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VAICo: Visual Analysis for Image Comparison
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Abstract—Scientists, engineers, and analysts are confronted with ever larger and more complex sets of data, whose analysis poses
special challenges. In many situations it is necessary to compare two or more datasets. Hence there is a need for comparative
visualization tools to help analyze differences or similarities among datasets. In this paper an approach for comparative visualization
for sets of images is presented. Well-established techniques for comparing images frequently place them side-by-side. A major
drawback of such approaches is that they do not scale well. Other image comparison methods encode differences in images by
abstract parameters like color. In this case information about the underlying image data gets lost. This paper introduces a new
method for visualizing differences and similarities in large sets of images which preserves contextual information, but also allows the
detailed analysis of subtle variations. Our approach identifies local changes and applies cluster analysis techniques to embed them
in a hierarchy. The results of this process are then presented in an interactive web application which allows users to rapidly explore
the space of differences and drill-down on particular features. We demonstrate the flexibility of our approach by applying it to multiple
distinct domains.

Index Terms—Comparative visualization, focus+context visualization, image set comparison

1 INTRODUCTION

A common task in data analysis is to compare two or more related re-
sults to discover their differences or similarities. In addition to choos-
ing the appropriate similarity measure, it is also important to make use
of appropriate techniques to visualize the comparison results. Com-
parative visualization refers to the process of visually depicting differ-
ences and similarities when comparing multiple datasets [26].

In the past few years an increasing number of comparative visu-
alization systems have been developed. All together, these systems
demonstrate that there is a strong demand for comparison tasks in var-
ious different domains caused by the ever-growing amount of acquired
data. For example, in biology additional information about certain
species can be gained by comparing multiple genetic sequences. In
the medical domain, deviations in MRI or sonographic images can
indicate anomalies which should be further inspected. In image pro-
cessing, results of different edge detection or segmentation algorithms
have to be compared. In visualization and rendering, results have to
be compared against each other to evaluate variances that are caused
by different parameter settings.

Comparative visualization tools have to meet certain requirements
to be appropriate for a variety of different datasets. One important
issue is scalability pertaining to dataset size (i.e., number of items in
the dataset). In the case of 2D image comparison, many approaches
place the images to be compared side-by-side or in multiple views, or
they overlay images semi-transparently. However, due to limitations in
the human perceptual capacity as well as due to limited screen space,
such comparative visualizations do not scale well. These tools are only
suitable for comparing a limited number of images. This is a problem,
for example, for the investigation of biological data, where datasets
often are based on the analysis of several hundreds of specimens.

Another important issue when developing comparative visualiza-
tion techniques is how to provide information about the underlying
original data. In many approaches differences between datasets are
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Fig. 1. Image Comparison. This figure shows two pictures that look
similar, but in fact exhibit local changes. A very common way to compare
them is by placing them side-by-side (a). To help the user to find the
variations more quickly, a difference image (b) can be computed. In
this illustration information about the similar parts of the data gets lost.
Another possibility is to highlight differences by certain patterns (e.g.,
colored circles) as shown in (c). In this case similar parts of the data
are still visible; however, no further information is provided on how the
differences are structured.

mapped to visual attributes such as colored patterns (Figure 1). Al-
though this clearly highlights differences and similarities between the
datasets, it hides the original data that has been used for calculation.
Having knowledge about the original data allows us to identify pat-
terns in the datasets (i.e., to detect outliers).

We believe that an interactive visualization providing insight into
the underlying raw data can lead to a better overall understanding of
the studied datasets. We propose a new comparative visualization ap-
proach which preserves contextual information while allowing us a
detailed analysis of the variations between datasets. Our approach pro-
vides effective means for examining local differences in a large image
dataset. It supports users in gaining a better overview of different im-
age characteristics and allows them to further investigate individual
local differences. The main features of our approach are:

• Scalability: Unlike previous approaches, the proposed visualiza-
tion technique is specifically designed to compare large sets of
images (i.e., hundreds of images in one set).

• Focus+Context [5]: Our comparative visualization approach pro-
vides an overview of the image differences (i.e., how much of the
image space is affected) and allows users to drill-down on indi-
vidual features.

• Flexibility: Our approach is not targeted to a certain type of im-
age and is not tied to any particular image comparison metric.
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Fig. 2. Overview of our comparative image visualization approach. The input data consists of a set of images which contain small local variations
when compared to each other. To locate regions of differences (RoDs), an image comparison metric is applied (Section 3.1.1). In the next step
hierarchical clustering is performed on the corresponding image data of every RoD. This classifies the differences according to their significance
(Section 3.1.2). The results are then presented in an interactive comparative visualization which is described in Section 3.2.

The paper is organized as follows: Section 2 contains a survey of
previous work related to the topic of comparative visualization, param-
eter studies, focus+context techniques, and hierarchical clustering. In
Section 3 an overview of our visualization method is provided. The
process of identifying and structuring differences in a set of images is
described and the interactive visualization tools are introduced. The
implementation details are discussed in Section 4 and results are pre-
sented in Section 5. We conducted a user study to evaluate our tech-
nique, which is discussed in Section 6. Advantages and limitations are
outlined in Section 7. The paper is concluded in Section 8.

2 RELATED WORK

In the last years a great variety of systems and approaches have been
developed in the field of comparative visualization. For analyz-
ing different light intensities in renderings, Pang and Freeman [27]
used color and other parameters like textures to highlight differences.
Verma and Pang [38] implemented an approach for comparative flow
visualization. To compare video data, Gareth and Chen [13] intro-
duced an approach to visualize differences between video frames in
3D space. They treated a video sequence as a 3D volume and ap-
plied volume rendering to it. For analyzing biological data, Munzner
et al. [25] provided a visualization technique for comparing large phy-
logenic trees, and Procter et al. [30] used comparative visualization
to check multiple genetic sequences. In archeology objects are often
classified by comparison. Masuda et al. [21] visually analyzed an-
cient Chinese bronze mirrors and their shape differences. Baudrier
and Riffaud [1] proposed an approach for comparing ancient docu-
ments. For dealing with other data like office documents, Drucker et
al. [8] presented a method to spot differences between multiple ver-
sions of a PowerPoint presentation. Piringer et al. [29] implemented
an interactive approach for a comparative visual analysis of 2D func-
tion ensembles. Tory et al. [36] developed new techniques to visual-
ize projects in construction management. All together, these systems
show the demand for developing tools that explicitly support compari-
son tasks. However, the presented approaches are all targeted to a spe-
cific domain and to a certain type of dataset. Eler et al. [11] proposed
a method to visually analyze image collections. Their visualization
method allows feature-based grouping and classification of images,
but does not provide means to further inspect individual features.

Existing approaches for 2D comparative image visualization gen-
erally place the objects to be compared side-by-side or in multiple
views [37]. Other approaches for 2D image comparison depict im-
ages to be compared in the same space. The simplest solution for this
is blending (i.e., to overlay images semi-transparently). Kammerer
et al. [17] used this method to spot differences between infrared and
color images of ancient paintings. Other methods are color weaving
introduced by Hagh-Shenas et al. [15] or attribute blocks proposed
by Miller [22]. Many approaches use color to indicate differences be-
tween 2D images. Since this is a very simple and intuitive way to dis-
play differences, it can be applied to various domains. Hollingsworth
et al. [16] used a specific colorization scheme for difference images
to compare 2D gas chromatographies. Sahasrabudhe et al. [31] used
color coding to highlight differences between unequal visualizations,
whereas Suomi and Oikarinen [34] concentrated on MRI datasets and
Da Silva et al. [7] analyzed diffusion tensor volumes. Apart from

color-coding, other methods of abstraction have been used to analyze
image differences. Malik et al. [19] proposed a multi-image view
for comparing images. Their technique subdivides the image space
into hexagonal regions, and each region is subdivided into smaller el-
ements which depict data from different series. This way contextual
information is provided about the data, and outliers can be spotted
very easily. The more elements a dataset consists of, the more sub-
elements have to be created for every hexagonal region. At some point
the sub-elements will be too small for a proper analysis, which makes
this method unsuitable for large image datasets. The authors also state
that their approach is targeted to grey-scale values only. Our approach
for comparative image visualization is somewhat similar to the multi-
image view, since it also aims at preserving information about the un-
derlying data. However, due to the use of clustering, our method is
scalable with respect to a significantly larger number of images. Our
visualization technique is also only applied to regions where changes
take place and therefore provides a better localization of differences.

Various approaches dealing with parameter space analysis also
involve image comparison. Marks et al. [20] introduced Design Gal-
leries, which allows the user to browse result images that have been
produced by varying a given input-parameter vector. Ma [18] proposed
Image Graphs to visually analyze the process of data visualization.
VisTrails [32] is an interesting tool which provides visual comparisons
for work-flows and images. Bruckner and Möller [2] developed a sys-
tem to explore simulation parameters. They suggest to sample the
given parameter space and then apply clustering to the output images
to identify key changes. Tuner, a system developed by Torsney-Weir
et al. [35], allows them to find proper parameter values for image seg-
mentation by comparing the segmentation results to a ground truth. All
these approaches rely on image comparison to evaluate output images.

Agglomerative hierarchical clustering is a statistical method of
cluster analysis which aims at building a hierarchy of clusters [9]. In
this bottom-up approach pairs of clusters are merged as one moves up
the hierarchy. Hierarchical clustering has become a de facto standard
for analyzing biological gene expression data in the past years [10].
It is also used in other domains, for example to analyze audio data
as described by Clarkson and Pentland [4] or to classify ocean colors
as proposed by Yacoub et al. [39]. We use hierarchical clustering
to embed differences in the set of images in a hierarchy to identify
different levels of data variances.

Focus+context and in-place interaction techniques give an
overview over the available data, but also allow to further inspect de-
tails on demand. Several focus+context approaches in 2D and 3D can
be found in the literature [5]. Mistelbauer et al. [24] proposed Smart
Super Views, a tool for medical visualization which provides only the
currently most relevant views to the user. Zhao et al. [40] imple-
mented an interactive focus+context approach where the user can se-
lect regions of interest in 3D. Details about the ROIs are presented
by preserving the context around the selection. Contextual Snapshots,
presented by Mindek et al. [23], allow the user to keep track of spatial
selections in visualizations. We use focus+context and in-place inter-
action techniques which enables the user to inspect individual image
features.



3 VISUAL ANALYSIS FOR IMAGE COMPARISON

In this paper a new approach for comparative image visualization is
presented. To effectively convey information about image differences,
we decided to provide an interactive visualization system that pre-
serves contextual information while enabling the inspection of indi-
vidual image differences. According to Gleicher et al. [14], there are
three common approaches used to compare data structures: side-by-
side comparison (juxtaposition), blending (superposition) and explicit
difference encoding (aggregation). VAICo uses a mixed approach of
superposition and aggregation.

In our work we focus on comparison tasks which aim to identify
and analyze differences in a large number (i.e., up to hundreds) of
similar images. None of the images has to be defined as a reference
image. Image differences are interpreted as variations in the image
dataset (i.e., local color changes). In particular, VAICo is designed to
assist users in identifying distinct classes of variations which charac-
terize the underlying phenomena. Such investigations are common in
medicine and biology, for instance. There they can provide important
insights into the underlying cause of a disease, or the genetic mecha-
nisms behind certain phenotypical variations.

3.1 Analysis of Image Set Differences
VAICo is based on an image comparison step where the image space,
defined by the images in the given dataset, is divided into the two parts
of contextual information and regions of differences (RoDs). Contex-
tual information refers to parts of the image space that are the same
in all images. RoDs correspond to variations in the image set. Image
variations are interpreted as color changes between at least two images
in the dataset. Image data related to a certain RoD is then embedded
in a hierarchy, which enables the classification of changes in the data
(Section 3.1.2). Figure 2 provides an overview of our approach. The
results of the image comparison and clustering can be explored in our
interactive visual analysis interface (Section 3.2) which is driven by
the visualization of the RoDs.

3.1.1 Region-of-Difference Computation
In the first step RoDs have to be identified in image space. We propose
two image comparison approaches which both result in a list of RoDs
for the given image dataset.

To apply an unbiased image comparison, we employ a pixel-based
image comparison metric based on the Mean Squared Error (MSE) as
described by Zhou et al. [41]. All pixels from one image are com-
pared to pixels at the same location in all other images in the dataset.
A threshold is used to filter out low color variations. This enables users
to control the algorithm’s sensitivity with respect to changes in the data
(see Figure 18 for further information). After applying the MSE cal-
culations to all pixels in image space, a set of difference pixels is iden-
tified which represent pixels with varying color values in the images.
Region growing [33] is then used to group difference pixels together to
form disjoint subsets of pixels. Difference pixels are grouped together
based on their spatial arrangement. In the region growing approach all
difference pixels are considered to be seeds which potentially could
start a new region. The region growing is initiated with a randomly
selected pixel. Then neighboring pixels (according to an 8-connected
neighborhood) are merged into a connected region. The process is it-
erated until all pixels have been assigned to a region, as demonstrated
in Figure 3. The subsets resulting from the region growing step define
the RoDs which form the basis of our interactive visual analysis ap-
proach. RoDs indicate the locations where changes take place in the
data. All together, they give an overview on how much of the image
space is affected by differences in the dataset.

In addition to the unbiased image comparison we also propose a bi-
ased image comparison. This enhances the image comparison by
allowing us to include prior knowledge about the data. For some
datasets not only image variations are of interest for the analysis, but
also differences of features in the image. Features are represented as
connected image regions which can have different characteristics in
the image data (i.e., different color values). In contrast to the unbi-
ased image comparison, RoDs are calculated for every image in the
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Fig. 3. Illustration of subset computation by region growing. After the
image comparison step a set of so-called difference pixels has been
identified. Region growing is used to group them together into disjoint
subsets. During region growing, difference pixels are assigned to the
current subset until it cannot grow any more (t = n). Then another differ-
ence pixel is selected (t = n+1) and the iteration is continued (t = n+2).

dataset individually. We employ a color segmentation approach based
on Mean Shift [6] to identify regions of interest in every image in the
dataset. The segmented regions then define a set of m RoDs per image
in the dataset. Afterwards image comparison is applied, which in this
case refers to sets of RoDs being compared to each other. The goal of
the comparison is to find out whether RoDs of different images rep-
resent the same information. Figure 4 illustrates the process of RoD
comparison. RoDs are compared based on their spatial position, shape
and size. RoDs of different images are considered to represent the
same region if their overlap exceeds a threshold (we use 90% as a de-
fault). The biased image comparison leads to a final list of RoDs for
the dataset, where every RoD is present in at least one image. Using
the biased instead of the unbiased image comparison allows the user to
eliminate certain regions (e.g., background information) from further
analysis.

The unbiased as well as the biased image comparison step result in a
list of final RoDs that are used for further analysis. Since all images are
registered and of the same size, a part covered by the RoD’s location
and size (defined by its corresponding set of difference pixels) can be
found in every image. This leads to an unordered list of i image parts
per RoD for i images in the dataset (Figure 5). In the case of biased
image comparison, only images that contain a certain RoD are further
considered. This leads to a list of l image parts per RoD in the case of
biased image comparison, where l ≤ i. These image parts are called
RoD-related image parts in the following.

contextual information pixels assigned to RoDs

IMG1 IMG2 IMG3

Fig. 4. Illustration of RoD comparison. After color segmentation a set
of RoDs has been defined per image. In the comparison step RoDs of
different images are identified that refer to the same information (i.e.,
overlap). In this figure the upper RoD can only be identified in the first
two images (IMG1 and IMG2). The second RoD can be identified in all
three images (IMG1, IMG2, and IMG3).
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Fig. 5. Image data corresponding to a certain RoD (unbiased approach).
In this Figure one particular RoD together with its corresponding image
parts is displayed. The image parts are taken from all images in the
set (as indicated by the arrows) and are defined by the RoD’s size and
location (i.e., the corresponding set of difference pixels).

3.1.2 Data Analysis by Clustering

In the second step we apply clustering to the RoD-related image
parts to embed them in a hierarchy. This enables the classification
of changes in the data and conveys information about the underlying
data.

For the clustering, complete-linkage agglomerative hierarchical
clustering [9] is used. Initially, every RoD-related image part forms
a separate cluster. Then in each iterative step clusters are merged to-
gether according to their distance. The difference between two im-
age parts is defined by their amount of pixel-wise differences (ranging
from 0 to 100 percent). We employ a similarity metric based on the
Mean Squared Error (MSE) as described in Section 3.1.1. If another
image comparison metric should be used to compare the images, this
metric should be employed here as well. The clustering terminates
once all elements are included in one big cluster. Based on the clus-
tering a tree is built which describes the results of the hierarchical
clustering process (Figure 6).

Every hierarchy level in the hierarchical clustering tree describes
a valid clustering result for the RoD-related image parts. However,
for the best description of the given data, an optimal clustering has
to be found. A clustering is basically defined by the number of avail-
able clusters. A clustering with maximum accuracy assigns each RoD-
related image part to its own cluster. By comparison, a clustering with
maximum compression uses one single cluster to include all RoD-
related image parts.

h = 0

h = 1

h = 2

h = 3

Fig. 6. Hierarchical clustering result for the RoD introduced in Figure 5. h
depicts the hierarchy level in the tree. At the beginning (h = 0) all image
parts are in separate clusters. In further steps (h = 1,h = 2) clusters
are subsequently merged together according to their distance, until all
elements are enclosed in one cluster (h = 3).

A clustering is considered to be optimal if it strikes a balance be-
tween the maximum accuracy and the maximum compression clus-
tering [28]. An optimal clustering of the data will classify the im-
age differences and provide more information about outliers as well as
similarities in the data. To get an optimal clustering, the hierarchical
clustering tree has to be cut at a certain level. We decided to use the el-
bow criterion as described by Pedersen and Kulkarni [28] to determine
the tree level which contains the best clustering result. In essence, the
elbow criterion specifies that a clustering should be chosen in a way
that adding another cluster does not give a better modeling of the data.

In a clustering, outliers are defined by their distance to other clus-
ters in the set. For our approach cluster outliers are of special inter-
est, since they are considered to represent significant changes in the
data. Therefore, clusters from the level with the best clustering result
are sorted according to their inter-cluster distance. The cluster sorting
process is done in an iterative way. In every step, the cluster with the
maximum inter-cluster distance (defined by the sum of all distances to
other clusters) is determined. It is then stored in an ordered list and
excluded from further sorting operations. The process is repeated un-
til no unsorted cluster is left. At the end, an ordered list of clusters is
created for every RoD.

3.2 Interactive Visual Analysis Interface
The results of the image comparison step can be explored with
VAICo’s interactive visualization tools. Although the main interac-
tions are based on the RoD visualization, it is possible to view the
clustering and data analysis results as well. The main parts of the user
interface are illustrated in Figure 7.

The interactive visualization elements are embedded in image space
which is defined by the images in the given dataset. The entire set of
images is visualized in one view. Parts of the image space which rep-
resent the same information in every image are depicted as contextual
information (Figure 7a). We create an average image of all images in
the dataset, and this image is displayed in the background. Pixels are
faded out to enhance the visibility of the image variations. This con-
textual information is needed to embed the interactive visualization
tools in the appropriate context.

RoDs are emphasized through colored polygons in the foreground
(Figure 7a). The shape and position of the polygons correspond to
the set of difference pixels assigned to the RoD (as described in Sec-
tion 3.1.1). The RoD visualization provides a visual overview of the
image comparison results. In combination with the contextual infor-
mation, the RoD visualization allows the user to immediately differ-
entiate between image variations and regions of similar information.
In contrast to marking differences by abstract shapes like circles (Fig-
ure 1), the polygon shape provides more information about the extent
of the image variations.

The number of RoD polygons in image space depicts how many
image variations have been identified. The position and distribution
of the RoD polygons shows where variations are located in the im-
ages, and how much of the image space is affected. In addition to
size, shape and location of the image variations, information about the
RoD-related clustering results is also included in the visualization. In
case the clustering leads to a higher number of clusters than in other
RoDs, the underlying RoD-related image data shows a greater vari-
ety than in other cases. This may indicate the existence of outliers in
the data, wherefore these cases should be further analyzed by the user.
Color-coding is used in the visualization to indicate a higher number
of RoD-related clusters. A higher number of clusters is mapped to a
darker color of the RoD polygon. Color-coding allows us to integrate
the cluster information in the RoD visualization without occluding ad-
ditional contextual information. In Figure 7a, the number of clusters
for RoD1 is lower than the number of clusters for RoD2. Therefore,
the color of RoD2 is darker in the visualization.

RoD polygons can be inspected individually through mouse manip-
ulation. When activated, RoD polygons are expanded to form RoD
widgets. The widgets are displayed in image space in relation to the
corresponding RoD polygons (Figure 7b). This embeds the widgets
into the appropriate context and enables the user to analyze image
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Fig. 7. Main components of the interactive user interface. The image space is displayed in one view (a). Similar information is displayed in
the background (context) and the variations in the images are highlighted by RoDs. The RoDs can be further explored individually by using the
assigned RoD widgets (b). The cluster bullets assigned to the RoD widget depict the clusters available for the corresponding RoD. The bullets can
be expanded (c) to cluster views which consist of the assigned cluster average images and icons depicting the number of images in the cluster.
This icon can be used to retrieve the list of images assigned to the cluster. In addition, the clustering selection (d) gives an overview over the
hierarchical clustering tree and allows the user to select a new clustering (see also Figure 8).

variations without switching between different views. RoD widgets
consist of a circle with colored bullets arranged around it. The colored
bullets of the RoD widgets depict the corresponding clusters. The
color of the cluster bullets changes according to the number of im-
ages that are included in the respective cluster. The color hue of the
RoD polygon is always different from the hue of the bullets to prevent
ambiguity. The color of a bullet is the darker, the more images the cor-
responding cluster contains. The bullets are ordered according to the
number of images in the clusters. The user can decide whether they
should be ordered in descending or ascending order. This allows the
user to decide whether the cluster with the highest number of images
should be at the top (i.e., to find patterns in the data), or whether the
cluster with the lowest number of images should be first (i.e., to find
outliers in the data).

The cluster bullets of the RoD widgets can be further expanded by
mouse manipulation (Figure 7c) to display the cluster views. Clusters
are then represented by the average image calculated from the images
in the clusters. This immediately gives an overview on the image data
that is encoded in the cluster. To get more quantitative information
about the cluster size, the number of images is depicted for every clus-
ter in a separate icon. These icons are attached to the average cluster
images and provide additional functionality which can be controlled
by mouse manipulation. When activated, the list of images encoded in
the cluster can be viewed in a popup-window. This allows the user to
select groups of images in the original data based on certain patterns.

In addition to the condensed view on the data, every RoD widget
provides means to further analyze the results of the hierarchical clus-
tering process. Mouse manipulation of the RoD polygons can also
be used to view a visualization of the complete clustering tree (Fig-
ure 7d). We use a dendogram approach, since this gives an instant
structural overview of the hierarchical clustering results. A dendro-
gram is a tree diagram which illustrates the arrangement of clusters
produced by hierarchical clustering. Clusters which are created by
merging are represented by the average image computed from their
leaves. Visualizing the clustering helps to understand how the final
RoD-related clusters have been generated. Furthermore, the number
of hierarchy levels in the tree indicates the diversity of the RoD-related
image parts.

The clustering which is visible in a RoD widget refers to a specific
level in the clustering tree. The elbow criterion has been used to se-
lect the clustering. This decision may not be accurate in all cases. We
therefore enable the user to overrule this decision by simply selecting
another level in the clustering selection. The corresponding RoD wid-
get is immediately updated to represent the new clustering (Figure 8).
The top level of the clustering tree contains only one cluster which in-
cludes all available images. At the bottom level of the clustering tree,
all clusters only contain one image.

Additional control tools are provided in VAICo which the user can
employ to influence the visualization. The color of both the RoD poly-
gons and the RoD widgets can be changed according to given color
schemes. To skip variations that are not of interest for the data analy-
sis, and to prevent the visualization from getting overly cluttered, the
user can employ command tools to hide individual RoDs. According
to the size and shape of the image variations, it may happen that RoD
widgets will cover a large area of the image space when activated.
Therefore, the RoD widgets can be shrunk. In the case of a biased im-
age comparison (Section 3.1.1), the semantics of the color coding are
slightly different, since information is collected on the number of im-
ages the RoDs are present in. The darker the RoD polygon, the higher
the number of corresponding image parts. This way the colors of the
polygons depict outliers in the data that are either available in many,
or in just a fraction of the input images.

With its interactive visualization tools, VAICo provides an overview
of the image variations and allows the user to further explore them.
Differences in the data are encoded visually, but also functionality is
provided to go back to the original input data if necessary.

4 IMPLEMENTATION

The raw data for the presented approach comprise an unsorted set of
PNG images. The pre-processing, consisting of an image comparison
step and a data clustering step, has been implemented in JAVA. The
interactive visualization tools have been implemented as an interactive
web application. The widgets are embedded in an HTML5 canvas and
interactions are done in JavaScript.

The cost of the pre-processing depends on the number and size of
the images in the set. The run-time depends on the number of iden-
tified RoDs, since for every RoD hierarchical clustering has to be ap-
plied.

current clustering
new clustering

Fig. 8. Interactive clustering tree. In the interactive clustering tree the
user can specify a new level by mouse manipulation. This will overrule
the decision made during the clustering process. The new clustering is
immediately available in the RoD widget.



The pre-processing for the largest data set called Gene Expres-
sion, which consists of 578 images of size 200x200 pixels (see also
Section 5), takes 2.1 minutes. No user input is required during pre-
processing. Afterwards the results of the pre-processing step are trans-
ferred to the visualization system by JSON files. The results are then
loaded into the visualization system, which means that the provided
JSON files are parsed. This takes 10 seconds for the largest data set.
Afterwards the visualization system is ready to be used by the user.
The interaction itself works in real-time. Our web-based architecture
enables easy deployment of VAICo to explore and analyze online im-
age collections and repositories.

5 RESULTS

In order to evaluate the proposed comparative image visualization five
different sets of images have been analyzed (Figure 9). The images
are coming from different domains to show the applicability of the
proposed method to different types of datasets.

Fig. 9. Image datasets. The dataset Puzzle contains pictures of a real-
world scene (a). The dataset Shapes contains images with shapes of
different color. The dataset Retina contains retina images from different
patients (c). The dataset Satellite consists of satellite images of a coast-
line in Indonesia (d). The dataset Gene Expression contains images
with color coded gene expression information (e).

The selection of the first dataset called Puzzle was inspired by the
well-known spot-the-difference puzzles that can be found in many
newspapers. This dataset consists of 10 pictures which show a real-
world scene. The images are of size 1050x700 pixels. In the images
small elements disappear or change their color. The second dataset,
called Shapes, is a synthetic dataset which consists of 52 images. The
images are of size 600x400 pixels. They contain different types of
shapes (rectangles, triangles and circles) of various colors and sizes on
a white background. In the series of images, individual shapes disap-
pear, re-appear or change their color. Analyzing the differences of both
datasets by juxtaposition (i.e., placing images side-by-side) would be a
tedious task for the user. This is primarily due to the number of images
per dataset. Approaches that use juxtaposition do not scale well.
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Fig. 10. Results for dataset Puzzle. Our approach identified five RoDs
which depict the data changes in the images. One object in the scene
changes its color (RoD3), and some other objects are not present in all
images (RoD1, RoD2, RoD4, RoD5). The color-coding of the RoDs shows
the number of corresponding clusters. The color-coding of the cluster
bullets indicates the number of assigned images.

We used the unbiased (i.e., pixel-based) image comparison ap-
proach to locate the image differences as described in Section 3.1.1.
VAICo then takes the results of the comparison to give an instant
overview of all variations in the datasets (Figure 10 and Figure 11).
The analysis identified several image elements that are not present in
all images, and also detected object color changes.

The third dataset is called Retina and contains 20 retina images of
different patients. The images are of size 1168x779 pixels. In some of
the images anomalies are present, because the patients suffered from
diabetic retinopathy. Retinopathy is damage to the retina caused by
complications from diabetes. Blood vessels at the back of the eye
can bleed and blur vision. The leakage of blood can be seen as dark
spots in the images. When analyzing this dataset, the unbiased image
comparison approach was used as well.
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Fig. 11. Results for dataset Shapes. This dataset consists of images
containing shapes of different color on a white background. Our ap-
proach identified five RoDs (three of them expanded in this Figure).
Some of the objects are not present in all images (RoD1,RoD2), and
some of them also change their color (RoD3). The color-coding of the
RoDs shows the number of corresponding clusters. The color-coding of
the cluster bullets indicates the number of assigned images.



cluster bullets

RoDs

low high

highlow1

19

Fig. 12. Results for dataset Retina. This dataset consists of retina
images from different patients. The image comparison identified dark
spots on the retina, which can be further analyzed by using the RoD
widgets. The color-coding of the RoDs shows the number of corre-
sponding clusters. The color-coding of the cluster bullets indicates the
number of assigned images.

In the comparative visualization of VAICo, dark spots on the retina
can be identified as outliers in the data (Figure 12). Images without
anomalies are included in one cluster since they contain similar infor-
mation. The RoD widget allows us to explore the variations in the
data, so that anomalies can be distinguished from normal data vari-
ations that do not indicate pathological changes. The RoD widgets
allow us to retrieve the original image data, which keeps track of the
investigated patients.

The set Satellite consists of 12 satellite images of size 614x450 pix-
els. They cover a time period from 2000 to 2011. One image has been
produced every year. The images show a coast-line in Indonesia which
has been affected by a tsunami in 2004. In these images, outliers like
the damage caused by the tsunami which are present in only one im-
age, can be easily missed. Additionally, differences between the state
of the coast-line before and after the tsunami are not inherently avail-
able. Since no prior information was given about the structure of the
image data, we used the unbiased image comparison approach. It was
necessary to adjust the threshold to skip small changes in some parts
of the data.
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Fig. 13. Results for dataset Satellite. The images in this dataset show
a coast-line in Indonesia. Damage caused by the tsunami in 2004 is
identified as an outlier in the data (a). The images showing the state of
the coast-line before (b) and afterwards (c) are summarized in separate
clusters. The color-coding of the RoDs shows the number of corre-
sponding clusters. The color-coding of the cluster bullets indicates the
number of assigned images.
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Fig. 14. Results for dataset Gene Expression. The color-coding of the
RoD widgets depicts in how many images the corresponding RoD can
be found. The first stripe (RoD1) is available in more images than other
stripes. Furthermore, an outlier region RoD2 can identified. This re-
gion corresponds to unexpected gene expression data and only shows
up in two images. The color-coding of the RoDs shows the number of
corresponding clusters.

When viewing the comparison results with VAICo, the image part
showing the coast-line is covered by one RoD. The damage caused by
the tsunami on the coast-line is clearly visible as an outlier in the RoD
data (i.e., separate cluster). In the remaining clusters the images before
and after the tsunami are summarized (Figure 13).

The fifth set of images called Gene Expression is from the biologi-
cal domain and consists of 578 images showing gene expression data.
The images are of size 200x200 pixels. The data has been created
from point cloud datasets of different fruit fly embryos as described
by Fowlkes et al. [12]. In the images gene expressions of the EVE pro-
tein are color-coded from very high (red) to very low (blue). The EVE
protein forms a pattern of seven vertical stripes of gene expression.
Every image in the Gene Expression dataset corresponds to one fruit
fly embryo. On the one hand, differences in the gene expression can be
analyzed. On the other hand, outliers in the data can be detected which
show unexpected gene expression patterns. However, due to the large
number of images, a juxtapositional visualization does not scale well
with this dataset. A superpositional comparison may hide differences
in the gene expression of the seven regions.

We analyzed this dataset by using the biased image comparison ap-
proach as described in Section 3.1.1. We located the seven stripes of
the EVE protein in the images by segmentation. Then the RoD data of
the images was compared and the results were visualized with VAICo
(Figure 14). The color coding of the RoD polygons indicates the num-
ber of images the RoDs are present in. In the visualization it can be
seen that the first stripe shows up in more images than the other six
stripes. This is due to the fact that some images in the earlier stage
of the embryo development only contain one stripe. Additionally, out-
liers can be detected very easily in VAICo. They refer to patterns in
the images where the gene expression does not look like as expected.

6 EVALUATION

We collected user feedback to evaluate the presented visualization
techniques. We hypothesized that using our visualization technique,
participants would: (1) get results faster when searching for differ-
ences in a set of images; (2) get a better overview of individual vari-
ations in the image data; and (3) be able to better spatially localize
differences in the image data. The results of the evaluation can be
found in Figure 15.

For the feedback we compared a juxtapositional comparative visu-
alization of an image set to the comparative visualization presented in
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Fig. 15. Evaluation Results. The charts indicate the time it took the participants to complete the tasks T1-3. The x-axis depicts the participant
number (1-11) and the y-axis gives the time (in seconds) it took to complete the task. Every participant had to complete every task twice: once by
using a juxtapositional visualization and once by using VAICo. Therefore, two different measurements are available per task for every participant.
The evaluation results show that VAICo clearly is of benefit for completing the examined tasks.
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Fig. 16. Juxtapositional comparative visualization. In this visualization
images that should be compared are placed side-by-side (a). Users can
scroll through the list of images, sort images by drag-and-drop (b), and
enlarge individual images by clicking on them (c).

this paper. In the juxtapositional visualization participants could scroll
through the list of images, sort them by drag-and-drop and click on im-
ages to enlarge them (Figure 16). VAICo, on the other hand, contained
all the main features as described in Section 3.2 (Figure 17).

The images taken from the Shapes dataset contained shapes like
triangles, circles and rectangles on a white background. Some of the
shapes changed their color or disappeared in the image set. For the
evaluation, six different dataset versions have been prepared. Due to
their very general composition, images could be easily interpreted by
users from different domains.

We designed three tasks which refer to the three hypotheses men-
tioned above:

• T1: Depict variations with certain parameters. In this task
participants had to identify one shape which is present in all im-
ages. None of the remaining shapes did show up in all of the
images.

• T2: Analyzing local variations. In this task participants had to
identify one shape that is colored in three different ways in the
images. Then they had to sort the three colors for this shape by
the number of occurrences.

• T3: Localization of changes. In this task participants had to
identify the most mutable image region (i.e., the image space
part with the highest number of variations).

Participants had to complete all three tasks twice: once by using
the juxtapositional comparative view and once by using the compar-
ative visualization technique proposed in this paper. Datasets were
switched between different tasks, and also between different visual-
ization techniques. Therefore, participants never worked on the same
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Fig. 17. Comparative visualization of images as employed for the user
feedback. The set of images is presented in one view (a). Users can
employ the RoD widgets (b) to get more details about individual image
differences (c).

dataset twice. The order of the tasks (as stated above) was the same
for every participant. The order in which the two different visualiza-
tion techniques were presented to the user was selected at random. For
every task we measured the completion times and the correctness of
the answers.

The user study was conducted with 11 participants from three dif-
ferent domains (computer science (7), engineering (3) and medicine
(1)). Participants were between 26 and 57 years old. The group of
participants consisted of 9 men and 2 women.

The results of the user study are presented in Figure 15. The re-
sults show that VAICo definitely improves the search time for image
differences. In addition to time, the error rate was measured for every
task. For the juxtapositional comparative visualization some partici-
pants made errors when trying to solve task T2 (error rate of 9.1 %)
and task T3 (error rate of 27.3%). With VAICo participants did not
give wrong answers. When analyzing the results, it can be seen that
VAICo helps users to quickly get an overview on differences in the
image set (task T1). It also helps to analyze local variations (task T2).
Both tasks would require time-consuming analysis steps when done
manually by the user. The comparative visualization brings significant
improvements for users to localize variations in image space (task T3).
This is a very tedious task if done manually on an unordered set of im-
ages.

7 DISCUSSION AND LIMITATIONS

VAICo operates on a large number of images and analyzes similarities
and differences among them. As demonstrated in Section 6, image
comparison tasks can be facilitated and accelerated by making use of
our approach. VAICo is scalable to a large number of images and
works with images from different domains (as outlined in Section 5).
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Fig. 18. Effect of sensitivity threshold. Three different threshold values
increasing from (a) to (c) have been applied. Higher threshold values
result in less image space occupied by RoDs.

Our approach nonetheless has some limitations, which point to inter-
esting directions for future work.

VAICo is scalable to a large number of images. We use clustering
to cope with scale and to identify patterns in the data. Clusters are
depicted as bullets around the RoD widgets (as shown in Figure 7).
If many clusters have to be displayed in the widget, there might not
be enough space around the widget to visualize all of them. In this
case additional functionality is provided to the user, which means that
clusters are presented in a separate popup-window (where scrolling
can be activated easily). However, we would like to point out that
a high number of clusters bullets for a RoD (see Figure 7b) usually
indicate that the underlying clustering should be refined. VAICo pro-
vides the possibility to adjust the clustering by selecting another level
in the clustering tree (as described in Figure 6). We think that having
the ability to refine the clustering is more appropriate for analyzing
the data, than providing means to deal with high numbers of clusters.
Including additional visualization techniques which can handle these
special cases might be an interesting idea for future work.

The used Mean Squared Error (MSE) computation is a very sim-
ple image comparison approach which has some limitations. As one
possibility to deal with these limitations, we provide the possibility
to adjust the sensitivity of the algorithm. The user can define a sen-
sitivity threshold for intensity changes. Figure 18 illustrates how the
threshold effects the RoD calculation. The higher the threshold, the
less pixels will be considered as variations in the data. Increasing the
threshold will shrink the resulting RoDs, and might even cause RoDs
to disappear. This way, particular intensity variations in the data can
be skipped if they are not of interest for the data analysis.

MSE is very sensitive to global intensity shifts, and adjusting the
sensitivity threshold might not be enough to deal with global changes
in the data. Figure 19a shows an example of an image dataset where
one of the images is lighter than the other ones. When applying MSE
to this dataset, one big RoD is returned which covers almost the whole
image space (Figure 19b). We used Normalized MSE [41] instead of
MSE to compare the images. This solves the problem and returns
the expected result (Figure 19c). In addition, this example shows that
VAICo can be adapted to work with other image comparison metrics
as well.
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Fig. 19. Different image comparison metrics. One of the images in the
given dataset shows more intensity variations than others (a). Since
MSE is very sensitive to global intensity shifts (b), the approach fails in
this case (differences are indicated in orange). To solve this problem
and retrieve all desired RoDs, another image comparison metric (i.e.,
Normalized MSE) can be used (c).
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Fig. 20. Data analysis limitations. Landscape images (a), which show a
high number or variations, and motion data (b) result in very large RoDs.
This is because VAICo was designed for images that exhibit small local
differences. Adjusting VAICo for other types of images is an interesting
topic for future work.

VAICo operates on a set of images, where the individual images ex-
hibit small local differences. The approach has its limitations if deal-
ing with a high number of variations in the data. Figure 20 shows two
examples where VAICo does not produce appropriate results, namely
varying data in landscape images and motion data. VAICo is designed
for scenarios where the obtained images have undergone a certain form
of standardization. This is often done during the acquisition process
itself (e.g., by employing a particular protocol for mounting and imag-
ing) or through post-processing such as registration. As such proce-
dures are highly dependent on the application domain, they are not the
focus of our work. Instead, we assume that all images in our input
set have undergone such a process, i.e., they are of the same size and
represent similar regions in space.

In the case of landscape data (Figure 20a), an additional clustering
step could be applied to the images, and VAICo could be used to fur-
ther explore images in the individual clusters. In the case of motion
data (Figure 20b), VAICo gives a quick overview on the motion tracks
in the image. Although our approach is currently not suited to deal
with time-dependent data, it will be interesting to explore its applica-
bility for event detection in video data.

8 CONCLUSION

In this paper a visualization technique for the comparative visualiza-
tion of multiple images has been presented. Interactive visualization
tools are provided to explore the image space and drill-down on indi-
vidual variances. Our visualization approach addresses the scalabil-
ity of image comparisons and proposes ways to integrate contextual
information and more detailed information in one view. Contextual
information is preserved, whereas image variances can be efficiently
spotted and put into context. Our approach can be applied to quickly
identify small local differences in an image set. It is also helpful for
analyzing the occurrence and value ranges of previously defined im-
age features. We have demonstrated the scalability of our technique
by applying it to five sets with varying numbers of images.

In the future, it will be interesting to explore how the proposed visu-
alization techniques can be extended to image sets with spatially larger
variations and what additional information can be extracted from the
hierarchical clustering process. We also plan to investigate the ap-
plicability of VAICo for parameter space analysis. Another direction
for further research is to extend our approach for the detection of key
events in video data. Furthermore, we see the possibility to include
our method in image tools like revision control [3].
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