first step
in investigating the neural mechanisms of information processing. The term brain
mapping describes a set of neuroscience techniques predicated on the mapping of
biological quantities or properties onto spatial representations of the brain resulting
in maps. While all of neuroimaging can be considered part of brain mapping, the
term more specifically refers to the generation of atlases, i.e., databases that combine
imaging data with additional information in order to infer functional information.
Such an undertaking relies on research and development in image acquisition, repre-
sentation, analysis, visualization, and interaction. Intuitive and efficient visualization
is important at all intermediate steps in such projects. Proper visualization tools are
indispensable for quality control (e.g., identification of acquisition artifacts and mis-
classifications), the sharing of generated resources among a network of collaborators,
or the setup and validation of an automated analysis pipeline. Data acquired to study
brain structure captures information on the brain at different scales (e.g., molecular,
cellular, circuitry, system, behavior), with different focus (e.g., anatomy, metabolism,
function), and is multi-modal (text, graphics, 2D and 3D images, audio, video) [15,
53]. The establishment of spatial relationships between initially unrelated images
and information is a fundamental step towards the exploitation of available data [7].
These relationships provide the basis for the visual representation of a data collection
and the generation of further knowledge.

Databases and atlases. A neuroanatomical atlas serves as a reference frame for com-
paring and integrating data from different biological experiments. Maye et al. [64]
give an introduction and survey on the integration and visualization of neural struc-
tures in brain atlases. Such atlases are an invaluable reference in efforts to compile a
comprehensive set of anatomical and functional data, and in formulating hypotheses
on the operation of specific neuronal circuits.

A classical image-based neuroanatomical atlas of Drosophila is the FlyBrain
atlas,1 spatially relating a collection of 2D drawings, microscopic images, and text.
One approach in generating a digital atlas of this kind is by acquiring confocal
microscope images of a large number of individual brains. In each specimen, one
or more distinct neuronal types are highlighted using appropriate molecular genetic
techniques. Additionally, a general staining is applied to reveal the overall structure
of the brain, providing a reference for non-rigid registration to a standard template.
After registration, the specific neuronal types in each specimen are segmented, anno-
tated, and compiled into a database linked to the physical structure of the brain. Jenett
et al. [40] describe techniques for quantitative assessment, comparison, and presen-
tation of 3D confocal microscopy images of Drosophila brains and gene expression
patterns within these brains. Pereanu and Hartenstein [71] and Rybak et al. [79]
described 3D atlases of the developing Drosophila brain and the honeybee brain.

1 http://flybrain.neurobio.arizona.edu
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The Neuroterrain 3D mouse brain atlas [5] consists of segmented 3D structures rep-
resented as geometry and references a large collection of normalized 3D confocal
images.

Visual exploration and analysis. 3D microscopy data is often visualized using
Maximum Intensity Projection (MIP), which displays the maximum values along
viewing rays. Direct Volume Rendering (DVR) enables better perception of spatial
relationships, but has the disadvantage of added complexity, as an additional transfer
function is required. It can lead to problems with occlusions, particularly when mul-
tiple channels need to be visualized simultaneously. Maximum Intensity Difference
Accumulation (MIDA) [9] improves this situation by combining the simplicity of
MIP with additional spatial cues provided by DVR. Wan et al.[105] presented a tool
for the visualization of multi-channel data tailored to the needs of neurobiologists. As
acquired volumetric data is typically visualized together with segmented structures,
it is important to avoid occlusions as well as visual clutter. Kuß et al. [56] proposed
and evaluated several techniques to make spatial relationships more apparent.

However, to enable the exploration of large-scale collections of neuroanatomi-
cal data, massive sets of data must be presented in a way that enables them to be
browsed, analyzed, queried and compared. An overview of a processing and visual-
ization pipeline for large collections of 3D microscopy images is provided in a study
by de Leeuw et al. [59]. NeuARt II [13] provides a general 2D visual interface to 3D
neuroanatomical atlases including interactive visual browsing by stereotactic coor-
dinate navigation. Brain Explorer [58], an interface to the Allen Brain Atlas, allows
the visualization of mouse brain gene expression data in 3D. The CoCoMac-3D
Viewer developed by Bezgin et al. [6] implements a visual interface to two databases
containing morphology and connectivity data of the macaque brain for analysis and
quantification of connectivity data. An example of an interface to neuroanatomical
image collections and databases that features basic visual query functionalities is
the European Computerized Human Brain Database (ECHBD) [31]. It connects a
conventional database with an infrastructure for direct queries on raster data. Visual
queries on image contents can be performed by interactive definition of a volume of
interest in a 3D reference image. Press et al. [75] focused on the graphical search
within neuroanatomical atlases. Their system, called XANAT, allows for the study,
analysis, and storage of neuroanatomical connections. Users perform searches by
graphically defining a region of interest to display the connectivity information for
this region. Furthermore, their system also supports textual search using keywords
describing a particular region. Kuß et al. [55] proposed ontology-based high-level
queries in a database of bee brain images based on pre-generated 3D representa-
tions of atlas information. In the BrainGazer system [9] anatomical structures can be
visually mined based on their spatial location, neighborhood, and overlap with other
structures. By delineating staining patterns in a volume rendered image, for exam-
ple, the database can be searched for known anatomical objects in nearby locations
(see Fig. 21.5). Lin et al. [61] presented an approach to explore neuronal structures
forming pathways and circuits using connectivity queries. In order to explore the
similarity and differences of a large population of anatomical variations, Joshi et
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Fig. 21.5 Visual query for neural projection in the Drosophila brain using the BrainGazer sys-
tem [9]. Left The query is specified by sketching a path on top of a Gal4 expression pattern. Right
An existing segmented neural projection that matches the query is displayed

al. [43] proposed a similarity-space approach that embeds individual shapes in a
meta-space for content-driven navigation.

While these efforts represent promising directions, many challenges remain. As
noted by Walter et al. [104], a major goal is the integration of brain mapping data with
other resources such as molecular sequences, structures, pathways and regulatory
networks, tissue physiology and micromorphology. The ever-growing amount of
data means that distributed solutions are required. The integration of computational
and human resources gives significant benefits: each involved partner may bring
computational resources (in terms of hardware and tools), human resources (in terms
of expertise), and data to analyze. Advances in web technology, such as HTML5 and
WebGL, provide new opportunities for visualization researchers to make their work
accessible to the neuroscience community.

21.7.2 Neural Network Modeling

A complete reconstruction of the connectivity at the synapse level is currently possi-
ble for small brain volumes using electron microscopy techniques, but not yet feasible
for volumes the size of a cortical column. Oberlaender et al. [65] therefore pursue a
reverse engineering approach: A computational model of a cortical column in the rat
somatosensory cortex, consisting of ∼18,000 neurons, is created by integration of
anatomical data acquired by different imaging and reconstruction techniques into a
common reference system. As the data is acquired from different animals in a popu-
lation, the network represents an “average” cortical column: some model parameters
are given as probabilistic densities. By generating realizations of these stochastic
parameters, concrete network models are created.

The number of neurons and their distribution in a cortical column is obtained by
automatic counting of neural soma (cell bodies) in confocal images [66]. The 3D
dendritic morphologies of ∼100 neurons of different cell types in the column as
well as axons are reconstructed from transmitted light bright field images [22]. The
column model is created by generating soma positions satisfying the given neuron
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Fig. 21.6 Reverse engineering of a cortical column. Reconstructed dendrites (a) are replicated and
inserted into the column reference frame according to a given neuron density (b). By determining
the local structural overlap with axons projecting into the column (c), the number of synapses for
different post-synaptic cell types can be estimated. (d) Shown are synapse densities for two cell
types. Figure created from data published in [65]

density and replicating and inserting the dendrite morphologies into the reference
frame according to the given cell type frequency (see Fig. 21.6). Differences in
synaptic densities between cell types can be quantified and visualized [65]. Based on
the estimated number of synapses per cell, a complete network wiring is established
to study network function using numerical simulation [57].

Extracting relevant neurobiological knowledge from such network models is a
challenging task. Whereas computation of specific quantities for comparison with
literature results in order to validate the model is straightforward, exploratory knowl-
edge discovery within such large, complex networks is not. Easy-to-use tools are
needed to let the neurobiologist query and visualize the structural and functional
properties of such networks or ensembles of network realizations. As network mod-
els are increasing in size, large data handling will be a challenging issue as well.

21.8 Network Analysis and Comparative Visualization

A recent innovation in neuroimaging is connectivity analysis, in which the anatom-
ical or functional relation between different (underlying) brain areas is calculated
from data obtained by various modalities, allowing researchers to study the resulting
networks of interrelated brain regions. Of particular interest are comparisons of func-
tional brain networks under different experimental conditions and between groups
of subjects.
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21.8.1 Network Measures

For each of the brain connectivity types (anatomical, functional, effective), one can
extract networks from data obtained by an appropriate brain imaging modality [10,
54]. The next step is to characterize such networks. In the last decade, a multitude
of topological network measures have been developed in an attempt to characterize
and compare brain networks [11, 45, 78, 90]. Such measures characterize aspects
of global, regional, and local brain connectivity.2 Examples of global measures are
characteristic path length, clustering coefficient, modularity, centrality, degree dis-
tribution, etc. Some of them, such as clustering coefficient or modularity, refer to
functional segregation in the brain, i.e., the ability for specialized processing to occur
in densely interconnected groups of brain regions. Others characterize functional
integration, i.e., the ability to rapidly combine specialized information from distrib-
uted brain regions [78, 90]. Typical measures in this class are based on the concept
of paths in the network, e.g., characteristic path length or global efficiency (aver-
age inverse shortest path length). It is believed that both anatomical and functional
brain connectivity exhibit small-world properties, i.e., they combine functionally
segregated modules with a robust number of intermodular links [3, 88]. The degree
distribution can be used as a measure of network resilience, i.e., the capacity of the
network to withstand network deterioration due to lesions or strokes.

For characterizing networks on a local scale one uses single node features such as
in-degree and out-degree, or the local clustering coefficient. Typical regional network
measures are network motifs, which are defined as patterns of local connectivity. A
typical motif in a directed network is a triangle, consisting of feedforward and/or
feedback loops. Both anatomical and functional motifs are distinguished. The signif-
icance of a certain motif in a network is determined by its frequency of occurrence,
and the frequency of occurrence of different motifs around a node is known as the
motif fingerprint of that node.

21.8.2 Brain Network Comparison and Visualization

The comparison of different brain networks presents challenging problems. Usually
the networks differ in number and position of nodes and links, and a direct comparison
is therefore difficult. One possible approach is to compute a network measure for
each of the networks, and then compare the network measures. However, this loses
spatial information. For interpretation and diagnosis it may be essential that local
differences can be visualized in the original network representation [27, 86]. This
asks for the development of mathematical methods, algorithms and visualization
tools for the local comparison of complex networks—not necessarily of the same
size—obtained under different conditions (time, frequency, scale) or pertaining to
different (groups of) subjects.

2 Similar approaches have been used in genomics [62, 84] and other areas.
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Fig. 21.7 FU maps for multichannel EEG coherence visualization. Brain responses were collected
from three subjects using an EEG cap with 119 scalp electrodes. During a so-called P300 experiment,
each participant was instructed to count target tones of 2,000 Hz (probability 0.15), alternated with
standard tones of 1,000 Hz (probability 0.85) which were to be ignored. After the experiment, the
participant had to report the number of perceived target tones. Shown are FU maps for target stimuli
data, with FUs larger than 5 cells, for the 1-3Hz EEG frequency band (top row) and for 13–20 Hz
(bottom row), for three datasets (Figure adapted from [92], Fig. 3)

Several methods exist for spatial comparison of brain networks, which assume
that the position and number of network nodes is the same in the networks to be
compared. For example, Salvador et al. [80] use a brain parcellation based on a prior
standard anatomical template, dividing each cerebral hemisphere into 45 anatomical
regions that correspond to the nodes of the brain network. Another possibility is
to consider each voxel a network node, but in this way the networks become very
large. Links between the nodes can then be defined by several measures of node-node
association, such as correlation or mutual information of temporal signals. Using the
same construction for two or more data sets enables a direct network comparison
[108].

A method to perform network comparison in the original network representation
was recently proposed for the case of multichannel EEG by Crippa et al. [19]. This
approach is based on representation of an EEG coherence network by a so-called
functional unit (FU), which is defined as a spatially connected clique in the EEG
graph, i.e., a set of electrodes used in the EEG experiment that are spatially close and
record pairwise significantly coherent signals [92, 94]. To each electrode a Voronoi
cell is associated and all cells belonging to an FU are given a corresponding color.
Lines connect FU centers if the inter-FU coherence exceeds a significance threshold.
The color of a line depends on the inter-FU coherence. Such a representation of
the FUs in an EEG recording is called a FU map. FU maps can be constructed for
different frequency bands or for different subjects (see Fig. 21.7).
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Comparison of multiple FU maps can be done visually when displayed next to
each other, but this method is limited as humans are notoriously weak in spotting
visual differences in images. An alternative, which is more quantitative although it
still involves visual assessment to a certain degree, is to compute a mean FU map,
based upon the concept of graph averaging [19]. The mean of a set of input FU maps
is defined in such a way that it not only represents the mean group coherence during
a certain task or condition, but also to some extent displays individual variations
in brain activity. The definition of a mean FU map relies on a graph dissimilarity
measure that takes into account both node positions and node or edge attributes.
A visualization of the mean FU map is used with a visual representation of the
frequency of occurrence of nodes and edges in the input FUs. This makes it possible
to investigate which brain regions are more commonly involved in a certain task, by
analyzing the occurrence of an FU of the mean graph in the input FUs.

In [19] the graph averaging method was applied to the analysis of EEG coherence
networks in two case studies, one on mental fatigue and one on patients with corti-
cobasal ganglionic degeneration. An extension of the method to resting state fMRI
data was presented in [18].

21.9 Conclusions

There is currently great scientific interest in connectomics, as it is believed to be
an important prerequisite for understanding brain function. As much of the data for
obtaining neural connectivity is image-based, visualization techniques are indispens-
able. Great effort has been put recently into extraction of connectivity information
from images, integration of multimodal information into reference systems, and
visual analysis of such data and systems at different scales. These efforts will need to
be intensified in the future, as data is being produced at a much larger scale, also by
new imaging modalities. New methods to integrate this data across modalities and
scales to attain the ultimate goal, a description of the human connectome, will be the
main challenge for visualization in connectomics.
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