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Figure 1: CT scan with insufficient resolution of a stag beetle as specimen.Figure (a) to (d) show DVR using different re-
construction schemes: (a) using nearest neighbor reconstruction, (b) using trilinear-, (c) using Catmull-Rom-, and (d) using
polynomial interpolation of degree five. (e) shows D2VR of projection-based volumetric data. Figure (a) - (d) were rendered
from grids with a resolution of 643. Figure (e) was rendered from 64 projections each with a resolution of 642.

Abstract
Volume rendering techniques are conventionally classified as either direct or indirect methods. Indirect methods
require to transform the initial volumetric model into an intermediate geometrical model in order to efficiently
visualize it. In contrast, direct volume rendering (DVR) methods can directly process the volumetric data. Modern
CT scanners usually provide data as a set of samples on a rectilinear grid, which is computed from the measured
projections by discrete tomographic reconstruction. Therefore the rectilinear grid can already be considered as an
intermediate volume representation. In this paper we introducedirectdirect volume rendering (D2VR). D2VR does
not require a rectilinear grid, since it is based on an immediate processingof the measured projections. Arbitrary
samples for ray casting are reconstructed from the projections by using theFiltered Back-Projection algorithm.
Our method removes a lossy resampling step from the classical volume rendering pipeline. It provides much higher
accuracy than traditional grid-based resampling techniques do. Furthermore we also present a novel high-quality
gradient estimation scheme, which is also based on the Filtered Back-Projection algorithm.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism, I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Modern 3D scanning technologies usually provide data val-
ues on rectilinear grid points. These data values are com-
puted from measured projections by discrete tomographic
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reconstruction [Rus92, KS88]. The set of the reconstructed
data values (or samples) can be interpreted as a discrete rep-
resentation of the underlying continuous phenomenon. In
order to authentically visualize the original continuous sig-
nal, it has to be accurately reconstructed from the discrete
samples. Note that such a signal reconstruction is differ-
entiated from discrete tomographic reconstruction. From a
signal-processing point of view, the original signal can be
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Figure 2: Data processing work flow of projection- and grid-based volume rendering. The dashed line corresponds to the
traditional volume rendering pipeline. It requires two resampling steps in order to visualize the data. First an intermediate grid
is resampled and then this grid is resampled again during ray traversal. The solid line corresponds to the projection-based
volume rendering pipeline; one lossy resampling step is avoided.

perfectly reconstructed from discrete samples if it is band-
limited and the sampling frequency is above the Nyquist
limit [ OS89]. Theoretically the perfect continuous recon-
struction is obtained by convolving the discrete volume rep-
resentation with thesinc function. Thesinc function is con-
sidered to be the best reconstruction kernel, since it rep-
resents an ideal low-pass filter. In practice, however, it is
difficult to convolve a discrete signal with thesinc kernel,
because of its infinite support. Therefore practical recon-
struction filters either approximate it or truncate it with an
appropriate windowing function [ML94, TG00]. Moreover,
real-world signals can hardly be considered band-limited.
As a consequence, practical resampling results in a loss
of information. Figure2 shows the signal-processing ap-
proach of the traditional volume rendering pipeline (fol-
low the dashed line). After the scanning process a rectilin-
ear grid is computed from the measured projections. This
first resampling step is done by discrete tomographic recon-
struction. Although there exist different algorithms for to-
mographic reconstruction the most popular technique used
is the Filtered Back-Projection algorithm [CCF94]. It first
performs high-pass filtering on the measured projections.
Afterwards the samples at rectilinear grid points are com-
puted by back-projecting the filtered signals. As the projec-
tions are acquired by measuring accumulated attenuation by
a limited number of sensors, they are actually available as
discrete representations of continuous projection functions.
Therefore high-pass filtering is performed in the discrete
frequency domain, so the result is also a discrete function.
In the back-projection phase, however, the rectilinear grid
points are not necessarily projected exactly onto the dis-
crete samples of the filtered projections. Therefore, resam-
pling is necessary for back-projection, which results in the
first loss of information in the pipeline. The obtained recti-
linear volume can be visualized by different rendering tech-

niques. Using indirect methods, like the classical Marching
Cubes algorithm [LC87], an intermediate geometrical model
of an iso-surface is constructed from the volumetric model.
This geometrical model is then interactively rendered by, for
example, conventional graphics hardware. In contrast, Di-
rect Volume Rendering approaches, like raycasting [Lev88]
or splatting [Wes90,ZPvBG01] directly render the volumet-
ric model without any intermediate representation. In both
cases an interpolation technique is applied to define data
values between the rectilinear grid points. In other words,
a resampling of the discrete volume representation is re-
quired. This resampling results in thesecondloss of infor-
mation in the traditional pipeline. In order to minimize the
loss of information we propose to modify the traditional vol-
ume rendering pipeline by simply removing a resampling
step (follow the solid line in Figure2). To render the un-
derlying continuous phenomenon, data samples at arbitrary
sample points need to be defined, and for shading compu-
tation the corresponding gradients need to be determined.
As it will be shown, both tasks can be solved using directly
the filtered projections. This eventually leads to an alterna-
tive projection-based volume representation. Traditional di-
rect volume rendering methods rely on an intermediate grid
representation, so in this sense they are in fact indirect. In
contrast, we present DVRdirectly from the measured raw
data. To distinguish from the common DVR the novel ap-
proach is referred to asD2VR[di: skweed vi: a:]. With ideal
reconstruction filters DVR and D2VR would generate the
same result. With practical but erroneous reconstruction fil-
ters the avoidance of one resampling step in D2VR poses
a clear quality advantage. In Section2 we review previous
work related to discrete tomographic reconstruction and vol-
ume resampling. In Section3 our novel volume rendering
approach is introduced. It is explained how to reconstruct
data values and gradients directly from the projections by
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using the Filtered Back-Projection algorithm. Section4 re-
ports the results. Finally in Section5 the contribution of this
paper is summarized and ideas for future work are given.

2. Related Work

In most of the practical volume rendering applications, es-
pecially in 3D medical imaging, the input data is usually
generated from measured projections by using tomographic
reconstruction [Rus92, KS88, NCN∗97]. The set of projec-
tions is referred to as the Radon transform of the orig-
inal signal. Therefore the tomographic reconstruction is,
in fact, the inversion of the Radon transform. The inver-
sion can be performed by using the classical Filtered Back-
Projection [CCF94] algorithm, which is based on the Fourier
projection-slice theorem [KS88, Mal93]. The output of to-
mographic reconstruction is a discrete (or sampled) repre-
sentation of the underlying continuous phenomenon. Sam-
ples are conventionally generated on rectilinear grid points.
The rectilinear grid has several advantages. For example,
the sampled signal can be represented by 3D arrays, im-
plicitly storing the locations of the samples. Furthermore,
the neighborhood of a certain sample can be efficiently ad-
dressed, which is important for many volume processing or
volume rendering algorithms. Nevertheless, in order to ren-
der the underlying continuous 3D function, data values need
to be defined also between the rectilinear grid points. The
sinc kernel as ideal reconstruction filter is impractical be-
cause of its infinite extent. In practice it is approximated by
filters of finite support [ML94,TG00]. Generally, the wider
the support of the reconstruction filter, the higher the qual-
ity of the reconstruction. On the other hand, the wider the
support of the filter, the higher the computational cost of
a spatial-domain convolution. Therefore several researchers
analyzed different reconstruction filters, both in terms of ac-
curacy and computational cost [MN88, ML94, MMMY97,
MMK ∗98]. As the practical filters only approximate the
ideal low-pass filter they result in either aliasing or smooth-
ing [ML94], which can be interpreted as a loss of informa-
tion. For frequent resampling tasks, like rotation, or upsam-
pling, frequency-domain techniques can be alternatively ap-
plied [LM04, AMVG05, CCM99, CT99, TC99, UTY95]. In
the frequency domain, it is exploited that a computation-
ally expensive spatial-domain convolution is replaced by a
simple multiplication. Although the frequency-domain re-
sampling methods generally provide higher accuracy than
spatial-domain methods, they assume that the new samples
to be computed are also located at regular grid points. In
order to avoid a lossy resampling step in the traditional vol-
ume rendering pipeline, we directly use the tomographic in-
version in order to reconstruct the underlying function at ar-
bitrary sample positions. Therefore we do not generate an
intermediate rectilinear volume representation, but we di-
rectly process the filtered projections as an alternative vol-
ume representation. Using this projection-based volume ren-
dering approach, the same accuracy can be ensured at arbi-

trary sample positions. In contrast, using the traditional grid-
based approach, accurate samples are available only at the
grid points, while the accuracy of intermediate samples de-
pends on the quality of the applied imperfect reconstruction
filter.

3. D2VR

We present D2VR based on a raycasting approach. In order
to perform raycasting the underlying 3D volumetric func-
tion needs to be reconstructed at arbitrary resampling loca-
tions. In case the data is given on a rectilinear grid the re-
constructed function value is computed from a close neigh-
borhood of samples as shown in Figure3a. In contrast to
that, raycasting based on the projections computes the re-
constructed function value from filtered projections at the
corresponding positions (see Figure3b). Furthermore, gra-
dients at these resample locations need to be determined in
order to perform shading. Projection-based reconstruction of
function values is described in Section3.1. The estimation of
gradients directly from the projections is described in Sec-
tion 3.2.

(a) (b)

Resample location
Grid Projections

Figure 3: Difference of grid-based and projection-based re-
sampling. (a) illustrates resampling along a ray on rectilin-
ear volumetric data and (b) shows resampling along a ray
directly from the filtered projections.

3.1. Data reconstruction

Data reconstruction from projection-based volumetric data
is done using the Filtered Back-Projection algorithm. For
simplicity we illustrate the Filtered Back-Projection in 2D
based on a computed tomography scanning process using or-
thographic projection. Parallel projections are taken by mea-
suring a set of parallel rays for a number of different angles.
A projection is formed by combining a set of line integrals.
The whole projection is a collection of parallel ray integrals
as is given byPθ(t) for a constantθ, see Figure4. The line in-
tegrals are measured by moving an X-ray source and detec-
tor along parallel lines on opposite sides of the object. The
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Filtered Back-Projection can be derived using the Fourier
projection-slice theorem as follows:

The density functionf (x,y) can be expressed as:

f (x,y) =
Z ∞

−∞

Z ∞

−∞
F(u,v)ej2π(ux+vy)dudv

where F(u,v) denotes the two-dimensional Fourier trans-
form of the density functionf (x,y). By moving from a
Cartesian coordinate system in the frequency domain to a
polar coordinate system, i.e.,u = wcosθ, v = wsinθ, and
dudv= wdwdθ, we obtain:

f (x,y) =
Z 2π

0

Z ∞

0
F(w,θ)ej2πw(xcosθ+ysinθ)wdwdθ

If we considerθ from 0 to π, the integral can be split as
follows:

f (x,y) =
Z π

0

Z ∞

0
F(w,θ)ej2πw(xcosθ+ysinθ)wdwdθ

+
Z π

0

Z ∞

0
F(w,θ+π)ej2πw(xcos(θ+π)+ysin(θ+π))wdwdθ

SinceF(w,θ + π) = F(−w,θ), the above expression can be
written as:

f (x,y) =
Z π

0

[

Z ∞

−∞
F(w,θ) |w|ej2πwtdw

]

dθ

wheret = xcosθ+ysinθ. By substitutingSθ(w) for the two-
dimensional Fourier transformF(w,θ) the above integral
can be expressed as:

f (x,y) =
Z π

0

Z ∞

−∞
Sθ(w) |w|ej2πwtdwdθ

According to the Fourier projection-slice theoremSθ(w) is
the Fourier transform ofPθ(t). Let us define:

Qθ(t) =
Z ∞

−∞
Sθ(w) |w|ej2πwtdw (1)

which is the inverse Fourier transform ofSθ(w) · |w|. As mul-
tiplication in the frequency domain corresponds to a convo-
lution in the spatial domain, according to Equation1, Qθ(t)
is obtained by high-pass filtering the measured projection
Pθ(t). Other filters to reduce artifacts resulting from recon-
struction can be applied, see [KS88].

In practice, the 2D density functionf (x,y) is discretely
approximated by:

f (x,y) ≈ f̃ (x,y) =
π
K

K

∑
i=1

Qθi (xcosθi +ysinθi) (2)

whereQθi are the filtered projections. Thus, according to
Equation2 the density function can be reconstructed from
a fixed number of projections. The Filtered Back-Projection
algorithm is conventionally used for discrete tomographic
reconstruction in order to obtain a rectilinear representation
of the original density function. The formula in Equation2
can also be considered as a resampling scheme to interpo-
late a density value at an arbitrary sample point. Previous

reconstruction techniques assume that accurate samples are
available at the grid points. In order to maintain the same
accuracy at any arbitrary sample location, we apply the Fil-
tered Back-Projection to reconstruct the density value.

θ

x

y

f(x,y)
P (t)
θ

t

Figure 4: Parallel projection for a specific angleθ.

3.2. Derivative Estimation

In order to process or render volumetric data, often deriva-
tives of the original density function are necessary. For ex-
ample, for volume rendering the estimated gradients are used
as surface normals to perform shading. In case of a grid
based representation the straightforward way is to estimate
the derivatives from a certain voxel neighborhood. To de-
termine the gradient, common methods, such as intermedi-
ate difference gradient, central difference gradient, or higher
order gradient estimation schemes are applied. In our case,
computing the derivatives from a certain 3D neighborhood
of samples requires to perform a large number of back-
projections. Especially for higher order gradient estimation
schemes, which need a large neighborhood of samples, the
computational costs would be significantly high. However,
the Filtered Back-Projection reconstruction scheme can also
be exploited to compute derivatives.

For example the partial derivativẽfx according to variable
x can be expressed by using Newton’s difference quotient:

f̃x =
∂ f̃ (x,y)

∂x
= lim

∆x→0

1
∆x

(
π
K

(
K

∑
i=1

Qθi ((x+∆x)cosθi +ysinθi)

−
K

∑
i=1

Qθi (xcosθi +ysinθi)))
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Substitutingti := xcosθi +ysinθi we obtain:

f̃x = lim
∆x→0

1
∆x

(
π
K

(
K

∑
i=1

Qθi (ti +∆xcosθi)−
K

∑
i=1

Qθi (ti)))

= lim
∆x→0

1
∆x

(
π
K

K

∑
i=1

Qθi (ti +∆xcosθi)−Qθi (ti))

=
π
K

K

∑
i=1

lim
∆x→0

1
∆x

(Qθi (ti +∆xcosθi)−Qθi (ti))

The term

lim
∆x→0

1
∆x

(Qθi (ti +∆xcosθi)−Qθi (ti)) (3)

is the partial derivative of the projectionsQθi , but scaled with
cosθi . We can therefore calculate the partial derivativef̃x
directly as sum of scaled derivatives of the projection data.
Analogously, taking the difference quotient with respect toy
we obtain:

f̃y =
∂ f̃ (x,y)

∂y
=

π
K

K

∑
i=1

lim
∆y→0

1
∆y

(Qθi (ti +∆ysinθi)−Qθi (ti))

It can be seen that applying Newton’s difference quotient
directly on the filtered projections is equivalent to apply-
ing Newton’s difference quotient for the 2D density func-
tion f (x,y). Moreover, any higher order derivative can be
obtained by applying Newton’s difference quotient multiple
times.

Using Filtered Back-Projection for gradient estimation we
expect higher accuracy than using the traditional gradient es-
timation schemes on the rectilinear grid. Consider central
differences on the continuous reconstruction from a recti-
linear representation. In order to calculate the gradient at an
arbitrary sampling point six additional samples have to be
interpolated. As interpolation usually causes loss of infor-
mation, the introduced errors are accumulated in the esti-
mated gradients. In contrast, using Filtered Back-Projection,
the density values at the additional sample points are as ac-
curate as the values at the grid points. Therefore, no interpo-
lation error is introduced.

4. Results

In order to show the differences between grid-based and
projection-based data reconstruction and gradient estimation
we present results for different datasets. Projection-based
datasets are acquired by a simulated Computed Tomogra-
phy scanning process. A slice based scanning process pro-
duces a non-uniform error distribution along the z-axis. To
avoid the non-uniform error distribution a simulation of a
spiral scanning process was implemented. The three dimen-
sional function used as input for the simulated scanning
process is referred to as the gold standard. The volumet-
ric function is defined by the projections and the Filtered
Back-Projection algorithm. This projection-based volumet-
ric function is assumed to be the initial point of the visu-
alization pipeline. The difference between projection-based

(a)

(d)(c)

(b)

Figure 5: Comparison of an iso-surface of the Marschner &
Lobb function: (a) Analytically computed. (b) DVR render-
ing of a 643 grid. (c) DVR rendering of an eight times big-
ger grid (1283). (d) D2VR from projection-based volumet-
ric data (64 projections, each projection with a resolution of
642). Grids are reconstructed from 64 filtered projections,
each projection with a resolution of 642.

reconstruction (compare solid line in Figure2) and grid-
based reconstruction (compare dashed line in Figure2) with
different interpolation schemes was computed. To visually
analyze the quality of D2VR a raycasting prototype for or-
thographic and perspective projection was implemented. For
each pixel of the image plane, rays are cast through the vol-
umetric space enclosed by the filtered projections. At each
resample location the underlying 3D density function is re-
constructed according to Equation2. To perform shading
gradient estimation is done directly on the projections. The
central difference gradient is applied directly on the 2D pro-
jections and back-projected onto the resample location. The
final color and opacity of the pixel are determined by the
over-operator [PD84] in front-to-back order. For all experi-
ments the stepsize along the ray was less than half the voxel
size. For each experiment the stepsize used for DVR was
equal to the stepsize used for D2VR. To evaluate our method
we use the analytically defined Marschner & Lobb func-
tion as gold standard. The simulated scanning process was
set up to compute 64 projections each with a resolution of
642. The Filtered Back-Projection was used to reconstruct
a regular rectilinear grid with a resolution of 643. Using
this grid different reconstruction schemes were used to re-
construct a rotated grid with the same resolution. The re-

c© The Eurographics Association 2006.



P. Rautek, B. Csébfalvi, S. Grimm, S. Bruckner, and M. E. Gröller / D2VR

(d)

(a) (b) (c)

(e)

Figure 6: CT scan of Carp (256x256x512): (a) DVR of original grid.(b) DVR of a 128x128x256 grid, reconstructed from
128 filtered projections, each projection with a resolution of 128x256. (c)D2VR of projection-based volumetric data (128
projections, each projection with a resolution of 128x256). (d) close-upof DVR. (e) close-up of D2VR.

sults were then compared to those of the projection-based
reconstruction scheme. The differences between the grid-
based reconstruction and the projection-based reconstruc-
tion decreases with more accurate grid-based reconstruction
schemes. In Table1 the difference of projection-based and
grid-based reconstruction using nearest neighbor-, trilinear-,
Catmull-Rom-, and polynomial interpolation is shown. We
computed the average and the maximum of the absolute dif-
ference in percent of the range of values of the Marschner
& Lobb function. To visualize the distribution of the er-
ror of projection-based reconstruction, we computed an iso-
surface directly from the analytical Marschner & Lobb func-
tion. On the iso-surface a color coding was applied to vi-
sualize the differences between the analytical and the re-
constructed value. Figure8 shows the differences between
the analytical values and the reconstructed values. Figure8a

NN TRI CAT P3 P4 P5
AVG 2.05 1.15 0.88 0.64 0.59 0.59
MAX 76.9 37.1 42.1 36.2 38.8 35.8

Table 1: Average (AVG) and maximum (MAX) absolute
difference of projection-based and grid-based reconstruc-
tion in percent of the data range, using different reconstruc-
tion schemes. Grid-based reconstruction schemes from left
to right: nearest neighbor- (NN), trilinear- (TRI), Catmull-
Rom- (CAT), and polynomial interpolation with polynomi-
als of degree 3 (P3), 4 (P4) and 5 (P5).

shows the errors using trilinear interpolation for reconstruc-
tion on the grid (643) and Figure8b shows the errors using
Filtered Back-Projection for reconstruction directly from the
projections. Green encodes low error, red encodes higher er-
rors. In Figure9 a similar color coding was used to visualize
the angular error of the projection-based gradient estima-
tion scheme. It is compared to grid-based gradient estima-
tion based on central differences. Figure9a shows the differ-
ences in degrees between the analytically computed gradi-
ents and the estimated gradients using central difference gra-
dient estimation. Figure9b shows the differences in degrees
between the analytically computed gradients and the esti-
mated gradients using our new projection-based gradient es-
timation method. Additionally, a grid with eight times more
samples (1283) was reconstructed from the projections and
iso-surfaces were computed from the two different grids as
well as directly from the analytical Marschner & Lobb func-
tion. The results can be seen in Figure5. Figure5a shows an
analytical rendering. Figure5b shows DVR of the 643 grid.
Figure5c shows DVR of the eight times bigger grid (1283).
And finally in Figure5d D2VR from 64 filtered projections,
each projection with a resolution of 642 is shown.

Additionally we tested the behavior of the projection-
based method with real world objects. Therefore, we use
regular grids as gold standard. The resolution of the grids is
high as compared to the resolution of the simulated scanner.
The gold standard is undersampled to show the effect of us-
ing not sufficient resolution during the scanning process. Un-
dersampling typically happens with real world objects. The
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Stag beetle dataset with a resolution of 832x832x494 vox-
els is used as the gold standard for the simulated scanning
process. It is scanned resulting in 64 projections each with a
resolution of 642. From these projections a rectilinear grid is
resampled with a resolution of 643 voxels. In Figure1 a vi-
sual comparison of direct volume renderings of iso-surfaces
using different reconstruction methods is given. Figure1a
to Figure1d show different grid-based reconstruction meth-
ods while in Figure1e the result of projection-based recon-
struction can be seen. Note that the holes in the legs of the
stag beetle get significantly smaller with D2VR. In order to
show the higher visual quality of D2VR we also rendered
the dataset of a carp with a semi-transparent transfer func-
tion. The rectilinear grid used as gold standard had a resolu-
tion of 256x256x512. 128 projections were taken each with
a resolution of 128x256. From these projections a rectilinear
grid was reconstructed with a resolution of 128x128x256. In
Figure6a the high-resolution grid used as gold standard is
shown. In Figure6b a DVR of the grid-based data is shown
using trilinear interpolation. Figure6c shows a D2VR of the
projection-based data. In Figure6d and Figure6e close-ups
of the grid-based DVR and D2VR respectively are shown.
Results in Figure1 and Figure6 clearly show that D2VR
produces higher quality than grid-based DVR using the same
amount of pixels on all the projections as voxels on the reg-
ular grid. We also compare D2VR with higher resolution
grids. Rectilinear grids with twice the resolution in each di-
rection as compared to the projections are computed, obtain-
ing a grid with eight times more voxels than pixels on the
projections. In Figure7a an axial slice of the Carp dataset is

(c) (d)(b)

(a)

Figure 7: (a) Axial slice of the Carp dataset, (b) close-up
using grid-based reconstruction with Catmull-Rom interpo-
lation on a 256x256x512 resolution grid, (c) close-up using
projection-based reconstruction from 128 projections each
with a resolution of 128x256, (d) Absolute difference of
data values of (b) and (c), dark green regions depicting zero
difference, light red regions depicting a difference of up to
7.5% of the range of data values.

shown. In Figure7b the grid-based reconstruction of a small
region of the dataset is shown using Catmull-Rom interpo-
lation on an eight times bigger grid. In Figure7c the result
of the projection-based reconstruction is shown. The abso-
lute difference of the projection-based reconstruction and the
grid-based reconstruction is shown in Figure7d. While in
most cases the used Catmull-Rom interpolation yields ap-
proximately the same results as the projection-based recon-
struction, there are big differences when it comes to high
frequency details. The maximum of the absolute difference
of the depicted region is 7.5% of the range of the data val-
ues. A grid with twice the resolution as the projections using
Catmull-Rom interpolation is not able to completely recon-
struct the projection-based volumetric function.

To quantify the performance of D2VR we measured the
time, needed to reconstruct one million samples on 64 pro-
jections (each with a resolution of 642). Compared to trilin-
ear interpolation on a regular grid (with a total of 643 voxels)
projection-based reconstruction was approximately (but less
than) 50 times slower. Compared to Catmull-Rom interpola-
tion projection-based reconstruction was approximately (but
less than) 10 times slower. To show the effect of increas-
ing the resolution of the scanner, experiments with higher
resolution datasets were performed. While the computation
time of the projection-based approach increases linearly with
the number of projections, the computation time of the grid-
based approach increases slightly with the resolution of the
grid. The experiments were repeated on different machines
and with different numbers of samples showing no signifi-
cant deviation.

5. Conclusion and Future Work

In this paper high-quality volume rendering of projection-
based volumetric data has been introduced. It has been
shown that volumetric raw data measured as a set of projec-
tions can be directly rendered without generating an inter-
mediate grid-based volume representation. As our method
avoids a lossy resampling step, it provides higher image
quality than traditional direct volume rendering techniques
do. Our novel projection-based gradient estimation scheme
avoids the accumulation of interpolation errors. Traditional
methods assume accurate samples at the grid points, while
the accuracy of intermediate samples strongly depends on
the quality of the applied interpolation method. In contrast,
our approach provides accurate data values for arbitrary
sample positions. The current performance of our prototype
implementation is not comparable to that of well developed
techniques. However, we believe that the increase in qual-
ity justifies further research in this direction. An interesting
aspect of our work lies in the fact that scanners produce pro-
jection data. Investigating approaches that directly manipu-
late and process the projection data without any intermedi-
ate representation seems to be an interesting research direc-
tion in the future. Our work was inspired by the practical
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tomographic reconstruction problem. Its theoretical signifi-
cance is the demonstration of an alternative volume repre-
sentation. In our future work we plan to explore other grid-
less volume representations, which are not necessarily re-
lated to the physical constraints of current scanning devices.
For example, in order to achieve full uniformly distributed
reconstruction quality, projection planes with uniformly dis-
tributed orientation might be applied. Although the adapta-
tion of the Filtered Back-Projection algorithm to such a ge-
ometry requires further research, it would lead to a direction
independent high-quality volume reconstruction scheme.
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Figure 8: Color encoded differences between analytical
value and (a) the reconstructed value using trilinear in-
terpolation on the grid (643), (b) the reconstructed value
using Filtered Back-Projection.
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Figure 9: Color encoded differences in degrees between
analytically computed gradients and (a) the estimated
gradients using central difference gradient estimation
on the grid, (b) the estimated gradients using our new
projection-based gradient estimation method.
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