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Abstract. Exploded views are often used in illustration to overcome the
problem of occlusion when depicting complex structures. In this paper,
we propose a volume visualization technique inspired by exploded views
that partitions the volume into a number of parallel slabs and shows
them apart from each other. The thickness of slabs is driven by the
similarity between partitions. We use an information-theoretic technique
for the generation of exploded views. First, the algorithm identifies the
viewpoint which gives the most structured view of the data. Then, the
partition of the volume into the most informative slabs for exploding
is obtained using two complementary similarity-based strategies. The
number of slabs and the similarity parameter are freely adjustable by
the user.

1 Introduction

Volume visualization aims at gaining insight into volumetric data using inter-
active graphics and imaging techniques. Current volume data sets generated by
scientific domains contain large amounts of data of complex structures. Effec-
tive visualization of such data sets that clearly shows all contained structures is
challenging.

Illustrative visualization enhances the expressiveness of volume rendering by
applying hand-crafted illustrative techniques. Cut-aways, exploded views or
high-level abstraction strategies, amongst others, are used to reveal insights and
represent essential structures of the volume in a clear way while less important
details are subjugated. To employ these techniques, certain controlling mecha-
nisms based on data or higher semantical levels (e.g. segmentation into objects
from the domain perspective and the assigning of object importance based on
the given domain scenario) are required. These mechanisms vary from fully in-
teractive steered by user (e.g. voxel-by-voxel segmentation) to fully automatic
techniques (e.g. shape analysis of the acquired data based on higher-order deriva-
tives). To explore unclassified data sets, automatic controlling mechanisms for
steering expressive visualization are useful, and possibly can be combined with
interactive techniques that fine-tune the first automatic educated guess.

Our interest is focused on exploded views, which partition the volume into dif-
ferent parts that are displaced away from each other as if there had been a small
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controlled explosion emanating from the focus of interest. Exploded views enable
to see details of otherwise overlapping structures, exploiting the observer’s un-
derstanding of the original spatial arrangement. In this paper, a new partitioning
approach for automatic generation of exploded views is presented. This method
divides the data set into a set of slabs defined by parallel planes, combining in
this way the advantages of 2D and 3D views. While 3D visualization provides
a global view of the entire model, the 2D cross sectional views reveal insights.
To partition the volume, two alternative strategies are proposed. The first one
starts with the entire volume and partitions it recursively guided by a maximum
dissimilarity criterion. The second one considers initially all individual slices and
groups them together according to a similarity criterion. In both cases, the con-
trolling mechanism is the similarity value that is computed automatically using
information-theoretic measures. The only necessary interaction of the user with
the data is a single threshold parameter which determines when the partitioning
(or grouping) has to stop. An important advantage of this approach is that no
a-priori information or pre-processing of the data is required. This is suitable,
especially, for computer-guided exploration of histology volume data.

2 Related Work

The main limiting factor when exploring volume data is the occlusion between
structures. For complex volumetric data sets it is difficult to achieve a visual
representation that not only shows all the internal structures but also preserves
the global representation of the model. To enhance volume data interpretation
Rheingans and Ebert [1] introduced the volume illustration approach, combining
the familiarity of a physics-approximated illumination model with the ability to
enhance important features using non-photorealistic rendering techniques. Vol-
ume illustration techniques enhance the perception of structure, shape, orienta-
tion, and depth relationships in a volume model. Although they cannot totally
solve the occlusion problem, the good performance of these techniques led to the
development of new volume rendering methods.

Clipping away or removing away parts of the data to eliminate occlusion is a
well-known and extensively used approach. The loss of context due to removed
parts is the main limiting factor of such a technique. To overcome this lim-
itation, strategies with more complex clipping geometry have been proposed.
Wang et al. [2] introduced volume sculpting as a flexible approach to explore
data. Weiskopf et al. [3] proposed several interactive clipping techniques that
are capable of using complex clip geometries. Konrad-Verse et al. [4] described a
method which is based on a deformable cutting plane for virtual resection. Viola
et al. [5] presented an importance-driven approach capable of enhancing im-
portant features while preserving the necessary context by generating cut-away
views and ghosted images from volumetric data. Bruckner et al. [6] proposed an
alternative to conventional clipping techniques in order to avoid loss of context.
Their context-preserving volume rendering model uses a function of shading
intensity, gradient magnitude, distance to the eye point, and previously accumu-
lated opacity to selectively reduce the opacity in less important data regions.
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Exploded views and deformations are a common strategy for communicating
the structure of complex 3D objects that are composed of many subparts. De-
formation metaphors for browsing structures in volumetric data were introduced
in volume visualization by McGuffin et al. [7]. They presented an approach for
volume exploration based on deformations that allows the users to cut into and
open up, spread apart, or peel-away layers of the volume while still retaining
the surrounding context. The explosion of the parts is set manually. Bruckner
et al. [6] went one step further by automating the explosion. Their method uses a
continuous degree-of-interest function to distinguish between focus and context
and is capable of re-arranging the parts dynamically based on the viewpoint. In
these techniques, a priori knowledge of the volume data to define the layers or to
set the focus of interest is assumed – the data has been explicitly partitioned by
the user. In contrast, our approach automatically partitions the volume based
on characteristics of the data.

Moreover, good viewpoint selection is also crucial for an effective focus of
attention [5]. Different information-theoretic measures for viewpoint evaluation
have been presented. Vàzquez et al. [8] have introduced the viewpoint entropy as
a measure for viewpoint quality evaluation, where the best viewpoint is defined
as the one that has maximum entropy. Designed for polygonal data, this measure
has been extended to volumetric scalar data [9,10]. Viola et al. [11] have pre-
sented the viewpoint mutual information from the definition of an information
channel between a set of viewpoints and a set of objects of a volumetric data
set. This measure provides representative views and is very robust with respect
to the resolution of the model.

3 Similarity-Steered Visualization

To automatically obtain the partitioning planes for the exploded views, we pro-
pose a two-step process. First, we select the view of the model along which the
organs or components will be better separated. This view is called the most
structured view of the model. Second, we calculate the partitions of the model
along the most structured view. Such partitions will be obtained using two com-
plementary approaches: a top-down strategy that divides the model according
to the maximum information gain and a bottom-up method that joins the slices
according to a similarity criterion. Then, the explosion of the model is visualized
in the interactive system VolumeShop [12]. The two steps of the method are
described below.

1. Selection of splitting axis
The goal of this step is to obtain the most structured view of the model. To
reach this objective a viewpoint measure able to capture the structure of the
volumetric dataset along any view axis is used. In information theory, entropy
rate is defined as a measure of the irreducible randomness of an object or the
degree of unpredictability of a sequence of values. Since a high randomness
corresponds to a low structure and vice versa, we can use the entropy rate
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Fig. 1. Main steps of the selection of the most structured view. (a) Sphere of viewpoints,
(b) sampling process for one viewpoint, (c) samples considered for the entropy rate
computation, and (d) colored viewpoint sphere (using a thermic scale, from blue to
red) representing the values of the viewpoint entropy rate.

to quantify the degree of structure or predictability of a model. We proceed as
illustrated in Figure 1. First of all, the model is centered in a viewpoint sphere
built from the recursive discretisation of an icosahedron (Figure 1(a)). Then,
for each viewpoint the entropy rate is computed as described in Section 4
(Figure 1(b,c)). Finally, we identify the lowest entropy rate value which
corresponds to the most structured view of the model (Figure 1(d)). This
direction is used as axis to which similarity-based partitioning planes are
perpendicular to.

2. Volume partitioning
This task consists of selecting the optimal partitions of the model from the
most structured view. To carry out this process two different strategies are
presented:
(a) Top-down approach. Initially, the entire volume is considered and

partitioning planes are taken perpendicular to the most structured view
(Figure 2(i.a)). To divide the dataset into different parts, we use a greedy
algorithm which successively selects the partition that provides us with
the maximum gain of information. According to the information bot-
tleneck method [13,14], the information gain can be calculated using
the Jensen-Shannon divergence between two parts of the model (Figure
2(i.b)). This measure can be interpreted as the degree of dissimilarity
between the parts and attempts to divide the model into homogeneous
regions (Figure 2(i.c)). A more detailed description of this approach is
given in Section 5.1.

(b) Bottom-up approach. All the slices of the volume, perpendicular to
the most structured view, are considered as the initial slabs (Figure
2(ii.a)). Neighboring slabs are iteratively grouped (Figure 2(ii.b)) when
mutual information between them is higher than a given threshold (Fig-
ure 2(ii.c)). Dealing with similarity between slabs instead of individ-
ual slices, we avoid an incorrect grouping, for instance, due to smooth
changes along many consecutive slices. The grouping process is further
described in Section 5.2.
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Fig. 2. (i) Top-down volume partition: (i.a) partitioning planes are taken perpendicu-
lar to the most structured view, (i.b) dissimilarity between subvolumes is given by the
Jensen-Shannon divergence, and (i.c) examples showing two different partitions. (ii)
Bottom-up volume partition: (ii.a) slices are taken perpendicular to the most struc-
tured view direction, (ii.b) similarity between slices or slabs is computed using mutual
information, and (ii.c) two examples resulting from the grouping process.

4 Selection of Structured Views

To quantify the degree of structure of a volumetric data set along a given viewing
direction, we estimate the entropy rate of the sequence of values (intensities)
obtained by casting a bundle of parallel lines along that direction. These lines
act as probes to sample the intensity of the model. The view with the lowest
entropy rate will correspond to the most structured view.

The definitions of both Shannon entropy and entropy rate [15] are now re-
viewed. The notation used is inspired by the work of Feldman and Crutch-
field [16]. Let X be a finite set and X a random variable taking values x in X
with probability distribution p(x) = Pr[X = x]. The Shannon entropy H(X) of
a random variable X is defined by

H(X) = −
∑

x∈X
p(x) log p(x). (1)

The Shannon entropy measures the average uncertainty of random variable X .
If the logarithms are taken in base 2, entropy is expressed in bits.

Given a sequence X1X2 . . . of random variables Xi taking values in X , a
block of L consecutive random variables is denoted by XL = X1 . . . XL. The
probability that the particular L-block xL occurs is denoted by joint probability
p(xL) = p(xi+1, . . . , xi+L). The joint entropy of a block of L consecutive symbols
or L-block entropy is defined by
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H(XL) = −
∑

xL∈XL

p(xL) log p(xL), (2)

where the sum runs over all possible L-blocks.
The entropy rate or entropy density is defined by

h = lim
L→∞

H(XL)
L

(3)

and measures the average amount of information per symbol x [15].
It can also be rewritten as

h = lim
L→∞

(H(XL) − H(XL−1)). (4)

The entropy rate of a sequence of symbols is a measure of its uncertainty, ran-
domness or unpredictability. The entropy rate is also a measure of the compress-
ibility of a sequence: the higher the uncertainty, the lower the compressibility.
For instance, in a text, if there are strong correlations between letters (or words),
knowledge of all previous letters (or words) will significantly decrease our uncer-
tainty about the next one [16].

How to compute the entropy rate for a given viewpoint is now shown. Consider
the scheme in Figure 1. For each viewpoint, a sequence of samples (intensity
values) to compute the measure is obtained performing a ray casting from a
plane centered at the viewpoint. We proceed as follows:

– From the plane at each viewpoint, parallel rays with a regular horizontal
and vertical spacing x are cast. Along the ray within the volume, equidistant
samples at distance y are taken.

– To build the two joint histograms of XL and XL−1 required for the entropy
rate computation, we take into account all possible groups of consecutive
samples of length L and L − 1, respectively. For example, with the samples
shown in Figure 1(c), we can form three blocks of length 3 (x0x1x2, x1x2x3

and x2x3x4) and four of length 2 (x0x1, x1x2, x2x3 and x3x4) for X3 and
X2 histograms, respectively.

– From the joint histograms of XL and XL−1, the joint probability distribu-
tions p(xL) and p(xL−1) are estimated and then the joint entropies H(XL)
and H(XL−1) are calculated.

– Due to the potentially high dimensionality of the histograms and, conse-
quently, the high number of components, a trade-off between the number of
symbols (intensities) and the length L of the blocks has to be considered.
Note that the size (number of entries) of the highest histogram is O(NL),
where N is the number of different property values and L is the length of
the blocks. Usually voxel models have property values of 8 bits or more, so
this problem is untreatable even with short blocks. As entropy rate is a limit
quantity (4), its computation would require an infinite number of elements
and blocks infinitely long. It has to be approximated using a block of finite
length. From the two possible approximations coming from (4) and (4), we
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(a) (b) (c) (d)

Fig. 3. Different volumes (first row) and their corresponding most structured views
(second row). From left to right: (a) a synthetic model, (b) a CT-scan of a patient with
hemorrhage, (c) a CT-scan of a tooth and (d) a CT-scan of the human body.

have selected the last one because it approximates more accurately the en-
tropy rate for low values of L. In our experiments, we have taken L = 3. We
have also reduced the number of symbols of X intensity bins in the histogram
to 32, rescaling the intensity bins.

The strategy for the selection of the most structured view has been applied to
different volume data sets. The obtained results are illustrated in Figure 3 where
the first row represents the original model and the second row the most struc-
tured view. From left to right, the proposed models correspond to: (a) a synthetic
model, created considering six different materials (each one represented with
a different color) which follow a diagonal distribution through the volume,
(b) a CT-scan of a patient with an hemorrhage, (c) a CT-scan of a tooth and (d)
a CT-scan of the human body. Observe how the best views show the maximum of
structure in the model. This is specially noticeable in the phantom model (Fig-
ure 3(a)) where the different regions have an inclination relative to the cube axis.

5 Evaluating Similarity

To obtain the optimal partitions for the explosion of a 3D data set, two different
strategies are presented. First, we analyze a top-down approach which partitions
the model using a criterion of maximum gain of information. Second, we study
a bottom-up strategy that groups the slices according to a similarity measure
between them.

5.1 Model Partitioning

Once the most structured direction of the model has been selected, a sequence of
perpendicular partitions in that direction can be obtained using a simple greedy



Similarity-Based Exploded Views 161

algorithm. This is a top-down hierarchical application of the information bottle-
neck method [13,14] which permits us to measure the gain of information when
a model is divided into different slabs. This gain of information is computed
using the Jensen-Shannon divergence.

The Jensen-Shannon divergence [17] between probability distributions p1,
p2, . . . , pN with prior probabilities or weights π1, π2, . . . , πN is defined by

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) ≡ H

(
N∑

i=1

πipi

)
−

N∑

i=1

πiH(pi), (5)

where
∑N

i=1 πi = 1. The JS-divergence measures how far the probabilities pi are
from their likely joint source

∑N
i=1 πipi and equals zero if and only if all the pi

are equal. From [14], it can be seen that the gain in information when a dataset
is divided into two slabs is given by

ΔI =
v1 + v2

vT
JS(

v1

v1 + v2
,

v2

v1 + v2
; p1, p2), (6)

where v1 and v2 are, respectively, the volumes of slabs 1 and 2, vT is the total
volume of the 3D dataset, p1 and p2 are, respectively, the normalized intensity
histograms of slabs 1 and 2, and JS( v1

v1+v2
, v2

v1+v2
; p1, p2) is the Jensen-Shannon

divergence between p1 and p2 with the corresponding weights v1
v1+v2

and v2
v1+v2

.
The gain of information when a model is divided into two parts is given by the

dissimilarity between them (measured by JS) weighted by their relative volume.
Note that a slab highly structured along a given direction will have all possible
partitions very similar and thus will not need to be partitioned.

5.2 Slice Grouping

Given a viewing direction, the slices perpendicular to it can be grouped using a
similarity measure. In this paper, the normalized mutual information is used to
quantify the degree of similarity between individual slices or groups of adjacent
slices (slabs). In medical imaging, many successful automatic image registration
methods are based on the maximization of mutual information. This method,
introduced by Viola [18] and Maes et al. [19], is based on the conjecture that the
correct registration corresponds to the maximum mutual information between
the overlap areas of the two images. Later, Studholme et al. [20] proposed to
use the normalized mutual information as it is more robust than solely mutual
information due to its greater independence of the overlap area.

Let X and Y be two random variables taking values x and y in finite sets X
and Y with probability distributions p(x) = Pr[X = x] and p(y) = Pr[Y = y],
respectively. The mutual information between X and Y is defined by

MI(X, Y ) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)
p(x)p(y)

, (7)

where p(x, y) = Pr[X = x, Y = y] is the joint probability. MI is a measure of
the shared information or the degree of dependence between X and Y . MI is
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zero only if the two random variables are strictly independent. The normalized
mutual information is defined by

NMI(X, Y ) =
MI(X, Y )
H(X, Y )

, (8)

where H(X, Y ) is the joint entropy of X and Y . NMI takes values in the range
[0,1].

An explanation is now given to compute the NMI measure between slices
and the algorithm to group them. Given two slices A and B from the volume
dataset, with associated random variables X and Y , the joint probability distri-
bution p(x, y) can be estimated by simple normalization of the joint histogram
h(x, y) of both slices. This is obtained from the intensities of each pair (a, b)
of corresponding voxels, where a ∈ A and b ∈ B. Once the joint histogram
has been calculated, the joint probability distribution and the marginal prob-
ability distributions of X and Y can be estimated: p(x, y) = h(x,y)P

x∈X
P

y∈Y h(x,y) ,
p(x) =

∑
y∈Y h(x, y) and p(y) =

∑
x∈X h(x, y). The similarity measure NMI is

then evaluated.
The similarity between two slices can be extended to the similarity between

two slabs Â = {A1, . . . , An} and B̂ = {B1, . . . , Bm}. The random variables X̂

and Ŷ , associated with both slabs, represent the grouping of a set of random
variables {X1, . . . , Xn} and {Y1, . . . , Ym}, respectively. Their joint frequency his-
togram is obtained from the intensities of each pair of corresponding voxels
(ai, bj), where ai ∈ Ai and bj ∈ Bj ∀i, j. As mentioned above, the joint and
marginal probability distributions can be estimated and thus the NMI measure
is obtained.

Given the similarity measure NMI, the algorithm proceeds by joining the two
adjacent slabs with maximum similarity. This process stops when the similarity
between them is above a user-defined threshold or a number of slabs has been
reached. At the beginning, every slab consists of only one slice. Then, the most
similar slabs are progressively joined. To group n slices, the algorithm proceeds
as follows:

– Assign n slabs such that each slab contains exactly one slice.
– Compute NMI for each pair of consecutive slabs.
– Find the two closest consecutive slabs i and i+1 (with maximum NMI). If the

similarity between them is higher than the given threshold, then create a new
slab î by combining i and i+1 and recalculate NMI for the neighboring slabs
of î. This step stops when the similarity between each pair of consecutive
slabs is lower than a fixed threshold or a number of slabs is achieved.

5.3 Results

These proposed approaches have been implemented and integrated into the Vol-
umeShop framework [12]. To test the methods, different synthetic and real data
sets have been considered. In all the tests a sphere of 42 viewpoints has been
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Fig. 4. (a) The volume partitioning and (b) the slice grouping approaches applied to
a CT scan of the human body

Fig. 5. (a) The volume partitioning and (b) the slice grouping approaches applied to a
CT-scan of a patient with a brain hemorrhage. An histological data model decomposed
with the (c) volume partitioning and (d) slice grouping methods.

used and the stopping criterion has been fixed by the number of slabs entered
by the user.

For the first tests, the CT scan of the human body of Figure 4 has been
used. The results obtained with the model partitioning approach for 2, 4 and 8
partitions are illustrated in Figure 4(a). In Figure 4(b) the partitions obtained
with the slice grouping approach using the same user parameters are shown. In
Figures 5(a) and (b) we illustrate the results obtained by applying the volume
partitioning and the slice grouping approaches on a CT scan of a patient with
a brain hemorrhage. Observe that the damaged region is located in the second
slab from top to bottom.

In Figures 5(c) and (d), the results obtained with the volume partitioning and
the slice grouping approaches applied to an histologic data model are shown.
It is important to emphasize that these techniques have been applied with-
out prior pre-processing. Time cost for computing the most structured view,
and for volume partitioning and slice grouping are given in Table 1. Times are
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Table 1. Time cost (seconds) for computing the most structured view, and for volume
partitioning (P) and slice grouping (G) in 2, 4, and 8 slabs, respectively

Volume Size Best View P(2) P(4) P(8) G(8) G(4) G(2)

Human body 256 × 256 × 415 111.0 0.4 0.9 2.0 28.9 36.2 70.5

Hemorrhage 512 × 512 × 45 55.5 0.2 0.6 1.2 6.3 10.8 14.4

Histological data 587 × 342 × 499 722.6 2.3 5.8 12.6 214.0 324.7 525.0

given for a CPU Intel(R) Core(TM)2 Quad CPU Q6600 at 2.40GHz with 2 GB
of memory. Several video sequences are available as supplementary material in
http://www.gametools.org/smartgraphics/.

6 Conclusions

New partitioning techniques for volumetric data decomposition and visualization
using exploded views have been introduced. These techniques use an information-
theoretic two-step approach to automatically partition the model. First, the view
with the highest structure is identified and, then, the model is divided along this
view following two alternative similarity-based methods. The presented tech-
niques provide us an efficient tool for volume data exploration without neither a
priori knowledge nor pre-processing of the data. In our future work we will study
how many slices should be presented and whether additional information about
the similarity distances can help the user for an optimal understanding of the
volume. Also, the trade-off between quality and cost for the different parameters
involved in the determination of most structured views (distances between rays,
subsequences of samples on those rays, sub-sampling of intensity values) will be
investigated.
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