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Abstract— Researchers from many domains use scientific visualization in their daily practice. Existing implementations of algorithms
usually come with a graphical user interface (high-level interface), or as software library or source code (low-level interface). In this
paper we present a system that integrates domain-specific languages (DSLs) and facilitates the creation of new DSLs. DSLs provide
an effective interface for domain scientists avoiding the difficulties involved with low-level interfaces and at the same time offering
more flexibility than high-level interfaces. We describe the design and implementation of ViSlang, an interpreted language specifically
tailored for scientific visualization. A major contribution of our design is the extensibility of the ViSlang language. Novel DSLs that
are tailored to the problems of the domain can be created and integrated into ViSlang. We show that our approach can be added to
existing user interfaces to increase the flexibility for expert users on demand, but at the same time does not interfere with the user
experience of novice users. To demonstrate the flexibility of our approach we present new DSLs for volume processing, querying and
visualization. We report the implementation effort for new DSLs and compare our approach with Matlab and Python implementations
in terms of run-time performance.

Index Terms—Domain-specific languages, Volume visualization, Volume visualization framework.

1 INTRODUCTION

Domain-specific languages (DSLs) offer increased expressiveness
compared to general purpose programming languages and higher flexi-
bility compared to graphical user interfaces at low computational over-
head. By abstracting the details of the computer soft- and hardware,
the user can focus on the relevant (i.e., domain-specific) problems. The
cost of learning new DSLs pays off for the user if the language is fo-
cused enough to avoid code that is not related to the actual domain, and
if at the same time the language is expressive enough to solve the rel-
evant problems. Domain-specific languages are especially well-suited
in situations where the low-level software APIs and the high-level do-
main problems are far apart in syntax and semantics. Scientific visu-
alization in general is a good target for employing DSLs for exactly
these reasons. For instance, the implementation of a feature extraction
and rendering algorithm requires a lot of knowledge and code to arrive
at even a basic setup. This basic setup (that is not specific to the actual
algorithm) includes data loading, initialization and state manipulation
of the graphics processing unit, as well as the windowing system. The
actual algorithm is only a small portion of the code. Even more severe
is the gap between parallel hardware programming and high-level do-
main problems. A domain scientist is ideally not confronted with the
complexity of programming highly parallel hardware (e.g., graphics
processing units). At the same time experts need access to the process-
ing power of GPUs and need the flexibility to combine multiple visu-
alization algorithms to answer specific questions. GPUs are a pow-
erful, cost-effective and widely available data processing infrastruc-
ture. General purpose computing languages that are executed on the
GPU, like CUDA and the open standard OpenCL, expose the comput-
ing power for all kinds of applications. Although many domain scien-
tists are knowledgeable in programming, the parallel nature of GPUs
bears additional challenges that often require in-depth knowledge in
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computer science and software engineering. Therefore, the program-
ming of GPUs is usually done by computer scientists or knowledge-
able software developers. DSLs can address the large gap between
low-level programming and high-level problems using abstraction of
algorithms. The low-level problems are hidden by the high-level DSL
allowing a larger audience to make use of the underlying computing
infrastructure.

In this paper we present a system that lowers the cost of develop-
ing novel DSLs. Further it integrates multiple DSLs in one solution
to leverage their flexibility. Figure 1 gives an overview of our design.
ViSlang is a library and an execution environment with an extension
mechanism. By integrating it into a visualization system the runtime
can execute commands and thereby modify the behavior of the visual-
ization system. The ViSlang runtime acts as the unified programming
interface to the user. DSLs that extend ViSlang are called slangs. User
input is executed by the ViSlang interpreter and commands that start
with the keyword using are forwarded to the corresponding slang. In
the example of Figure 1, the user writes a small program that makes
use of the slang renderer. The slang renderer offers a DSL that al-
lows to map data properties to visualization properties. A function
updateRendering is declared and a trigger is defined that executes the
function whenever the value of the variable x is changed. At the right
of Figure 1 the user tries different values for variable x, leading to in-
teractive updates of the visualization. The example of Figure 1 gives
an overview of the ViSlang runtime system. In practice multiple DSLs
are used in conjunction to combine data processing and visualization
modules going beyond the functionality of the individual algorithms.
ViSlang currently focuses on processing and visualization of static vol-
umes. This is not a restriction of the system design but of its current
implementation. However, one of the major design goals of ViSlang
is its extensibility and other data structures can be added over time.

The major contribution of this paper is a language and system de-
sign that addresses the major risks and challenges of DSLs while pre-
serving their benefits as listed by Van Deuresen et al. [37]. Specifically
we address the following issues with our design:

Extensibility: ViSlang can integrate multiple domain-specific lan-
guages, addressing the issue that one DSL is not expressive enough
for all problems across all domains that make use of visualization.
With this approach we anticipate that algorithms address different as-
pects of visualization with concise yet expressive languages. We show
that a procedural DSL is well suited for querying volumes, while a
declarative DSL is well suited for the configuration of a visualization
algorithm. Further, we propose a combination with a functional DSL
to compute certain statistics of the data.
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renderer void updateRendering(float x) {
    // use slang renderer
    using renderer:     
         focus = value > x;
    using;
}
//assign trigger
float x -> updateRendering(x); 

slangs

x = 0; x = 0.05; x = 0.1; x = 0.2;

Fig. 1. System Overview: Slangs are DSLs that encapsulate a certain functionality and register it with the ViSlang runtime. The ViSlang runtime
implements an embedded interpreter that executes programs in an interactive environment. The user interacts with an integrated program editor to
issue ViSlang commands.

Implementation Overhead: We show that ViSlang keeps the im-
plementation overhead for a new DSL low by using recurring patterns.
Elements of the grammar can be reused, thereby reducing the effort to
parse, analyze, and execute a new DSL. Data structures optimized for
parallel algorithms can be reused to enable parallel execution without
the low-level issues of GPU programming. We argue that the imple-
mentation overhead for new DSLs is small and that the benefits out-
weigh the costs. To further reduce the overhead of integrating a new
DSL with ViSlang we provide a meta-language that instantiates tem-
plates to create new slangs.

Low-Level vs. High-Level Programming: Algorithms that are
executed in parallel are generally harder to program than sequentially
executed programs. It is desirable to offer an easier interface to these
algorithms for non experts. In many cases critical parts of algorithms
can be formulated independently of the semantics of parallel execu-
tion. These parts can be made accessible to inexperienced program-
mers using a DSL. We show an implementation of a parallel map-
reduce algorithm. The mapping function is exposed as a DSL while
the complexity of the implementation of the parallel reduction is hid-
den. We describe the implementation of a rendering algorithm and a
logical query language. Both algorithms hide the low-level details of
the parallel execution and offer a high-level programming interface.

Compatibility: All these challenges are addressed, maintaining
compatibility to existing user interface concepts. We demonstrate
how to add DSLs without changing existing interfaces. This offers
increased flexibility on demand for expert users.

In this paper we first review related work in Section 2. We describe
a set of slangs that demonstrate the different kinds of DSLs in Sec-
tion 3. The extension mechanism and the meta-language are described
in Section 4. The integration of reusable data structures that are op-
timized for parallel execution is described in Section 5. We discuss
how implementation overhead is reduced and present runtime mea-
surements in Section 6. The description of data types, and statements
in ViSlang that are tailored for visualization, as well as the general
control flow are described in Appendix A of the supplemental mate-
rial. The ViSlang grammar in EBNF is given in Appendix B.

2 RELATED WORK

Several approaches are commonly used to address the complexity of
low-level interfaces for facilitating abstraction. For instance, software
libraries are low-level interfaces that offer abstractions of algorithms
and data structures. However, they require a lot of programming ex-
perience, and are not natively integrated in run-time environments. To
allow a user to manipulate certain aspects of a visualization system at
run-time, several approaches have been used. Turn-key user interfaces
are a simple mechanism that enables the manipulation of parameters.
They are frequently used due to the ease of implementation. However,
they limit the flexibility of the user to certain parameter settings. Data
flow systems encapsulate software modules and expose them to the
user in a graphical user interface. Using the drag and drop metaphor,
networks of data flows are specified connecting different modules. Our
approach was inspired by the observation that the common visual pro-
gramming approach of data flow systems tends to oversimplify the
situation. It is not possible for the user to try variations of the algo-

rithms by implementing the configurable parts of the software. This
leads to systems that are not flexible enough for the user to take full
advantage of the available visualization algorithms. Figure 2 shows
the different levels of run-time interfaces of a visualization application
and the corresponding target user group ordered by increasing level of
expertise.

The novice user gets an application that is pre-configured for clas-
sical turn-key interaction. The data flow interface is used by more
advanced users that re-configure the application at run-time. The ex-
pert user profits from increased flexibility, and might use interfaces on
all three levels. Typically, only expert programmers have the skills to
modify existing source code and to reuse low level libraries.
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Fig. 2. Interfaces by increasing flexibility and user experience: Users
of different levels of experience get different views on an application.
Novice and intermediate users adapt parameters and combine mod-
ules with a graphical user interface. Experts program certain aspects of
modules (DSLs) or entirely new functionality.

2.1 Domain-Specific Languages for Visual Computing
Domain-specific languages have been extensively used in visual com-
puting for a long time. Graphics APIs like OpenGL and shader lan-
guages like HLSL, GLSL, Cg, etc. are low-level interfaces for pro-
gramming the graphics hardware of modern computer systems. These
APIs are used to modify the state and the data stored on the graphics
card. API calls initiate the graphics pipeline to process data prim-
itives and to compute pixel colors. Shaders are a good example of
widely used DSLs for programming parts of the graphics pipeline.
More recently general purpose computing languages, like CUDA and
OpenCL, are available that enable programming of graphics hardware
in a more flexible way. These languages are APIs for parallel com-
puting applications in the field of visual computing and beyond. As
they are low-level APIs they do not address the special needs of non-
experts. A large body of previous work addresses the gap between
low- and high-level APIs.

For instance the work of Hultquist and Raible [15] targets compu-
tational fluid dynamics applications. It is conceptually similar to our
approach as it presents a system with an interpreter supporting the
rapid development of new visualization components. Computation-
ally expensive components are written in C, while the rapid prototyp-
ing functionality is offered to the user at run-time using Scheme as a
programming language. We follow a similar approach but integrate
support for the creation of entirely new DSLs that can execute on par-
allel hardware.

Johnson and Huang [17] present a declarative DSL for specifying
feature classes and for deriving statistical matches of these classes.
Their language is a good example for a concise yet powerful DSL.



Chiw et al. [6] describe Diderot, a domain-specific language for im-
age analysis and visualization. The language is tailored to the rapid
prototyping of algorithms that are executed on parallel hardware. The
language includes support for concepts and notations well known from
tensor calculus. This high level of abstraction allows the program-
mer to write tensor operations using familiar notation. The authors
demonstrate that the program runs very efficiently, although it is spec-
ified with high-level concepts. Hašan et al. [13] present Shadie, a
domain-specific (Python like) language that is translated to CUDA
kernels. The run-time handles data loading, and parameters are au-
tomatically passed to the CUDA kernels. The recent work of Choi et
al. [7] presents Vivaldi, a DSL inspired by Shadie. It supports exe-
cution on distributed GPU architectures. McCormick et al. [23, 24]
and Jablin et al. [16] present Scout, a high-level hardware accelerated
language. Scout programs are compiled at run-time and executed on
the GPU, hence omitting the complexity of parallel programming and
still profiting from a highly parallel architecture. Stockinger et al. [34]
present a framework for efficient evaluation of range queries. Queries
are specified by the user as logical combinations of range selectors for
large multivariate data. The queries that define the interesting parts of
the data are evaluated and the results are visualized.

Ragan-Kelley et al. [31] present Halide, a domain-specific language
for image processing pipelines. By separating algorithmic code from
code that optimizes the execution, a concise language is presented that
executes fast on parallel hardware.

Each of these approaches is focused on one specific aspect of the
data analysis and visualization pipeline. The work of Johnson and
Huang [17] focuses on distributions of certain properties, Diderot [6]
on tensor calculus, Shadie [13] on approximating the volume ren-
dering integral, Scout [16, 23, 24] on the visualization mapping,
Halide [31] and Vivaldi [7] on efficient image and volume process-
ing, and the work of Stockinger et al. [34] on data selection by query-
ing for data ranges. Unlike these approaches, we present a language
design that generalizes the problem of integrating DSLs into visualiza-
tion systems. We address the need for more than one domain-specific
language in visualization with the extensibility of our language. This
allows us to implement different slangs for different aspects of the vi-
sualization pipeline.

Duke et al. [9] have used Haskell to integrate three different DSLs
to solve a specific visualization problem with a functional program-
ming language. They report on the benefits of employing multiple
DSLs for scientific visualization in their work [10]. Brown et al. [4]
present Delite, a framework to generate embedded DSLs that can ex-
ecute on heterogeneous parallel hardware. They show OptiML as an
example DSL for machine learning algorithms. We follow a similar
idea and also suggest to generate and integrate novel DSLs in one
common framework. However, we present a full system that inte-
grates DSLs with a visualization environment and use an interpreted
language to provide immediate visual feedback for the end user. Fur-
ther, our framework does not require the DSLs to be embedded DSLs
and has less restrictions on the syntax of new DSLs.

The usefulness of DSLs and abstraction of low-level implemen-
tation details in scientific visualization was previously also demon-
strated on massively parallel clusters. The work of Glatter et al. [11],
and Kendall et al. [19] are noteworthy examples that demonstrate the
advantages of DSLs as interfaces. Vo et al. [38] present results of using
a well known MapReduce framework for visualization. Although ViS-
lang is not meant to run on clusters, but rather on GPUs, it is similar
as it separates low-level implementation details from high-level APIs
using DSLs. However, unlike other work ViSlang focuses on the inte-
gration of multiple DSLs into one system and the support for creating
new DSLs.

2.2 Libraries and Data Flow Systems
Libraries and toolkits like VTK [33], and ITK [42], provide modules
that can be re-purposed and combined to form more complex volume
processing and visualization systems. Libraries are a common ap-
proach to offer modular and reusable software. In this aspect, they
are similar to domain-specific languages. However, a library typically

offers its functionality via a low-level interface that requires advanced
software engineering skills. Lefohn et al. [21] present Glift, a library
of highly efficient, and reusable GPU data structures. It uses templates
to offer generic data structures and algorithms similar to the Standard
Template Library (STL).

The widely adopted data flow concept enables combination of ex-
isting modules in novel ways, and to extend the given functionality
by integrating new modules. AVS [36], OpenDX [22], SCIRun [40],
METK [27], Voreen [25], VisTrails [1], as well as the work of Rieder
et al. [32] are prominent examples for data flow frameworks.

Our approach is similar to the data flow concept, but can handle
more complex interactions between different modules. By offering a
common interface to all modules for the user, data can not only be
passed from one module to the next but also be transformed by a user-
defined program. We also believe that the programming interface is
more natural and less cumbersome for programing certain parts of an
application. Our approach also allows for a seamless integration with
the data flow paradigm and offers a novel additional interface to the
user.

Other frameworks like VisIt [5] and ParaView [14] incorporate a
Python scripting interface. Scripting is a powerful tool to enable
higher levels of flexibility for the expert users. The ViSlang runtime
inherits these advantages of scripting interfaces. Additionally, ViS-
lang facilitates the easy integration of novel DSLs, each potentially
more focused to one particular task than a general purpose language
like Python.

The Dax Toolkit [26] enables the combination of fine grained op-
erations (worklets), which makes it particularly suitable for large
scale computing. Unlike traditional module based data flow systems,
worklets are combined before execution leading to less overhead and
more parallelism. We employ a similar strategy and combine multiple
user defined functions into one OpenCL kernel. This enables ViSlang
to outperform other systems like Python and Matlab that call kernels
sequentially.

2.3 Interpreted Languages for Science

The high popularity and intensive usage of interpreter systems like
R [30], Matlab [35], Mathematica [41] and Python [28], shows that
scientists from many domains are used to perform basic programming
tasks. Recent work [12] builds on top of Python and its many libraries
for high-performance scientific computing and visualization. We pro-
pose an interpreted language that targets scientific visualization, and
that addresses the specific needs of domain scientists to have access to
advanced visualization, and parallel processing algorithms.

using VolumePredicate;
predicate distanceLess[voxel vox in v] (float x, float y, float z, float dist) {
    float d = (vox.x-x)*(vox.x-x) + (vox.y-y)*(vox.y-y) + (vox.z-z)*(vox.z-z);
    return (sqrt(d) < dist);
}
predicate valueAbove[voxel vox in v] (float thresh)
{  return (vox.value>thresh); }

distanceLess(x, y, z, 64) & 

! valueAbove(0.5);

valueAbove(0.5);

Fig. 3. The two volume predicates distanceLess and valueAbove are
used to extract two regions. The distanceLess predicate specifies a fo-
cus region. In combination with valueAbove two vsets are extracted.
The combined result is shown as well as each vset with separate trans-
fer functions.



void appendToStyle(integer u, integer v){
    list volumePos = DisplayVset.probe(u, v);
    selectedLabel = labelVolume.get(volumePos.get(0), volumePos.get(1), volumePos.get(2));
    DisplayVlabel.setSelection(selectedLabel); 
}
Mouse.clickPosition -> appendToStyle(Mouse.getX(), Mouse.getY());

using DisplayVlabel:
   Selection{
      color:100%(1.0,1.0,0.0,1.0),
      bordercolor:100%(0.0, 0.0, 0.0, 1.0),
      compositing:50%
   }

vlabel labelVolume = Vlabel.label(vset1):using VolumePredicate;
  predicate inRange[voxel vox in v] (
                     float fMin, float fMax){
     return ((vox.value>=fMin)&(vox.value<=fMax));
  }
using;
vset vset1 = VolumePredicate.inRange(0.12,1):

(c) (d)(b)(a)

Fig. 4. ViSlang is used to program a visualization system that assigns visualization styles to different regions on mouse click. (a) shows the
application of a declarative slang resulting in a segmentation of the volume. (b) shows the labeling of the individual regions and the declaration
of visualization styles. (c) shows how mouse clicks trigger the assignment of visualization styles. (d) shows the result after several styles were
assigned by the user.

3 SLANGS

One of the main advantages of the ViSlang concept is that it en-
ables the seamless integration of multiple programming paradigms in
a common environment. For instance, for presentation and interaction,
declarative approaches gained considerable popularity as they decou-
ple specification and execution, and support retargeting. Well known
examples include Cascading Style Sheets [39] (CSS), or, more re-
cently QML [29], the Qt Modeling Language, which provides a declar-
ative interface to the popular Qt user-interface toolkit. Within the field
of visualization, ProtoVis [2] and its successor D3 [3] have impres-
sively demonstrated the advantages of declarative language designs.
In signal and image processing, functional approaches are of particu-
lar interest as they offer a natural and efficient representation. They can
represent data flow graphs in a direct manner and provide optimization
opportunities such as lazy evaluation and easy data parallelism [18].
Rendering algorithms, on the other hand, mostly lend themselves to-
wards imperative languages due to the need for fine-grained control.

Our approach makes it possible to exploit the respective advantages
of different paradigms in a single application through the combination
of different slangs. In this section, we illustrate the power of ViS-
lang outlining three slangs that demonstrate the integration of different
kinds of DSLs. The Volume Predicate slang described in Section 3.1
encapsulates the semantics of a logical query in subroutines. It is a
procedural DSL for the specification of logical predicates that are ex-
ecuted in parallel and either yield true or false for each voxel. The
Vlabel Visualization slang described in Section 3.2 is a declarative
DSL for the specification of visualization styles. The Map-Reduce
slang in Section 3.3 is a functional DSL. It is used to specify mapping
functions that are passed as argument to one of the reduce functions.

From an end user perspective all DSLs are called from ViSlang.
A slang block starts with the keyword using and ends with the end
of input, or the using; instruction. The ViSlang parser forwards slang
blocks to the specified slangs and waits until the commands are parsed.
If the slangs report parser errors, they are presented to the user and in-
terpretation is stopped. If parsing succeeds the execution phase starts.
The commands are executed in order. When a slang instruction is
reached the slang’s execution interface is called and the slang takes
the previously parsed commands and executes them.

3.1 Volume Predicate Slang

The Volume Predicate slang abstracts the parallel evaluation of a 3D
logical query. Predicates are defined as subroutines using mathemat-

ical expressions and memory access functions for individual voxels.
The subroutines are combined with the logical operators or, and, not.
This slang is used to program queries that might be tailored to the ap-
plication domain and the data sets under investigation. The result of a
volume query is a binary volume, which is called vset in ViSlang.

In Figure 3, we show an example that combines multiple predicates
defined by the user. At the top of Figure 3 the predicates distanceLess
and valueAbove are shown. The distanceLess predicate is true if the
Euclidean distance between the voxel vox and a point in space (defined
with the arguments x, y, z) is smaller than the argument dist. Combin-
ing the distanceLess predicate with the valueAbove predicate results in
two vsets in this example. At the bottom of Figure 3 the result and the
individual vsets are shown. Each vset as well as the remainder of the
volume are jointly rendered with individual transfer functions.

3.2 Vlabel Visualization Slang
The Vlabel Visualization slang implements a declarative language that
takes data of type volume and a corresponding label volume (called
vlabel in ViSlang) and performs ray-casting. It allows the user to spec-
ify different visualization styles and to assign particular labels to these
styles. A style is specified using a very concise syntax controlling the
weights of different colors, and other visual properties.

In the example of Figure 4, a predicate inRange is specified. It
takes the two arguments fMin and fMax and returns true if the value
of the voxel is in this range. Figure 4 (a) shows the predicate and the
result after applying it. The predicate is transformed to an OpenCL
program by the volume predicate slang. The colon symbol is used to
call ViSlang’s display function immediately after the statements are
evaluated. As a result the vset renderer generates the parameter-less
visualization of the vset by applying RGB colors to the normalized
volumetric coordinates.

In Figure 4 (b) a labeling algorithm is called to assign different la-
bels to individual disconnected regions in the vset. Again the colon
symbol is used to call the display function. The default visualiza-
tion of the vlabel assigns a random color to each region. Using the
DisplayVlabel slang, the style Selection is declared at the bottom of
Figure 4 (b). The declarations of other styles are similar and therefore
omitted for brevity. Figure 4 (c) shows the code to specify the behavior
of the system. A function appendToStyle is defined. The probe method
of object DisplayVset is used to transform 2D image coordinates into
3D volumetric coordinates defined by the first hit of the ray. The label
selectedLabel is retrieved as a 3D look-up in the vlabel data structure.
The slang DisplayVlabel is used to assign the style to the region with



// declare visualization styles ‘Small’, ‘Medium’, ‘Biggest’
using DisplayVlabel; ... // code omitted for brevity
// result (b)
// declare reduction for counting voxels in a region 
using Reduction;
integer countVoxels(uvoxel v, integer id) {
  if (v.value == id) { return 1; }
  return 0;
} 

// iterate over all regions and assign a visualization style 
for (integer i=0; i<maxRegionLabel; i=i+1){
using Reduction;
   n = sum[uvoxel vox in l]countVoxels(vox, i);
using;
   if (n>2000) { DisplayVlabel.setBiggest(i); } 
   else if (n>500) { DisplayVlabel.setMedium(i); }
   else { DisplayVlabel.setSmall(i); }           } 
// result (c)

// label individual volume regions
vlabel labelVolume = Vlabel.label(vset1): // result (a)
// reduction for finding the maximum region id 
integer maxRegionLabel = 0;
using Reduction;
integer getRegionLabel(uvoxel v) {
 return v.value;
}
maxRegionLabel = max[uvoxel vox in l]getRegionLabel(vox); 

// declare visualization styles ‘Small’, ‘Medium’, ‘Biggest’
using DisplayVlabel; ... // code omitted for brevity
// declare reduction for counting voxels in a region 
using Reduction;
integer countVoxels(uvoxel v, integer id) {
  if (v.value == id) { return 1; }
  return 0;
} 

// iterate over all regions and assign a visualization style 
for (integer i=0; i<maxRegionLabel; i=i+1){
using Reduction;
   n = sum[uvoxel vox in l]countVoxels(vox, i);
using;
   if (n>2000) { DisplayVlabel.setBiggest(i); } 
   else if (n>500) { DisplayVlabel.setMedium(i); }
   else { DisplayVlabel.setSmall(i); }           } 

// reduction for finding the maximum region id 
integer maxRegionLabel = 0;
using Reduction;
integer getRegionLabel(uvoxel v) {
 return v.value;
}
maxRegionLabel = max[uvoxel vox in l]getRegionLabel(vox); 

(a) (b) (c)

Fig. 5. The Map-Reduce slang is used to efficiently compute the number of labels as well as the number of voxels in each region. In conjunction
with the other slangs a visualization is programmed that assigns different styles to regions of different size. (a) shows the result after the individual
regions are labeled. (b) shows the result after the styles are defined and the background style is applied to all regions by default. (c) shows the
result after all regions were assigned a style.

label selectedLabel. The last line of the code assigns a trigger to the
variable Mouse.Position that executes the function appendToStyle ev-
ery time the user clicks on the visualization. The image in Figure 4 (c)
is the visualization after the user assigned one style to multiple regions.
By slightly modifying the appendToStyle function, the user can assign
different styles to different regions. Figure 4 (d) shows the result after
the user assigned five different styles: random coloring with specular
highlights for the Christmas baubles, white with shading for the can-
dles, red with shading for the decoration, brown with shading for the
trunk of the tree, and yellow cartoon shading that shines through other
objects for the figure in the middle of the image.

3.3 Map-Reduce Slang

The Map-Reduce slang abstracts the parallel evaluation of a mapping
function followed by a 3D reduction operation [20]. The user speci-
fies a function that maps voxel attributes of (multiple) input volume(s)
to one output value. The mapping function is then passed to one of
the predefined reduction operations addition, minimum, maximum or
multiplication. With the Map-Reduce slang the user can quickly im-
plement reduction operations that are executed on the GPU. Typical
algorithms that can be implemented by the user include: counting all
voxels that are true in a vset, or finding the maximum of all voxels
in a vlabel. More complex mapping functions can be used to query
for certain value ranges, for instance, to count voxels or to compute
the centroid of a connected component with a specific id in a vlabel
volume. For multiple input volumes, the computation of properties of
intersections and unions is possible as well as performing more com-
plex filtering operations.

Figure 5 shows an example of using the Volume Predicate, the
Vlabel Visualization, and the Map-Reduce slang in conjunction. A
3D energy-dispersive X-ray spectroscopy (EDS) dataset is visualized.
Figure 5 (a) shows the result of applying a volume predicate and us-
ing the labeling algorithm. The Map-Reduce slang is used to find the
maximum region number (maxRegionLabel). Figure 5 (b) shows the
visualization after styles for small, medium, and large regions as well
as the background are declared (the code is similar to style declara-
tions before and therefore omitted for brevity). At this point no styles
are assigned to individual regions. Therefore everything is visualized
in the background style. The mapping function countVoxels is used in
conjunction with the sum reduction. Figure 5 (c) shows the reduction
to compute the number of voxels per region. One of three visualiza-
tion styles is assigned accordingly. The smallest regions are made
transparent. Medium sized regions get a random color and large re-
gions are assigned a yellow style. This example shows how multiple
slangs are used to program a visualization that is tailored to a particu-
lar EDS dataset. The accompanying video features a similar setup that
generates an animation during assignment of the visualization styles.

4 EXTENSION MECHANISM AND THE META-LANGUAGE

Although DSLs are extremely useful interfaces, they pose an addi-
tional burden on the application developer. Implementing a new slang
technically is a matter of deriving a C++ class from ViSlang’s slang
class. However, developing a new DSL involves lexing, parsing, se-
mantic analysis, abstract syntax tree (AST) transformations and in-
terpretation. Additional features that are important for end users of
the DSL are error reporting, debugging, syntax high-lighting, and per-
formance optimization, just to name a few. Furthermore, DSLs for
visualization are most useful when they abstract parallel algorithms.
The need for a parallel execution environment introduces even more
complexity for the DSL developer. In sum the additional work is often
too costly and therefore DSLs are not as often employed as they would
be useful.

To reduce the effort of implementing a new slang, the programmer
can profit from using recurring patterns. ViSlang already incorporates
a parser framework, a code generator and optimized GPU data struc-
tures that are used to manage GPU memory resources, share resources
efficiently among slangs and apply optimizations. Since the ViSlang
library aims to support a wide variety of visualization algorithms, we
chose a set of libraries and an execution environment that are efficient,
standardized, open, platform- and hardware independent, and suitable
for parallel execution. The lexer and parser framework of ViSlang is
Boost Spirit [8]. Boost Spirit is used to define recursive descent parsers
inlined in C++. Unlike other parser generators it omits an additional
build step and therefore does not depend on external tools. As a par-
allel execution environment we found OpenCL to be a perfect match
for ViSlang. It is a just-in-time (JIT) compiled language and therefore
seamlessly integrates with our interpreter. Building on this software
infrastructure we have identified three common patterns for the devel-
opment of new slangs in ViSlang:

Parsing: We implemented recurring syntax concepts like expres-
sions, lists, arguments, etc. on top of Boost Spirit. These concepts
can be reused and repurposed with very low effort. For example when
instancing the list syntax, any parser can be used as argument. There-
fore, parsing of lists of any kind is implemented quickly. Syntax
constructs can be combined with the well known parser operators se-
quence, not, and, optional, Kleene star, and plus. Although reusing
this parser framework and existing grammar elements might tremen-
dously reduce the effort to specify a new DSL, we do by no means
enforce it. Alternatively, parsers can be generated with any other pop-
ular parser generator framework. Especially grammars and parsers of
existing DSLs can be integrated without additional overhead.

OpenCL code generation: ViSlang implements classes for
OpenCL code generation. By using OpenCL template files with a
simple annotation syntax, an OpenCL algorithm can be abstracted
with low effort. At run-time, code is injected into the template and
the OpenCL program is generated. A DSL that generates and just-in-



time compiles OpenCL programs, can benefit from implementing the
OpenCLAlgorithm and Injector interfaces. When deriving from the
OpenCLAlgorithm class, ViSlang handles OpenCL program compi-
lation and offers extended debugging functionality. OpenCL template
files and OpenCL programs can be inspected and modified at run-time.
This greatly reduces the implementation effort for this pattern.

OpenCL data structures: By re-using the data structures that were
optimized for sparse volumes, implementation effort can be greatly
reduced. structs are offered for the different data structures that can
be included in C++ and OpenCL. Set- and Get-methods are used to
transparently handle virtual memory management, address calcula-
tions, and on-the-fly memory allocation.

To even further reduce the effort of implementing a DSL, we de-
veloped a meta-language for the specification and generation of new
slangs. A Slang is defined in terms of a name, a template, a set of
parameters, a grammar, and a description. The meta-language auto-
mates some of the implementation work by instantiating templates.

1 using MetaSlang;
2 // defining a new slang
3 name: Filter3D;
4 // use template volume2volume
5 template: volume2volume;
6 // defining parameters
7 parameters: integer kernelWidth;
8 integer kernelHeight; integer kernelDepth;
9 // the grammar accepts a kernel function

10 grammar:
11 kernelFunction = functionName > ’(’ > arguments

> ’)’ > ’=’ > expression > ’;’;
12 functionName = ViSlang::Identifier;
13 arguments = ViSlang::List(argument);
14 argument = ViSlang::ArgumentDeclaration;
15 expression = ViSlang::ArithmeticExpression;
16 // a human readable description for the end user
17 description: ...

Listing 1. Using the Meta-Language to define a new slang.

In order to avoid compromising the performance of a new DSL we
create the parser and the execution code in C++ including OpenCL
boilerplate code. For example the program in Listing 1 defines the new
Slang Filter3D that is meant for the specification of a 3D filter kernel.
It builds on the volume2volume template, meaning that OpenCL code
is generated for volume processing. The Filter3D slang has the pa-
rameters kernelWidth, kernelHeight, anf kernelDepth. The end user
will have access to these parameters via ViSlang. The grammar de-
fines the syntax of the DSL. It consists of a list of parsers. In Listing 1
the parsers kernelFunction, functionName, arguments, argument, and
expression are defined. The meta-language generates parsers and ab-
stract syntax tree nodes accordingly.

1// setting the parameters
2Filter3D.kernelWidth = 5;
3Filter3D.kernelHeight = 5;
4Filter3D.kernelDepth = 5;
5// using the DSL interface
6using Filter3D;
7 f(float dx, float dy, float dz, float a, float s)=
8 a*exp(-1.0*(dx*dx)+(dy*dy)+(dz*dz)*(1.0/2*s*s));

Listing 2. Using the slang Filter3D to generate a 3D Gaussian filter.

In the example of Listing 1 the kernelFunction is defined as a se-
quence (>) of other parsers and a set of symbols (’(’, ’)’, ’=’, and ’;’).
The meta-language supports the common parsers sequence, Kleene
star, option, logical or, and all ViSlang parsers, the parsers that make
up the ViSlang language. A slang created by the meta-language is
compiled with a C++ compiler and automatically gets registered with

the ViSlang system. At runtime it accepts user input according to its
grammar. Listing 2 shows an example of user input that is accepted by
the new Filter3D slang. The Filter3D slang parses the input, creates
an abstract syntax tree and sets the parameters of the OpenCL kernel.
To implement the execution phase the programmer has to transform
the AST to executable code. This can be done by using the OpenCL
code generation tools of ViSlang. AST nodes like function declara-
tion, function call, arithmetic- and boolean expressions, while-, for-,
if statements and literals generate OpenCL code. These features of
ViSlang greatly reduce the cost of development for new DSLs.

5 VISLANG RUNTIME, MEMORY MANAGEMENT AND DATA
STRUCTURES

The ViSlang runtime interprets the code by executing it sequentially.
A memory manager keeps track of the allocated data structures and of
the variables in scope. The variables are derived from one common
class that supports linking and triggering of events. This not only al-
lows the user to link variables and trigger events when a value changes,
but also to link variables to a graphical user interface. When a new
variable is declared an equivalent GUI element is created that is linked
to the variable. An assignment of a new value to a variable causes
a GUI update to be triggered and, likewise, manipulation of the GUI
will trigger assigned ViSlang functions. The ViSlang library that in-
cludes the ViSlang runtime is largely separated from the rest of the
visualization system and can be integrated with other systems written
in C++. In fact our test environment and a console application that link
to the ViSlang library do not make use of any visualization system, yet
can be used to operate on volumes. Since the integration of render-
ing algorithms works differently in different systems, these parts were
implemented specifically for one visualization system. Also the tem-
plates for the Meta-Language are specific to one system and need to
be replaced when integrating with a different visualization system.

ViSlang implements optimized data structures for parallel execution
of algorithms in OpenCL. As an example of a managed data structure
we describe vsets, an optimized data structure for storing and manip-
ulating sparse binary volumes. Conceptually, vsets are volumes with
each voxel representing a boolean value. This is a common case for
many algorithms that try to extract higher level semantics from the
data. The most prominent example are binary segmentation algo-
rithms, but many other algorithms also need to keep track if voxels
belong to a certain class.

To benefit from spatial coherence we use a bricking scheme where
each vset is conceptually subdivided into independent volumetric
bricks. All homogenous bricks are represented very efficiently with
only one value. Inhomogeneous bricks (with at least one entry be-
ing different from the others), are completely represented in memory,
storing one bit for each voxel. The memory manager allocates mem-
ory from the graphics hardware for a pool of bricks. Each vset holds
a list of indices into this memory pool. An empty vset is represented
by a list of zeros and no memory is used from the brick pool. If an
algorithm sets a bit in a given vset to true, the memory manager al-
locates an empty brick from the brick pool. This allocation is done
at the run-time of the OpenCL program. The memory manager has a
list of locks, to synchronize memory access to the bricks in the brick
pool. Further, a list of empty bricks is held by the memory manager.
A pointer into the list is required to keep track of the next empty brick
to be allocated.

Figure 6 shows the brick pool of the memory manager and the al-
locations and deallocations during the life-cycle of several vsets. Fig-
ure 6 (a) shows the brick pool after the allocation of the three vsets
orange, green, and violet. The vsets have lists that point to the brick
pool. Zero as index of a vset means that the brick is empty, 1 means
that each entry of the brick is set to true. The brick pool holds the
memory for non-empty bricks of all allocated vsets starting with index
2. Between the memory layouts shown in Figure 6 (a) and (b), the fol-
lowing events happened: vset violet sets all bits that previously were
true to false in bricks 8 and 9. Since every brick contains a counter that
keeps track of the number of bits that are set to true, this situation is
detected and the entries into the brick list are updated to 0. The bricks
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Fig. 6. The brick pool of the memory manager and the life-cycle of
several vsets. Filled bricks are assigned to the vset of the corresponding
color. Empty bricks are either ready to be assigned by the memory
manager (blue) or used and waiting for garbage collection (other colors).

8 and 9 are marked for garbage collection. vset violet also sets bits to
true in different bricks of the volume, and therefore new bricks (14 and
15) are allocated. vset orange allocates a new brick (16). vset green
allocates brick 17, and all bits of the brick 3 of vset green are set to
false, causing that it points to 0. Later in the same brick of vset green,
bits are again set to true. The memory manager at this point does not
know that the old brick is already free again and assigns a new brick
with number 18. vset orange allocates new bricks (19 and 20). Three
bricks of the brick pool (drawn in white) are not used, but cannot be
allocated by the memory manager, because they are not in the list of
empty bricks anymore. In Figure 6 (c) the green and orange vsets are
deallocated. Deallocation of a vset causes the memory manager to set
all bits in all used bricks of the vset to false. After the allocation of
a new vset (vset brown allocates bricks 21 to 26) in Figure 6 (c), the
memory manager detects a low memory situation (i.e., the number of
free bricks is low). The garbage collector inserts the 14 bricks that are
empty into the list of empty bricks. The result after garbage collection
can be seen in Figure 6 (d).

In our implementation a brick size of 323 is used, which results in
4 KB per brick. Additionally we store one integer per brick that keeps
track of the number of bits that are set to true. A vset is represented
by an array of integers, each holding an index of a brick. An empty
vset of size w × h × d is efficiently represented by an array of size
ceil(w/32)× ceil(h/32)× ceil(d/32). For instance a vset of dimen-
sions 10243 is represented by 128 KB of memory. A typical example
of a sparse vset with 10% of bricks being non-homogenous is repre-
sented with less than 13.2 MB of memory allowing for a large number
of sparse vsets to be represented on modern graphics hardware.

The memory manager has an additional overhead that depends on
the number of allocated bricks. The empty brick list contains one entry
per brick. To guarantee thread-safe allocation of bricks (which is crit-
ical for OpenCL algorithms), the memory manager must store a lock
for each brick represented as an integer in our implementation. For a
memory pool of 1 GB, this requires in total 2 MB of additional storage
plus 4 bytes for the head pointer of the empty list.

Vsets are an example of an optimized data-structure that is part
of the ViSlang system. A new slang can benefit from these data-
structures using their interfaces regardless of their low-level imple-

functionality predicate (loc) renderer (loc) map-reduce (loc)
ViSlang interface 112 114 161
code generation 383 0 171
parser 216 277 174
other C++ 35 272 129
total C++ 746 663 635
OpenCL / (%) 24 / (8%) 166 / (23%) 102 / (22%)

Table 1. Examples of implementation overhead for DSLs in lines of code
(loc). The last row shows additional OpenCL code as lines of code and
as percentage of the total OpenCL code of the algorithm.

mentation details.
Although our implementation is currently limited to single GPU,

in-core data structures for regular volumetric data, this is not a gen-
eral limitation of our system. With vsets we demonstrate the sep-
aration of low-level implementation, mid-level re-useability for new
DSLs and high-level programming for end users. In the future we
will follow the same implementation patterns with data structures for
other use cases in visualization like flow-data and time varying data.
Although, it should be rather easy to compile and run our system on
other platforms, so far we have tested ViSlang on Windows only. How-
ever, to avoid complications in the future we exclusively rely on C++,
OpenCL, and portable libraries like Boost.

6 RESULTS

6.1 Overhead of Algorithm Abstraction
In this section we attempt to estimate the overhead for the integration
of an algorithm with ViSlang. To quantify the overhead we classified
the additional lines of code that are required to implement a DSL and
to integrate it into ViSlang. Obviously the overhead depends on the
functionality of the slang and the complexity of the grammar. For the
slangs presented in this paper the overhead is on the order of several
hundred lines of code. A classification of the lines of code accord-
ing to their primary functionality is shown in Table 1. The additional
C++ code is only a small fraction of the overall C++ code that is used
to build the algorithms. We quantify the additional OpenCL code in
absolute numbers and as a fraction of the total OpenCL code. The
percentages are shown in the last row of Table 1. The C++ code is
reported in absolute numbers. All examples were created without the
meta-language, giving an estimate for the (less frequent but) more gen-
eral case that the DSL is written from scratch. For the common case
that a new DSL makes use of the meta-language the lines of code are
reduced dramatically. The ViSlang interface and parser code are gen-
erated entirely and the other C++ and OpenCL code can be greatly
reduced.

6.2 Run-time Measurements
ViSlang strives to minimize the implementation turnaround time as
well as the execution runtime for parallel algorithms. The typical
turnaround time for setups without an interpreted language (like C++
with OpenCL) is on the order of tens of seconds to minutes. In this
context, we define turnaround time as the total time from compiling
a program to the visualization of the result. The turnaround time in-
cludes parsing, compiling, execution of the host language, just-in-time
compilation of an OpenCL program, setup of kernels and memory ob-
jects, execution of the OpenCL algorithm, and visualization of the re-
sult. For instance, the typical turnaround time for the VolumePredicate
and for the Map-Reduce slang is one second. In ViSlang this includes
parsing and execution of the slang, OpenCL code generation and injec-
tion as well as the OpenCL just-in-time compilation. The turnaround
time depends on aspects like the complexity of the algorithm, the user-
defined program, the complexity of the set of parameters, and other
factors. The dominant cost in ViSlang is OpenCL JIT compilation
with about 90-95% of the total build time. However, a reduction of
the total turnaround time to one second means a dramatic increase in
productivity for the end user.



It is important to understand that just-in-time compilation only takes
place on demand, i.e., when the DSL interface of a slang is used
and the underlying OpenCL program has to be generated. Once the
OpenCL code is generated it can be reused without recompilation.
This is critical for data processing and rendering algorithms that are
executed multiple times per second.

To quantify the overhead that is introduced by the abstraction layer
of the algorithm, we measured the compilation and run-time for ab-
stracted and hard-coded versions of three different algorithms. All
measurements were done on a PC with 12 dual core 3.33 GHz Intel
Xeon CPUs and an NVIDIA Quadro 5000 GPU.

algorithm jit (ms) run-time (ms)
spheres christmas tree EDS Mag

abst. hard. abst. hard. abst. hard.
a) max 692 30 7 58 31 48 22
b) thresh 680 29 25 152 145 84 78
c) render 36 84 8 130 63 114 34

Table 2. Comparison of abstracted with hard-coded algorithms.
Columns from left to right: 1. algorithm, 2. just in time (jit) compile
time for abstracted algorithm, 3.-8. run-times for abstracted (abst.) and
hard-coded (hard.) algorithms for three different data sets. All numbers
are in milliseconds.

In Table 2 we provide measurements for the algorithms a) the re-
duction operation max, b) thresholding a volume, and c) the vlabel
rendering. The run-time comparisons are shown for three different
datasets: spheres (128x128x128), christmas tree (512x499x512), and
EDS Mag (1024x987x72). Algorithms a) and b) employ dynamic gen-
eration of OpenCL code. Therefore, JIT compilation times are much
higher than for algorithm c). However, the run-time measurements for
algorithms a) and b) show that the overhead of abstraction is very low
(4-27 ms in our experiments). For the rendering algorithm c) we used
an image size of 1024x1024 and a sample distance of one. The compi-
lation for the rendering algorithm is much shorter since it only involves
parsing, AST generation and execution in ViSlang and no OpenCL re-
compilation is required. At runtime the more costly abstraction layer
of the rendering algorithm results in significantly lower performance.
Comparing these cases clearly shows that there is a trade-off between
compilation time and runtime. It is important to consider this trade-off
for the implementation of new slangs in ViSlang and for interpreted
DSLs in general.

Matlab Python ViSlang
max (GB/s) 17.22 0.17 15.71
map-reduce (GB/s) 0.08 0.03 8.40
predicate (GB/s) 1.35 0.04 3.20

Table 3. Data processing rate in GB/s (higher is better).

To quantify the runtime performance of algorithms implemented
in ViSlang we compared with the two frequently used interpreted lan-
guages Matlab and Python. Table 3 shows the average data throughput
in GB/s that were measured for three different operations. The opera-
tions are: maximum reduction (max), map-reduce operation: identity
mapping and maximum reduction (map-reduce), and a logical predi-
cate (x > 0)&true (predicate).

The results clearly demonstrate the benefits of the flexibility of ViS-
lang’s approach. While Matlab slightly outperforms ViSlang for the
case of a simple maximum reduction, the more general map-reduce
operation is much faster in ViSlang. Matlab has optimized vector op-
erations that include typical reduction operations. In our map-reduce
experiment we take the identity function as a mapping function, which
is mathematically equivalent to performing the maximum reduction
only. However, Matlab cannot make use of its set of optimized op-
erations and therefore drops sharply in performance. In ViSlang the
mapping function is automatically translated to OpenCL. Therefore, it

results in a comparably small performance drop when used in a map-
reduce operation. We get similar results for the logical predicate. Mat-
lab slightly outperforms ViSlang when using a standard predicate like
(x > 0). When applying a logically equivalent predicate (x > 0)&true
optimization is omitted and ViSlang outperforms Matlab.

Although all three languages are well suited for scientific applica-
tions, ViSlang is an integrated solution for visualization with parallel
data processing allowing for high performance applications, increased
flexibility, low turnaround times, and high data throughput. We ar-
gue that these benefits outweigh the cost of integrating new DSLs in
ViSlang.

7 CONCLUSIONS AND FUTURE WORK

We have presented an interpreted language capable of including mul-
tiple DSLs. Each language can address a different aspect of the vi-
sualization pipeline or domain science. DSLs are realized as slangs
of the main language, extending the functionality of the visualization
system, and allow the user to program on a higher level of abstrac-
tion, oblivious of the implementation details of the underlying algo-
rithms. This is especially beneficial for parallel algorithms. The in-
creased implementation effort for the developer of a DSL is addressed
with reusable components and the meta-language that is offered by the
ViSlang system. GPU accelerated data structures are provided that are
specialized for visualization algorithms resulting in high performance
implementations. We showed that our approach is capable of integrat-
ing different programming paradigms. DSLs are not restricted to one
syntax but are free to specify the most natural syntax for the problem
domain. In our results we show that ViSlang offers short turnaround
times, with interactive visual feedback, suitable for rapid prototyping
of visualization applications with high runtime performance.

In the future, we want to experiment with the integration of exist-
ing DSLs like QML and D3 to offer support for a large body of user
interaction methods and visualization algorithms. Further, we want
to extend our managed data structures to deal with out-of-core algo-
rithms. Exposing the out-of-core semantics via a DSL could benefit
visualization experts that deal with the implementation of large data
applications. The ViSlang system together with its collection of slangs
will be made available as an open source project.

ACKNOWLEDGMENTS

The research presented in this publication was supported by the King
Abdullah University of Science and Technology (KAUST) Visual
Computing Center, and the ViMaL project (FWF - Austrian Science
Fund, no. P21695).

REFERENCES

[1] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, and H. T. Vo. Vis-
trails: Enabling interactive multiple-view visualizations. In Proceedings
of IEEE Visualization 2005, pages 135–142, 2005.

[2] M. Bostock and J. Heer. Protovis: A graphical toolkit for visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
15(6):1121–1128, 2009.

[3] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–
2309, 2011.

[4] K. Brown, A. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. A heterogeneous parallel framework for domain-specific
languages. In Proceedings of International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages 89–100, 2011.

[5] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fo-
gal, A. Sanderson, C. Garth, E. Bethel, D. Camp, O. Rübel, M. Du-
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