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CFD and Visualization 

From an introduction to continuum mechanics… 

Physics‐based velocity field simplification for flow visualization 2 of 26 

[H.P. Langtangen 

J. Sundnes 2012] 



CFD and Visualization 

From an introduction to continuum mechanics… 
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[H.P. Langtangen 

J. Sundnes 2012] result = symbolic expression visualization = velocity field + X 



X = Visualization Techniques 

Direct flow visualization 

 

 

 

 

Dense, texture-base  
flow visualization 
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[Kirby et al. 1999] 

[v. Wijk et al. 1999] 



X = Visualization Techniques 

Integration-based flow visualization 

 

 

 

 

Feature-based  
flow visualization 
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[Bürger et al. 2009] 

[Helgeland et al. 2007] 



X = Feature extraction + Postprocessing 

Complex flow patterns (e.g., turbulence) 
lead to rich output of feature detectors  often 
simplification wanted 

Usual simplification works like this 

extract all features according to a certain detector 

remove according to geom. criteria (vicinity, size, 
length,…) 

problem: immediate relation to underlying flow 
patterns is destroyed 
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X = Preprocessing + Feature extraction 

Conserves 1 to 1 relationship, but…   

Does the preprocessed velocity field describe the 
same physical process as the original? 

e.g. still incompressible fluid? 

boundary conditions? 

… 

Smoothing the field (low pass filtering) can be 
problematic [Velte et al. 2010] 

changes the data 

destroys the physical scales  
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Outline 

1. “Physics based velocity field simplification…” 

1. turbulence energy cascade 

2. main idea of our approach 

3. computational aspects 

2. “… for flow visualization” 

1. application for feature extraction 

2. examples for important classes of feature detectors 

3. discussion of results 
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Velocity field as Superposition of Scales 

Turbulence energy cascade  

velocity field = superposition of energy-scales 

different energy-scales = different roles in the flow 
scales are ranked by turbulence kinetic energy 

transport to dissipation 

 

[Pedersen 2003] 
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Physics-based simplification 

Main idea: removing some low TKE scales 

should capture physics of the flow “at large”… 

but remove details that are unimportant for the 
chosen level of observation 

Advantages: 

energy-scales describe all the same physical process 

turbulence energy cascade depends on problem only 
(no user parameters to choose) 

Open questions (for now): 

how to compute energy-scales? 

how to remove low TKE energy-scales? 

 

 Physics‐based velocity field simplification for flow visualization 10 of 26 



Computing the Energy-scales 

Proper orthogonal decomposition (POD) 

Lumley: Introduced of POD in 1967 
continuous formulation as Fredholm integral equation 

rather theoretical value 

Sirovich: discrete (snapshot) formulation in 1987 
applicable to measurements 

with today's computing power: also large DNS  

Technically (discrete formulation): 

Find orthonormal basis of the function space 
spanned by the measured/simulated time steps 
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Practical POD computation [Sirovich 1987] 

For data                      , the equations to solve are 
given by 
 
                                              with      

 

Equivalent to eigenvalue problem 
 
                                      with 

 

Then 
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Properties of POD modes 

Every snapshot has the exact representation 
 
 
 

Every mode 

fulfills boundary conditions (periodic, 
heterogeneous,…) 

Same physical properties as orig. flow 
(e.g., divergence-freeness,…) 

 [Sirovich 1987] 

The relative TKE a mode accounts for is given by 
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Usage for feature detection 

Truncated reconstructions = 
removal of the respective energy-scales 

Choose the relative amount of TKE to include, i.e. 
      such that                             for a chosen 

Then 
 
 
includes automatically the right amount of energy-
scales (“…as simple as possible, but no simpler.” Einstein’s razor)  

Apply feature detection on  
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Feature detectors 

Two important classes 

Local feature detection (Eulerian) 

Integration based feature detection (Lagrangian) 

Examples for Application 

vorticity thresholding  

finite-time Lyapunov exponents (FTLE) 
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Examples: vorticity 

Flow in a T-junction 

vorticity:  
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Examples: vorticity 

Turbulent channel flow (DNS), Reτ=180 
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Basic Concept of FTLE 

Measure for separation rate of particles 

Assumption: separation after advection = 
initial separation x exp(rate * integration time) 

Hence: maximal separation rate =  
log(maximal sep. after advection/initial sep.) 

For relatively long integration times, 
we expect rather large deformations 

Measure of large deformation: 
(right) Cauchy-Green tensor 

Maximal deformation rate of infinitesimal sphere = 
largest eigenvale of Cauchy-Green tensor 
(largest singular value of flow map gradient) 
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FTLE in velocity fields 

Practical computation 

seed particles to estimate  
flow map/displacement gradient 

Calculate Cauchy-Green tensor 

 

the FTLE value is then 

 

 

 

FTLE ridges ~ Lagrangian coherent structures 
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[Shadden 2006] 



Example: FTLE 

Turbulent channel flow (DNS) 
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FTLE of orig. field 

FTLE of recon. 

Based on 2 modes 

(79% of TKE) 

FTLE of recon. 

Based on 4 modes 

(93% of TKE) 



Integration error analysis 

Relative error integration in reconstructed field 

 

 

 

 

 

For longer integration times, large energy-scales 
determinant (transport) 

Small energy-scales introduce noise in gradient 
computation 
 
 
 

Physics‐based velocity field simplification for flow visualization 21 of 26 



Conclusion 

POD-based feature extraction 

simplification without changing physics 

simplification without user parameters 

visualization = velocity fields 

can uncover hidden feature 

denoises output if removed energy-scales do not 
related to observed phenomenon  
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Current Limitations 

At low Reynolds numbers, bad separation of scales 

One energy-scale “smeared out” over several  
POD modes 

No cascade, but “slide”, where to truncate? 

If too few snapshots available, multiple energy-
scales in one POD mode 

Problems with not statistically converged flow 
(e.g., accelerating flow) 

At current no systematic testing of behaviour with 
larger diversity of feature detectors 
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Remark on LCS and POD 

Conclusions similar to the here presented for 
experimental data in  
[L. Kourentis, E. Konstantinidis: Uncovering large-
scale coherent structures in natural and forced 
turbulent wakes by combining PIV, POD, and 
FTLE, Experiments in Fluids (2011)] 
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Thanks for your attention! 
 

Questions? 

Based on [A. Pobitzer, M. Tutkun, Ø. Andreasen, R. Fuchs, R. Peikert, 

and H. Hauser: Energy-scale Aware Feature Extraction for Unsteady 

Flow Visualization, Computer Graphics Forum(2011)] 
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