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Abstract In many cases, feature detection for flow visualization iscstired in
two phases: first candidate identification, and then filgeriwith this paper, we
propose to use the directional information contained infthige-time Lyapunov
exponent§FTLE) computation, in order to filter the FTLE field. Therebg can
focus on those separation structures that delineate floypatdments which develop
into different spatial locations, as compared to those $bptairate parallel flows of
different speed. We provide a discussion of the underlyirggpty and our related
considerations. We derive a new filtering scheme and dematasts effect in the
context of several selected fluid flow cases, especially mparison with unfiltered
FTLE visualization. Since previous work has provided ihsigith respect to the
studied flow patterns, we are able to provide a discussiohefésulting visible
separation structures.

1 Introduction

The concept of flow plays a central role in many fields. Cladspplication fields
are the automotive and aviation industries. The visuatinaif data gained from the
simulation or measurement of flow processes is relevanhodbmain users, as vi-
sualization has the potential to ease the understandingngplex flow phenomena.
For a good overall understanding of the flow, the identifaratdf areas with
coherent flow behavior has proved to be useful. For steady floethods based
onvector field topologyas introduced to the visualization community by Helmann
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and Hesselink [17], provide an expressive segmentatioheflow. In the case of
unsteady flow, a comparable theory is not readily availasen though a number of
promising approaches and methods have been worked outpashgears. We refer
to a related state of the art report [25] for an overview oblogy-based methods
for the visualization of unsteady flow.

One of the promising directions leading to a semantic seggttien of unsteady
flow, are so-called_agrangianmethods. These methods focus on the motion of
massless particles in the flow. The most prominent methoelsedated tdfinite-
time Lyapunov exponen(ETLE). Haller [13, 14] shows the relation of FTLE to
Lagrangian coherent structuresd its application to flow data.

Roughly speaking, the (maximum) FTLE gives the maximum sjmn rate for
nearby particles over a certain time-period. When inteipgeteparation structures
extracted from the FTLE field, such as ridges, this concegepfration, has to be
kept in mind: Apart from the separation due to differencefbaw directions, FTLE
will also detect separation due to differences in flow magtét We illustrate this
with a simple thought experiment:

We consider two particles that travel on straight paraitetd with constant ve-
locity, but the one velocity being larger the other. At a airttime, these parti-
cles have a certain distance from each other. The distarteesée the particles
increases monotonically (due to the different particl@wiies), but their paths re-
main nonetheless parallel, leading the particles into #meesarea (but at different
times). Fig. 1 illustrates this situation.

This causes, for example, that a shear layer is a region wgth FTLE values.
More generally, regions of particles with parallel paths different speeds will
show this behavior. A separation concept that is not seediti such differences in
speed would therefore define particles as “staying clostieiir paths stay nearby.
This concept of vicinity is calle®oincaté or orbital stability. Formally, a path line
is Poincae stable if for any giver > 0, there is @ > 0 such that a particle with
starting distance to the path line stays in thetube around it [19]. Although well
known in theory, the definition of Poindaistability does not provide an intuitive
quantification of distance (since it would require to congpevery single point on
one path to all points on the other path).

From the above mentioned thought experiment we infer thadrsg¢ion resulting
from differences in the velocity magnitude, occurs alorglthes, i.e., in direction
of the flow vector, while separations due to differences iw fiirection will occur
at an angle to the flow direction. The analysis of the defoionagradient tensor
builds on the assumption of a linear mapping between thereéifice of the particle
positions before and after advection by the flow and assuewsetthat the distance
between patrticles is locally describable by straight lif&23. Hence, our consider-
ations are valid for arbitrary path lines, as long as the g@rassumptions for the
FTLE analysis are fulfilled.

The direction of the main separation can be found by anajy#ie gradient
of the flow mag(in a more general setting referred to as tleformation gradient
tensor[22]). For this purpose we useaingular value decompositio(GVD). We
show in section 3 that our approach is directly derived frobengeometric approach
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Fig. 1 Two particles traveling along straight parallel lines affetiént speeds: we see that the
particles separate in the direction of the movement, but ttatirspare at a fixed distance, and will
hence traverse the same regions.

to FTLE as provided by Haller [13]. The examination of the lanigetween this
main separation direction and the direction of the path djives us a measure for
the spatial separation that is represented by the respdeliLE values. Filtering
the FTLE field with this measure then yields the separatinctires representing
a separation inspired by Poinéastability. One needs to be aware of this different
stability — and hence, separation — concept, and assessatsingfulness in the case
under investigation.

Accordingly, the main contribution of this paper is a newefiltto be used as
a filtering step after the computation of FTLE values in uadieflow fields, that
allows to focus on those regions within the flow that lead tatis separation.

The remainder of this paper is structured as follows: Firstdiscuss related
work. Then we introduce our proposed filtering approachjvaey it from the
known theory. In the subsequent section we present resafts dnalyzing several
flow cases, applying our filtering to four simple analyticedmples, the well-known
“double gyre” example by Shadden et al. [29], and a CFD dataemonstrating
what results we can achieve. We then discuss computatispatts of the estima-
tion of the deformation gradient tensor and the extractibthe main separation
direction. Finally we discuss results and point out futuceky

2 Related Work

The visualization of flow is an active research field. Topatahmethods were
first introduced to the scientific visualization community Belman and Hes-
selink [17, 18] for both 2D and 3D steady flow fields, under tiotion of vector
field topology(VFT). Globus et al. [10] showed the practical relevance Bffi\for
computational fluid dynamics data. For a detailed survey©T Yor two and three
dimensions we refer to Asimov’s tutorial [1].

From the theoretical point of view, the applicability of VAdr unsteady flow
has been questioned, among others, by Perry and Chong [2&y}. donclude that
classical VFT is only applicable to nearly steady fields.ete&hadden [29] and
Wiebel et al. [33] showed this by specific examples. Very ndgeFuchs et al. [6]
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proposed an extended critical point concept which allowstio apply vector field
topology in the case of unsteady flow.

Theisel et al. [31] introduce flow topology based on pathdireath lines are
the paths of massless particles that are advected by theTtwevefore, they are
inherently well suited to gain an understanding of unstetmly.

The seminal paper of Haller [13] introduces FTLE to the asialpf flow fields.
The concept of agrangian coherent structurds CS) is discussed and its connec-
tion to FTLE is revealed. LCS are —to a certain degree — theeadyg analogon of
separatrices in VFT. In a follow-up paper [14], Haller shawkat LCS correspond
toridges of the FTLE field. Sadlo et al. [27] and Shi et al. [8@npare LCS to VFT
and conclude that the information conveyed by FTLE is onlyigbas compared to
VFT, missing out, for example, on vortices.

The standard algorithm for the computation of the FTLE fielbives the seed-
ing of a large number of particles in the flow and the calcalabtf their path lines
(flow map). This is computationally challenging since ituggs a high precision
integration for every particle. Sadlo and Peikert [26] udaptive mesh refinement
in their ridge extraction to avoid unnecessary evaluatafrise flow map. As shown
by Shadden [29], LCS are “nearly” material lines. This camkgloited to speed up
the algorithm. Sadlo et al. [28] present a method to extr&$ lusing grid advec-
tion, exploiting the temporal coherency of LCS. Lipinskidaohseni [21] present
a ridge tracking algorithm for FTLE fields that uses both terapand spatial co-
herency of LCS, and give an error estimator for the diffeednetween the advected
ridge the and actual LCS. Both approaches give great speedmpared to the
standard algorithm.

As the computation of ridges usually involves the compatabtf higher-order
derivatives, the computation will be sensitive to noisertirermore, some types of
solvers used to simulate the flow, e gpectral element methof2], may introduce
discontinuities in higher-order derivatives.

Garth et al. [7] avoid the computation of ridges using a vaurandering ap-
proach. The authors show also that 3D FTLE might be appraeidny 2D FTLE
in selected cross-sections. Furthermore, the authorsmiras efficient approxima-
tion to FTLE fields.

Kasten et al. [20] introduce the notion licalized FTLE(L-FTLE). The main
idea of this approach is to exchange the deformation grathesor with a matrix
that accumulates the separation behavior along a pathHiaéer and Sapsis [15]
show that also the smallest FTLE is related to LCS, and carsée to compute the
attracting LCS from forward standard FTLE (and vice ver3&)js makes comput-
ing both forward and backward FTLE obsolete and, hence sseogtly computa-
tions.

To the best of our knowledge, no attempts have been made ysetthe direc-
tional information inherent to the definition of FTLE in vislization. Obermaier et
al. [23] use iteratively deformed ellipsoids to visualiz'@ume deformation along
trajectories. The deformation in every iteration step elyred usingingular Value
Decomposition(SVD), which also our approach makes use of. It is worthwhile
noticing that their approach imposes divergence-freeness
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3 The filtering scheme

In the following, we show how the main separation directian be computed from
the directional information that is inherent to the defonitof FTLE and how it can
be easily derived from it.

Definition of FTLE and its geometric interpretation: The concept ofinite-time
Lyaponov exponent$TLE) is an adaptation of the concept of the classical Lya-
punov exponents to the situation of a vector field which israefiover finite time
only. Those fields are of practical relevance since both sititns and measure-
ments of unsteady flow will typically yield this type of field2oughly speaking, the
FTLE is the maximum deformation of a small neighborhood athe by the flow
over a certain time-interval. This maximum deformation barcomputed from the
maximum eigenvalue of the (right) Cauchy-Green tensor 132,

In the original paper [13], Haller gives an alternative, metric reasoning to
motivate the interpretation of the FTLE field, which yieltie tsame formula as the
standard formulation. We will use this reasoning as a sigutioint for our own
considerations: Let be a time-dependent vector field and

91y (x0) = X(T) (1)
the solution of the initial value problem
X(t) =v(x(t),t)  X(to) =Xo 2

evaluated at = T. ¢t-£ is called theflow map Hence, the difference in position
between two particles that are seeded at a small disi@eétimety at timet =T
is given by

91t (X0 + BX) — by, (Xo)- @3)
Now, we apply a Taylor series expansion and get
By (X0 + OX) — P, (Xo) = g (Xo) + O, (X0) OX + Ry — @y (%o) (4)

with Ry being an error term with{Ry || € €(]|5x||?). Hence, in a small sphere around
Xo we have the following approximation

i (Xo+ OX) — @y (Xo) ~ Dby, (Xo) OX. (5)

The gradient of the flow maﬁd)tg (Xo) is a linear operator. The maximal stretching
of a d-sphere around is therefore

[0, (%0) x|
max, <|5X”> = Hg;ﬁ\i(l(llﬂfl’tg(xo)&\l) = (|0 (x0)llop ~ (6)

|| - llop being the operator norm with respect to the usual Euclid@m{11]. As-
suming exponential growth and scaling by the integratiogtle we get
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FTLE(X0) = = In (|| 06 (X0) lop) ™
T —to

The equivalence of this formulation to the standard fornfioland in most papers is
easy to check using basic properties of the operator norpif3]1

We see that the impact of the gradient of the flow map tensdn@nonit sphere is
the crucial aspect in the analysis of local separation USIrg=. Thesingular value
decompositioffSVD) is a useful tool to examine this action on the unit sphéris
well known that a linear mapping transforms the unit sphete an ellipsoid. The
SVD gives us the opportunity to compute the main axes of tlijsseid explicitly.
More generally, the SVD of any linear mappiAgds its unique representation as

A=U -diag(oy,...,0r,0,...,0)-V* (8)

whereU andV are orthogonal matrices,the rank of the matribd, anddiagy a
block-diagonal matrix [11](-)* denotes the transposition operator. In addition, the
relationo; > 02 > ... > or > 0 holds. The columns of the matrlt are in the
direction of the axes of the ellipsoid which the unit sphermapped to. The values
o are the lengths of its main axes agg = ||A||op. Fig. 2(a) illustrates this for
the linear map given by} (43). We see that using the SVD to gain directional
information about the local separation is a straight-fadsextension of the original
considerations of Haller.

It is worthwhile noticing that an eigenvalue decompositidthe Cauchy-Green
tensor used in the standard presentation of FTLE will yieéddolumns o/, and not
U. Unless the deformation is rotation free, these vectodswtlcoincide. However,
the columns iV are mapped onto the columnsdf These two different sets of
axes are known as thgrincipal spatialandprincipal material strainsrespectively.
The principal material strains provide the information be shape of the ellipse
resulting from the advection of the unit sphe#€ by the flow. Therefore, the use
of the principal material strains to gain the directiongbimation on the FTLE
field is a straight-forward extension of the geometric apphoto FTLE provided by
Haller in its original paper [13]. For a thorough discussadrstraining we refer to
Mase [22] and Hayes [16]. Given the path lipetarted inxg atty and integrated
tot =T, the direction of the path line at any instdris given byy(t) = v(y(t),t)
and the corresponding separation directidn (t) (i.e, the first column o)) is
computed fronlgy (xo). Hence, we can use

Tlto/T <U‘1“>’ OGO >‘dt ©)

as a measure for the directional difference between sépai@id path line starting
in (Xo,to). Notice that perfect alignment of the separation directod the flow
direction, i.e., the situation we want to filter out, will cauthe integrand to be 1.
The absolute value has to be used since SVD may invert thetatien.

It is important to point out that this separation measureois®alilean invari-
ant, since it depends on properties such as velocity thahameselves not Galilean
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invariant. The separation measure will therefore deteti fiaes, that are locally
parallel in the chosen frame of reference. Although Gatilieaariance is an impor-
tant property in general flow analysis, many interestingagibns with fixed frame
of reference exist, e.g., fluid flow in a tube or air flow inside@oom. Besides this,
we also give an example of a separation situation below, svaésalilean invariant
separation measure would fail to detect a separation thatasily be deduced from
the visual inspection of the path lines in the flow (see Sdqg. 4.

In practical computations, eq. (9) needs to be discreti&how assume to have
N samples of the path Im(ay(tn)) _1. Since the velocities could change rapidly
in direction, without actually affecting the perceived mlédirection of the path
line much, y(ti;1) — y(ti) can be used instead ofy(ti;1),ti+1) to robustify the
measure. But even with this robustification, the local positlifferences can deviate
substantially from the perceived overall direction, as \ae see from Fig. 2(b).
We therefore choosg(tn) — y(ti) instead. As the approximation to the velocities,
this expression is less sensitive to fluctuation in the ugicalong the path line.
In addition, it uses our knowledge of where the particle willd up. In this way
we estimate the overall direction of the remaining trajgctds a convenient side
effect, this estimation is also less sensitive with respethe chosen sampling of
the path line (see Sec. 5). With this considerations in ntimel discrete version of
our measure for spatial separation is:

1N y(tn) — y(ti)
TN- 1Z< Dyt = v(ti>||>’ (10)

The main separation direction is the left-singular vecgsogiated with the max-
imum singular value. The maximum singular value of the defation gradient
tensor (or, equivalently, the maximum eigenvalue of thedbgtGreen tensor) is,
however, not unique by definition. In fact, all singular vedw; might be the same,
or almost the same. In addition, numerical errors may cawséno largest singu-
lar values to be of the same order. In the original definitibRFBLE this does not
create any problems since we are interested in the maximlymlorcontrast, when
looking at the angle between the associated left-sing@etov and the flow vector,
this situation needs special consideration. From the SVIkmasv that those vec-
tors are orthogonal to each other. Hence, even if one of ttirseis almost parallel
to the flow, there is a direction of comparable distortiort teaearly orthogonal to
the flow. Therefore, we shal consider these points as if the separation occurs
at a large angle to the flow direction. The consideration eftttird singular value
is not necessary since its left-singular vector lies in thame plane orthogonal to
the first left-singular vector as the left-singular vecteseciated with the second

singular value. To account for this, we introduce a scalagdr 1— Uzgt'g for the

single summands in eq. (10), and our final definition of theas®ppon measursep
becomes

s -1ty 3 () (20 )|
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(a) lllustration of the SVD (b) two path lines with the same percieved
“overall” direction (viewed from left to right)

Fig. 2 (a) lllustration of the geometric interpretation of singulatues and left-singular vectors
of a linear map: The unit circle (red) and its image (blue) uralénear map. The black arrow
correspond to the left-singular vectors of the map, scaled byedective singular values. (b) The
figure shows the trajectories of two particles moving fromteft right. Although local velocities
are very different we perceive them as having the same overaditbn.

Obermaier et al. [23] use the quotient of the smallest andatgest singular
value to measure the overall deformation of an advectiomwindimensions, this
measure coincides with the quotient in our scaling facher interpretation is how-
ever slightly different, as the afore reasoning shows.

The basic concept of the filtering:Bringing all this together, the proposed filter
scheme can be set up by four computational steps:

1. Computation of the deformation gradient tensor: Thip &@enerally necessary
in all FTLE-related algorithms and involves the integratiof path lines. We
save the particle positions at some intermediate timerigstaas well in order to
compute the spatial separation. Further details are disdug section 5.

2. Computation of the SVD of the deformation gradient ten$hbrs step leads both
to the FTLE field and the main separation directions.

3. Computation of the spatial separation of the flow using £b).

4. Focusing on regions of large angles: This focusing carcheeed by threshold-
ing or by smooth brushing [5].

In a final step the filter is applied to the regions with high ENalues. The above
described four steps comprise the main idea for our filteaipygroach.

The filter: The actual filter is then constructed by applying (smoothgbing to the
field sep This brush maps values of the separation measeipe the interval0, 1]
and describes the degree of beingfocus This then corresponds to accordingly
modulated opacity values in the 3D view (cf. Doleisch and $¢ay5] for further
details). Hence, we can formulate our filterfaser = brush(sep Eventually, this
filter is then applied to the FLTE values. This focusing isedy smooth brushing
as well. The overall feature characterization functig, with range[0,1] (1 or
near 1 for all locations in the flow which are considered to &# pf the searched
separation structure), is therefore described by
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(c) vertical separation (d) transformed vertical separation

Fig. 3 Stream, resp. path, lines with the separation value as coldrifihe background. The
left column shows the original fields, the right a Galilean transied field. For the equations we
refer to Sec. 4.1. The FTLE field is constant for all four casega)rand (b) we infer from the
stream lines that no spatial separation is present and the separalues are as expected close
to zero (rangg0,0.02)). In (c) and (d) the trajectories show clear spatial separatizhagain the
separation values coincide with the visually detected saparties.

fsep=brush(FTLE) - filter = brushFTLE) - brush(sep (12)

The functionsepcan also be thought of as a degree of “featureness” for thartea
“spatial separation”, or, adegree of intere€DOI), using another terminology [5].

4 Case studies

In the following we present results from the extraction gfamtion structures from
different data sets. We demonstrate how our filtering schieslygs to focus on re-
gions which actually separate flow compartments that moteediiferent regions
of the flow.

4.1 Synthetic test data

First we investigate four small analytic examples wherestgaration behavior can
be deduced directly from the equations
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V]_(X, y) = (y7 0)T7 VZ(X7 y) = (yv 1)T (13)
V3(X7y) = (X* 1, 1)T’ v4(x,y,t) = (X*t»-l)T (14)

Notice that the fieldv, arises from fieldvy under the Galilean transformation
(X, y,t) — (X, y+t,t). The fieldva, in turn, arises fronvs using the Galilean trans-
formation (x,y,t) — (x+t,y,t). Hence, it is easy to deduce from the fieldsand
v3 that the FTLE field is constant for all four fields. We investigall four fields on
the upper half plane (i.ey,> 0) and choos& = 0 andT = 1. All computations for
this example have been carried out using the MAPLE softwaokagge. The flow
map was computed using MAPLEs seventh-eighth order camtimiRunge-Kutta
methoddver k78. For estimation of the deformation gradient tensor we used ¢
tral finite differences in the coordinate directions witlasimgh = 0.01. For the first
two fields, our separation measwsepis in the range€0, 0.02]. Hence, we expect no
spatial separation. Plotting the respective stream lifidkeofields shows that our
filter handles both straight parallel lines (as describetthénthought experiment in
the introduction) as well as “locally parallel” trajectesi. In contrast to the first two
fields, we expect to see a clear spatial separation in theimergawo. In the first
field this separation line is clearky= 1, in the second field the separation line will
be located right of the y-axis. Its location depends on thegiration time and the
speed of the observer, since this determines if partichesirs) on the right side of
the y-axis have “enough time to turn”. Our separation measbows the expected
behavior and stream, respectively path, lines plotted aification show the ex-
pected behavior at the separation line (see Fig. 3). Thevigklan example where
a Galilean invariant measure for separation would not givesponse: fixing the
integration time the observer speed determines where paga®n line is located,
and it is easy to see that any parallel to the y-axis can besaethi Since the re-
sponse would have to be the same for all observer speed<sltheséiuld have to be
constant.

4.2 Double gyre

We demonstrate our approach in context of a well-known ditahyo-dimensional
example, known as the “double gyre”. This has been used bgdg&imaet al. to
demonstrate the non-usability of vector field topology forg-dependent flow [29],
amongst others. For the analytic definition of the field, wemro the original paper
by Shadden et al. [29]. Using the same notation as in thegmpapr parameter set is
A=1/10,w = 1r/5 ande = 1/4. The field is defined of0, 2] x [0,1] x R. All com-
putations for this example have been carried out using théMAsoftware pack-
age. The flow map was computed using MAPLESs seventh-eiglaitr @ontinuous
Runge-Kutta methodver k78, for estimation of the deformation gradient tensor
we used central finite differences in the coordinate dioaxstiwith spacindgp = 0.01.
Fig. 4(a) shows the FTLE field with parametéys= 0 andT = 15, i.e., 15 periods.
The filtering is emulated by setting the FTLE value of pointthvee{x) < 0.5 to
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(a) FTLE field (b) filtered FTLE field

Fig. 4 The FTLE field of the double gyre with parametéys= 0 andT = 15 (i.e., 1.5 periods).
(a) The unfiltered field. (b) The filtered by setting FTLE valte® for segx) < 0.5. Path lines
confirm that the persistent ridge is indeed due to spatial separat

0. We see that the filtering produces sharper ridges as thimalrFTLE field, high-
lighting in particular one ridge associated with rather IBWLE values. Seeding
path lines at both sides of the ridge shows that the higtdigjhidge is due to the
desired type of separation, indeed.

4.3 A bursting dam

We apply our approach to the simulation of a bursting dam atilox-shaped obsta-
cle. The data set consists of 48 time steps, covering thespanr(2, 120 (seconds)
non-uniformly. The burst occurs in the first time step. Weest recirculation zone
in front (upstream) of the obstacle due to particles hittimg wall and recirculat-
ing and others getting deviated to the left and right of thetatle. Furthermore we
expect reflux on the backside of the obstacle due to pressifieeedces, causing
particles from the end of the box to be sucked towards theaolestsome of them
ending up in front, some getting incorporated by the main.fRight behind the ob-
stacle we expect to see recirculation. A schematic overgfe¥ve flow can be found
in Fig. 5(a). The SimVis framework [4] was used for this exdenjyVe calculated
the FTLE field forty = 62 andT = 68, using the optimal @ order Runge-Kutta
method (sometimes referred to as the “3/8-rule”). For tetae refer to Hairer et
al. [12]. The usage of a even higher order integration metiaduch is not stan-
dard) was purely due to the fact the MAPLE software packagdikgprovides this
method. The integration time was found empirically with &éie that not more that
15 percent of the particles seeded leave the flow domain é¢fierend of the in-
tegration time. Fig. 5(b) shows an overview over the FTLEfi&Ve filter the field
brushing all points with aepvalue greater or equal4b (smooth lower bound.®).
We will now investigate two regions in the flow domain moresglty: The region
stream-wise in front of the obstacle and the upper rear regio
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(a) Schematic overview (b) FTLE field

Fig. 5 (a) Schematic overview over the flow domambeing the streamwise direction. (b) The
FTLE field of a simulation of a bursting dam with parametges 62 andT = 68. The FTLE values
greater than @5 are brushed (smooth lower boun@)0. We see that we can identify expected
structures around the obstacle. The upper rear part of the flomaoh shows large regions with
high FTLE values, presumably induced by shearing.

(a) FTLE field

Fig. 6 The (a) FTLE and (b) filtered FTLE field upstream (right in theufigs) of the obstacle in
top view. The FTLE values greater thar2 are brushed (smooth lower boun@&Qse(x) < 0.45
(smooth lower bound.@) is used for the filtering in (b). We see that the spatial semaratructure
stemming from particles passing on different sides of the obstacleticlearly discernible in the
unfiltered field. While adjusting the brush would not give theid=l structure either, our filtering
does.

(a) FTLE field (b) filtered FTLE field

Fig. 7 A cross section of the (a) FTLE and (b) filtered FTLE field. Thesfihg used is the same

as in fig. 6. The ellipse (A) shows a region where the filter hasangtimpact. We see that the

path lines are locally parallel and show little to no spatialasapion. In contrast, we see that the
structure below the ellipse separates path lines moving froretti® the right (above) from those

moving in the opposite direction (below). In the same fashionetliygse (B) indicates a structure

that separates particles coming from the left and passing cz@hbistacle, from those moving back
to the left end of the flow domain. This structure is persisteneundr proposed filter.

In front of the obstacle: In front of the obstacle, we expect to detect a separa-
tion structure upstream, due to particles passing on diftesides of it. We see
that (Fig. 6(a)) this expected separation structure is at#aable from the original
field. Applying our separation filter allows us to focus onstkpatial separation,
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| N=]| 2 | 4 [ 6 | 8 | 10 |
Vs mean [[ 1.2-103[6.13-10%[3.23-10°°]1.64-10°°[ 35.10°
variance|1.27-10°%/3.04-10°7|8.42-10°7|2.17-10 8| 3.5.10°°

double gyre  mean 0.2 0.1 0.07 0.04 0.01
variance| 0.03 0.01 003 |94.-10%|14-10*
breaking dam mean|1.27-1072(5.47-103[2.57-103[9.82.-10%| 6.6- 10>
variance|1.13-10°°| 2.4.1077 |5.36-10°8| 7.7-1079 |2.97-10°°

Table 1 Error Analysis of Sampling Density

even though the corresponding FTLE values do not show up ipsortly in the
original field. We added path lines to both figures to confirat the intuitively ex-
pected separation structure indeed exists and coincidbgshvé structure found by
the filtering with our separation measure.

The upper rear region: In the overview in fig. 5(b) we see a large region with
high FTLE in the upper rear part of the flow domain. Applying 6ltering reduces
the region to a surface separating particles moving fronbéuek to the front (upper
part) from those leaving the flow domain (lower part). We selghrticles in a cross-
section in order to validate the result from the filtering. ¥ée that the particles
in the region delineated by the ellipse (A) in fig. 7(b) show #xpected locally
parallel pattern. The structure at approximately half heaf the box captures the
boundary between the two essentially different particleavéors described above.
The structure in ellipse (B) in fig. 7(b) separates partiohewing from the back to
the front and passing over the obstacle from those invetting motion direction
again. This separation is again the type our filter aims tasam.

5 Computational Issues

Although the steps that are needed to compute the proposeddik in theory
rather straightforward, the application to discrete ddtare some challenges we
want to discuss. Namely, we address (a) the influence of theé sampling of the
path line, and (b) the computational cost of computing theEfield following our
suggestions compared to the standard algorithm.

The impact of the sampling: Our sampling of the path line &t 3, £ and the full
integration time puts emphasis on the end of the path linissially, this is intuitive,
since we perceive path lines as parallel if their ends shisvbishavior. We antici-
pate common “spatial fate”. Therefore will rather smallediion changes towards
the end of the registered path lines intuitively be read aerding behavior, since
we anticipate that the motion will continue in the same dicec

We computed the separation measure for some of the datanaets)y the time-
dependent ones, fof = 2,4,6,8,10 and compared the results point-wise, using the
N=25 as reference value. Table 1 shows the average relativeand the variance
in the computed fields. We chose to investigate the time+tiigre data sets since
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this is most relevant in practice because FTLE computationsteady fields are
usually avoided using vector field topology instead.

FTLE as eigenvalues of the Cauchy-Green tensor vs. singulamlues of the de-
formation gradient tensor: Our filtering needs, in addition to the FTLE field, the
left-singular vectors of the deformation gradient ten$ais is not a part of the usual
algorithm to compute FTLE. However, the computation of théodmation gradient
tensor is. Therefore, we do an informal comparison of theeetgqal computational
cost. Essentially, the here used alternative FTLE comjauntahethods differ from
the standard method in one aspect only: the use of the SVEadsif the eigenvalue
decomposition. Standard algorithms for both decompaosstare based on the same
transformation in the iteration steps and have therefaresétme complexity order.
The singular matrices are an by-product of the SVD compriadind do not need
to be computed separately. For details we refer to Gill g9l Hence, computing
the FTLE plus left-singular vectors will not be substamialower than the usual
computation of FTLE from the Cauchy-Green tensor. With thephld implementa-
tions of SVD and eigenvalue decomposition the ratio of thematation time using
the SVD to the time used with the standard formula is in thged®.95,1.06], i.e.,
the SVD-based method is in the worst case 6% slower than #melatd method
on the double gyre data set. In SimVis we used the linear edgidtrary JAMA
(http:// mat h. ni st.gov/tnt/overvi ew. ht m ), which gives a ratio of
1.12 for the bursting dam data set, i.e., a 12% computatioreth@ad. It is worth-
while noticing that our methods provides both the reguldcETield plus the addi-
tional information needed to perform the filtering at oncenkke, ridge extraction
algorithms may be applied as well, if wanted.

6 Discussion and future work

We examine the results from analyzing several different oanarios with the here
proposed filtering scheme. We assess the filtered strudiyreseding path lines in
the unfiltered field and comparing the result of our filteringesme to the result that
we would expect from the path lines. In all cases the patles ieeded in the filtered
region show the expected locally parallel flow pattern (Whie see as a satisfying
confirmation of our more theoretical considerations wittpect to the design of the
proposed filter).

The computation of the flow map is, as expected, the bottl& nden apply-
ing our filtering to data sets. A speed-up of this computationld be achieved by
exploiting the inherent parallel nature of path line conapion and multi-core archi-
tectures. AMR and advection based methods to speed-up ¢atigns do not seem
to be suitable at the first sight, since we are not extraciitlges and we do not
know whether the structures that our filtering reveals hawpgrties corresponding
to material lines and surfaces. We intend to perform contjmuital experiments to
assess this question.
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Finally, we intend to assess the effects of combining owerfilg with other flow
feature detectors. FTLE is known to miss out on some featasefor example,
vortices. Hence, the combination of feature detectors reasing approach [2, 3].
We have implemented our filtering in the SimVis framework [t is inherently
suitable for the proposed investigation due to its comimnatf interactive visual
analysis and 3D context visualization designed for flow data

FTLE based methods, and consequently also our filteringeofiéthd, are known
to be heavily dependent on the choice of the integrationtkef®8y 29]. Hence, the
search for separation measures that can handle divergihgeasonverging flow (as
in flow around an obstacle) and similar behavior seems ajmgeal

7 Conclusion and Acknowlegdments

In this paper we discuss two different types of separatiahsdiowed how to distin-
guish them filterindfinite-time Lyaponov exponentnalyzing different flow sce-
narios, we showed that this distinction indeed yields a deepderstanding of sepa-
ration structures. Separation is an important aspect indloalysis and further clas-
sification of different types of this phenomenon seems to peomising research
direction.

The project SemSeg acknowledges the financial support &ithee and Emerg-
ing Technologies (FET) programme within the Seventh Fraonkwrogramme for
Research of the European Commission, under FET-Open gunantier 226042.
The CFD simulation of a bursting dam is courtesy of AVL List Gir) Austria.
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