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Abstract—Various case studies in different application domains have shown the great potential of visual parameter space analysis
to support validating and using simulation models. In order to guide and systematize research endeavors in this area, we provide a
conceptual framework for visual parameter space analysis problems. The framework is based on our own experience and a structured
analysis of the visualization literature. It contains three major components: (1) a data flow model that helps to abstractly describe
visual parameter space analysis problems independent of their application domain; (2) a set of four navigation strategies of how
parameter space analysis can be supported by visualization tools; and (3) a characterization of six analysis tasks. Based on our
framework, we analyze and classify the current body of literature, and identify three open research gaps in visual parameter space
analysis. The framework and its discussion are meant to support visualization designers and researchers in characterizing parameter
space analysis problems and to guide their design and evaluation processes.

Index Terms—Parameter space analysis, input-output model, simulation, task characterization, literature analysis.

1 INTRODUCTION

Over the last decade, simulation models have become increasingly
prevalent in a variety of application areas. In the visualization lit-
erature, for instance, case studies have shown how such simulation
models were used to better understand weather and climate phenom-
ena [56], the spread of infectious diseases [1], biological cell profiling
[43, 57], and complex engineering and design problems [4, 18, 21, 37].
Structurally, all these examples are based on simulation models that
define a set of parameters as inputs and are able to compute corre-
sponding outputs for a particular parameterization.

From an abstract lens, many examples show recurring structures,
tasks and goals. A typical goal is, for instance, the optimization of the
output by identifying reasonable input parameter settings. Assessing
the optimality of outputs often involves trading-off multiple contra-
dicting objectives as well as qualitative judgments of complex data
like time series [1, 37], segmented image data [69], animations [18],
and 3D geometry [21]. Fully automatic optimization is then often too
complex, expensive, or simply not clear how to achieve, and must be
complemented by a human manually inspecting simulation outputs.

Traditional approaches of solving such problems were based on in-
formed trial and error strategies. Based on prior knowledge and ex-
perience, the input parameters are set to a specific value. Then, the
model is run and outputs are manually inspected. If the outputs are
not satisfactory, the next iteration starts and the model is re-run with a
different set of parameter values. A major drawback of this approach,
however, is that model runs are often very expensive, that is, it takes
minutes or even hours for single runs. In such cases, trial and error
leads to severe and unwanted interruptions during the workflow.

To overcome these drawbacks, many researchers have recently pro-
posed more structured workflows. To do so, interesting parts of the
parameter space are coarsely sampled to generate input parameter sets.
Then, the corresponding outputs are computed offline for all of these
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sample settings, e.g., over-night or over the weekend. Finally, visual-
ization approaches allow for exploring, investigating, and understand-
ing the space of sampled inputs and their resulting outputs. Such ap-
proaches have become known as visual parameter space analysis tech-
niques and offer an attractive possibility to deal with the complexity
of the models while still keeping the human in the loop.

The current body of work in visual parameter space analysis com-
prises mostly tools and case/design studies from different application
areas [1, 4, 14, 16, 37, 56, 57, 76]. In this paper, our goal is to take a
step back from the current application-oriented lens on visual parame-
ter space analysis and provide an abstract conceptual framework. The
framework can be used to describe, discuss, and evaluate visual pa-
rameter space analysis solutions across different application domains,
as well as to guide researchers in their design and evaluation decisions.

With our framework, we specifically make three primary contribu-
tions. First, we propose a data flow model (Section 4) that abstractly
describes visual parameter space analysis problems and characterizes
recurring data manipulation operations: sampling input parameters,
deriving objective measures from outputs, and predicting outputs with
cheaper surrogate models. Second, we present a classification of four
navigation strategies (Section 5). We most importantly distinguish
between local-to-global and global-to-local navigation strategies. In
local-to-global strategies exploration starts from inspecting a specific
sampled simulation run and then provides ways to navigate through
other runs. In global-to-local strategies the exploration starts with an
overview over all runs and then allows users to drill down into spe-
cific runs. Our third primary contribution is a characterization of six
typical analysis tasks (Section 6) in visual parameter space analysis:
optimization, partitioning, fitting, outliers, uncertainty, and sensitivity.

Our framework is based on our own experience working in visual
parameter space analysis, collaborations with simulation experts, as
well as a structured literature review of case/design studies in this area.
This work additionally led us to identify three open research gaps to
guide future work in this area (Section 8). Within the framework, we
also offer a unified set of definitions and terminology facilitating re-
search communication and progress. We consider these as secondary
contributions of our work.

1.1 Definitions

The set of problems we are focusing on appears in the context of
computational input-output models. We define input-output models
broadly as any sort of function that maps a set of input parameters to
a set of outputs. Together we simply refer to them as variables. Input-
output models can therefore be, for instance, computational simula-
tions, but most other types of algorithms also match these characteris-
tics.



A typical goal of using such input-output models is to find an input
parameter setting that leads to “good” output results. To achieve this
goal, it is necessary to sample the model by setting the input parame-
ters to specific values and compute the outputs corresponding to these
inputs. One specific sample is also referred to as a simulation run;
all samples/runs together are referred to as sampled data. In some
application domains, this sampled data is also referred to as an ensem-
ble [56]. Given that, we define parameter space analysis as follows:

Parameter space analysis (PSA) is the systematic varia-
tion of model input parameters, generating outputs for each
combination of parameters, and investigating the relation
between parameter settings and corresponding outputs.

In some cases this process might be achieved fully automatically.
Our focus is on how interactive visualization facilitates this analysis.
We refer to this concept as visual parameter space analysis (vPSA).

1.2 Example: Tuner
A typical example for visual parameter space analysis is the tool Tuner
by Torsney-Weir et al. [69]. One of the input-output models in their
case is a brain segmentation algorithm. As input parameters, this
model takes a scanned image of the brain as well as a set of numerical
control parameters that define how the algorithm operates. The output
is a segmented brain image where different brain regions are marked,
for instance, as background, skull, white matter, or grey matter.

Running the model with different settings of control parameters re-
sults in tremendous variations of the quality of the output segmenta-
tion. The goal is therefore to identify a parameter setting that leads to
“good” segmentations. In this example, finding a “good” segmenta-
tion necessitates to subjectively trade off multiple objectives and fully
automatic approaches are not suitable. Thus, Torsney-Weir et al. [69]
suggested to coarsely sample the parameter space over night and then
use methods of visual parameter space analysis to explore and analyze
the sampled data, that is, instantiations of different input parameter
settings and their corresponding output segmentations.

We will use Tuner as a running example for introducing our frame-
work. More details will be discussed along the way, such as Figures 2,
3, 4 and 5 that refer to Tuner. We will also introduce other examples
of visual parameter space analysis applications to further illustrate our
abstract framework.

2 BACKGROUND

With the growing amount of published visualization research, build-
ing up a higher-level, more theoretical understanding of the work in
our field becomes increasingly important. Towards that goal, this pa-
per follows in the line of structured analyses of the visualization liter-
ature [11, 31, 39] . Bertini et al. [11], for instance, proposed a system-
atization and overview of quality measures and derived implications
for future work. Here, we focus on a similar goal as Bertini et al. but
for the area of visual parameter space analysis.

Our framework specifically focuses on problem abstraction, as well
as strategies and tasks that occur in visual parameter space analysis.
Many researchers have called for a stronger focus on such task and
problem characterizations in visualization research [39, 47, 51, 70].
Following these calls, researchers have recently started to more ac-
tively focus on pure problem characterization papers. Kandel et
al. [34], for instance, have studied analysts within the social and or-
ganizational context of companies. Kang and Stasko [35] characterize
usage patterns and problems by conducting case studies with their text
analysis tool Jigsaw. Earlier work from Tory and Staub-French char-
acterizes visualization practices and collaboration patterns of building
designers [72]. Our work follows a similar goal, that is, characterizing
a specific set of problems. However, we have a different focus: while
the above papers focus on specific application domains, we focus on
a specific set of abstract problems, visual parameter space analysis,
across application domains.

Previous work on task characterization has mostly focused on
straightforward low-level tasks [2, 5, 36, 65], such as detecting out-
liers, or high-level goals [3, 41], such as hypothesis generation. Only

recently, researchers have started to characterize complex tasks that
lie between these two extremes and that better reflect the needs of real
users [17, 47, 58, 61]. Our work on tasks has similar goals. However
while the previous work is targeted at generic visualization tasks, we
focus on a specific set of data analysis challenges appearing around vi-
sual parameter space analysis. We argue that characterizing problems
and tasks from more specific angles is indispensable for getting a more
concrete understanding of users’ needs in these areas.

We see our work between the extremes of narrow, domain-specific
task characterizations as done in design studies [64], and generic task
taxonomies. Notable examples along these lines are Lee et al.’s work
on characterizing tasks for graph visualization [40], and Sedlmair et
al.’s work on dimensionality reduction tasks [62].

3 METHOD

The framework is primarily based on our own experience conduct-
ing design studies in parameter space analysis and collaborating with
simulation experts in different domains [4, 9, 10, 14, 18, 55, 69]. In
these design studies, we started to identify and describe data and task
characteristics. Here, we build on these domain-specific experiences,
propose an abstract, domain-independent framework, and derive novel
insights in terms of analysis strategies, tasks, and open research gaps.

To additionally ground our framework, we conducted a structured,
in-depth analysis of the relevant research literature. Our assumption
is that these research papers can be seen as a proxy for the problems,
data and tasks of end users. From the visualization literature, we gath-
ered an initial set of 112 research papers that we deemed potentially
interesting. A closer analysis of these papers led us to a set of 21 core-
relevant papers [1, 4, 9, 10, 14, 16, 18, 21, 26, 37, 43, 44, 45, 46, 55,
56, 57, 68, 69, 73, 76]. This selection was based on a set of exclusion
criteria that we defined. First, we specifically excluded papers without
concrete applications of parameter space analysis. Without a close
connection to a concrete application we cannot reliably argue about
user tasks. Second, we excluded papers with automatic analyses only
to keep the focus relevant to the visualization community. Third, we
excluded papers that did not match our definition of parameter space
analysis, as outlined in Section 1.1.

Similar to a machine learning approach, we split the 21 core papers
into two groups, a “training” and a “validation” set. We selected and it-
eratively analyzed 14 papers (training set), with three major rounds of
iterations. We used this first round of analysis to step-by-step improve
and refine the initial conceptual framework that we developed based on
our own experience and collaborations. This analysis specifically in-
formed our characterization of exploration strategies (Section 5), anal-
ysis tasks (Section 6), and research gaps (Section 8). We then analyzed
the remaining 7 papers to validate the robustness of our framework
(validation set). In general, our analysis was inspired by open, ax-
ial and selective coding strategies as used in Social Science [19, 24].
Overall, each paper was coded by at least two authors (average 2.8
coders/paper). More details about the methodological approach can
be found in the supplemental material.

In the following sections, we will use selected examples from the
21 core-relevant papers to illustrate our framework. Table 1 on page 7
summarizes the final categorization of these 21 papers.

4 DATA FLOW MODEL

Our first contribution is a data flow model that depicts how data is
generated and manipulated in a visual parameter space analysis set-
ting. Specifically, we characterize three key operations as part of this
model: sampling the input parameter space, derivation of objective
measures from the model output, and prediction of not-yet-computed
(or unsampled) outputs using computationally cheap surrogate mod-
els.

4.1 Basic Input-Output Model
The focus of our work is on input-output models, such as computa-
tional simulation models or algorithms. For a more evocative abstrac-
tion of these models, we use a simple graphical representation depict-
ing the data flow.
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Fig. 1. Simple input-output model with 3 input parameters and 2 outputs.

Consider the simple example in Figure 1. This model takes three
inputs and maps them to two outputs. The model might represent a
hypothetical weather forecast model that takes current temperature,
humidity, and pressure and based on them computes tomorrow’s prob-
ability of rain, as well as the speed of the wind. Such models can
come in very different forms. For instance, stochastic models [14, 74]
yield different outputs for repeated runs with the same input parameter
setting. On the other hand, deterministic models [18, 69] produce the
same outputs whenever run with the same parameter setting.

In the simplest form, the inputs and outputs of a model come as
real numbers. In that case, the model can be represented as a mapping
f : Rm→ Rn, with m = 3 and n = 2 in the example of Figure 1. How-
ever, other data types are also common. We broadly classify input and
output types into two groups: (1) multi-variate/multi-dimensional, and
(2) complex objects [52]. This distinction is based on a semantic level,
not on mathematical concepts.

As in the simple example above, inputs and outputs can come as a
set of semantically meaningful variables (or dimensions) that are ei-
ther quantitative, ordered, or categorical. In the literature examples
we surveyed, we found that these sets of input/output variables rarely
exceeded 100 variables. Moreover, in all cases these variables were
semantically meaningful. That is, they were well chosen by the sci-
entists or users that study a specific model. We propose to refer to
these input parameters as multi-dimensional and to the output charac-
teristics as multi-variate. This choice leans on common mathematical
terminology [20] and allows us to distinguish between inputs and out-
puts. Further, we will not refer to these variables as high-dimensional
as this is a term usually common in machine learning and statistics
where the number of dimensions is in the thousands or millions, and
where dimensions have no strong semantic meaning, such as pixel val-
ues in an image. Note, that we are not proposing a clear-cut number
of variables/dimensions between multi- and high-dimensional, but ar-
gue that the strong or weak semantic meaning of dimensions/variables
distinguishes these two.

Alternatively, inputs/outputs can come as (semantically) complex
objects. For example, a 2D/3D image is a single complex object (de-
spite the fact that they can be modelled mathematically as N×N pix-
els, or N2 dimensions). Images cannot be easily described with a sin-
gle quantitative/ordered/categorical variable. The semantic unit is the
complex object itself. Other examples are animations, performance
graphs, social networks, or robot behaviors, just to name a few.

Naturally, both can coexist in a model. Consider the running ex-
ample on image segmentation from the introduction (Tuner). Here, a
brain segmentation algorithm takes a scanned image of the brain as
input and returns a segmented image as output where different colors
mark the individual brain regions, as illustrated in Figure 2.
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Fig. 2. Model with a complex object in addition to numerical variables
as input and a complex object as output. Example from Torsney-Weir et
al. [69].

Both the unsegmented 2D input image, as well as the segmented
2D output image are semantically complex objects. Additionally, the
model takes some quantitative input parameters that can be adjusted

to control the segmentation process. This example highlights the ex-
istence of different classes of input parameters. To better characterize
these differences, we adopt a classification from the statistics commu-
nity that separates input parameters into three classes [60]:

• Control parameters are parameters the user can directly manipu-
late. These parameters are of primary interest to parameter space
analysis problems, such as the three numerical inputs in the ex-
ample above (Figure 2).

• Environmental parameters are parameters that can be measured
in the real world, such as the un-segmented brain scan image in
the example. They are often prone to small changes and, hence,
are modeled as random variables. Therefore, these are parame-
ters that often cannot be directly controlled by the user.

• Model parameters are implicit parameters often needed for the
numerical realization of the model such as setting certain thresh-
olds, grid spacings or convergence criteria. They might be im-
portant during the model building but are mostly hidden during
the usage of a model.

4.2 Sampling
At the heart of visual parameter space analysis is the systematic sam-
pling of the input parameter space, and the generation of respective
outputs for each sample point (a specific setting of input parameters).
Figure 3 shows the sampling process by means of the segmentation ex-
ample. Each of the parameter settings leads to a different segmentation
output.
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Fig. 3. Sampling a model. Here, 3 different samples are generated by
running the model with 3 different input settings.

Most of the papers we analyzed used either regular or stochastic
sampling strategies. Regular Cartesian sampling—also known as full-
factorial designs in the statistics literature—was the most favored ap-
proach. In the case of random sampling, uniform random sampling
is used. Some strategies also employ Latin Hypercube approaches.
While these sampling strategies allow an overview of behaviors in the
parameter space, few tools we analyzed directly supported sampling
strategies from within the tools [10, 44, 69, 76]. We refer to this direct
integration as integrated sampling that allows users themselves to trig-
ger and refine sampling processes, for instance, to generate additional
samples or adapt sampling strategies.

4.3 Derivation
It is common that the output of a model is a complex object (18/21
of our analyzed examples). For an effective parameter space analysis,
many outputs will have to be studied together requiring an efficient
summary, specifically for complex objects. In such cases, the user of
the model might want to derive objective measures that summarize
the essential characteristics of the complex model output. We refer to
them as derived outputs. Consider the segmentation example again.
Figure 4 shows that for each segmented output image, a set of scalar
objective measures is computed. In this example, the objective mea-
sures are computed by comparing the segmented image to a ground-
truth, hand-segmented image. The measures quantify how much the
segmented areas differ between the output and the ground-truth image.

Alternatively, the use of pair-wise similarity (or distance) metrics
allows an easier comparison of different outputs visually or algorith-
mically. The distance metric can then be used to provide an overview
with distance-based visualization techniques such as MDS plots [29].
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Fig. 4. Derive additional variables. In this case, the segmented out-
put image from the algorithm is compared to a ground truth, hand-
segmented image. Differences are quantified as derived outputs.

4.4 Prediction
Sampling a model provides discrete combinations of inputs and out-
puts. Consider a simple model with 2 input parameters and 1 output.
Data from sampling this model 100 times could be easily visualized
in a scatterplot with the 2 inputs being the axes, the 100 samples are
drawn as points, and the output is mapped to a color-scale which is
used to encode each sample point.

However, often the model user is interested in seeing outputs at lo-
cations that have not been sampled. If sampling is cheap these points
can be just computed on the fly. However, usually generating samples
is computationally expensive and would therefore interrupt the analy-
sis process. In these cases, cheap surrogate models [60] can be lever-
aged to predict outputs that have not been sampled by the real model.
Moreover, surrogate models might allow one to predict all un-sampled
areas and to reproduce the actual continuous-to-continuous mapping
between inputs and outputs. Creating continuous spaces from discrete
samples is, in the signal processing community, referred to as approxi-
mation or interpolation [20]; in the statistical community this is known
as regression and prediction [13].

To illustrate this prediction step, let us once again come back to
the segmentation example from above. Predicting the two derived
objective measures from the three input control parameters leads to
a continuous-to-continuous mapping which now can be represented
with Hyperslices [75] instead of discrete scatterplots. The three in-
put parameters are mapped to the dimensions, and the two outputs are
mapped to orange-white and purple-white color scales, as illustrated in
Figure 5. The continuous mapping makes it possible to understand the
entire space of relations between in- and outputs, without restricting it
to a selected set of sample points.

Fig. 5. Hyperslices of the image segmentation algorithm. The 3 input
parameters are mapped to the axes. 2 derived outputs are encoded on
a white-purple, and a white-orange color scale. Courtesy of Torsney-
Weir et al. [69].

4.5 Summary: Data Flow Model
The complete data flow can now be summarized as in Figure 6. The
actual input-output model takes multi-dimensional input parameters
that can be controlled by the user, and produces direct outputs that
can either be multi-variate or complex objects. From these direct out-
puts further derived outputs may be extracted. This pipeline can be
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Fig. 6. Our problem abstraction summarized as a data flow model.
Dashed and dotted lines indicate the optionality of the additional deriva-
tion and prediction steps.

replaced with a surrogate model taking the same input parameters but
now computing predicted outputs. Hence, the actual output space con-
tains direct outputs but can include derived and predicted outputs as
well. While there is alternative terminology that could describe this
problem space, we hope that this data flow model is evocative enough
through all areas of visualization research that it will be accepted as a
common language.

Note, that this summary depiction reflects a typical scenario. In
the real world, more complex scenarios do appear as well, including
multiple serial, parallel, or nested derivation steps. However, these
can be represented by simply recombining the elementary components
of the pipeline. Another interesting question related to this data flow
pipeline is where to draw the “line” between the model and derive
step. If a model returns multi-variate outputs, oftentimes these have
already been “derived” within the model. We argue that this depends
on the person who looks at the model and the stage of development.
A distinction we find helpful is between visualization researchers and
domain experts: direct outputs are what visualization researchers get
from domain collaborators, although they might be internally derived;
derived outputs are those which visualization researchers actively de-
velop or help developing.

5 NAVIGATION STRATEGIES

When data has been generated via sampling, derivation, and/or pre-
diction, this data needs to be presented to the user for exploration and
analysis. Based on our literature analysis, we classify four distinctive
strategies of how this data was made available for navigation.

5.1 Informed Trial and Error
Traditionally, parameter space analysis was conducted with informed
trial and error strategies. Based on prior knowledge, a user (1) runs
a model with a specific setting of input parameters creating one sam-
ple, (2) inspects the outputs of this sample, and (3) re-runs the model
with a refined set of parameter settings if the outcome was not sat-
isfactory. This sequential process can be effective if the simulation
output can be produced in real-time. Given that model computations
are usually expensive, the informed trial and error strategy, however,
has tremendous interruption costs: the user has to wait for minutes,
or even hours for new samples to be produced. Usually, this time to
find the right parameters is not reported. One simply finds a statement
along the lines of “We have found the following parameter settings to
yield good results ...”. The well known SIFT algorithm [42] serves as
a good example. It is a specific feature detector for computer vision
applications which works well when a number of parameters are set to
specific values. Since no systematic determination has been reported
in the paper, it is likely that finding these parameter settings has been
done following the wide-spread, traditional trial and error strategy.

5.2 Local-to-Global
To allow for real-time interaction rates despite high model compu-
tation costs, researchers have suggested to pre-compute samples be-
fore the actual parameter space analysis process. The expensive pre-
computation can be done, for instance, over night. The column ”no. of
samples” in Table 1 on page 7 shows the numbers of samples used in



(a) local-to-global (b) global-to-local (c) steering

Fig. 7. Examples for different navigation strategies: (a) Local-to-global: The user can interactively manipulate the size of the cutting window (input
parameters), which is then updating the overlaid stress field heatmap (output). Courtesy of Coffey et al. [21]. (b) Global-to-local: The view at the
top-right and the view at the bottom show overviews of all simulated explosion (outputs) using representative thumbnail images. Upon selecting
one specific explosion its animation can be inspected in the top-mid view. The circular parallel-coordinate plots on the left show the respective input
parameter settings. Courtesy of Bruckner and Möller [18]. (c) Steering: The user can interactively place sand sacks (input parameters) while a
flooding simulation is running (output). Courtesy of Waser et al. [76].

the papers we analyzed. Based on the tradeoff between computational
costs on the one hand and analysis accuracy on the other hand, the
number of generated samples ranges often between 100 and 1000.

Given this set of precomputed sample points, we identified differ-
ent characteristic strategies of how they were visually represented and
navigated in analysis tools. The local-to-global strategy starts with
showing one specific output and lets the user explore alternatives from
there. Consider, for instance, a visual parameter space analysis ex-
ample supporting the design of a medical biopsy device, as shown in
Figure 7(a) [21]. Here, a virtual CAD device is used to explore vari-
ous characteristics such as the length of the tissue cutting window or
the outer radius of the cannula, which are the inputs to a simulation
model. The simulation output, a scalar stress field, is directly mapped
as a heatmap onto the CAD virtual device. The navigation through the
pre-computed design space starts with showing a very specific sample,
that is, specific device characteristics and a specific stress field. A user
can now interactively change the device characteristics (inputs), and
in doing so updates the stress field heatmap (output). Step-by-step the
user can interactively infer global structures from local searches.

5.3 Global-to-Local

Global-to-local navigation strategies are similarly based on the pre-
computation of a large set of sample points. However, instead of start-
ing with a specific sample and navigate alternatives from there, the
goal is to start with an overview over all pre-computed samples and
then drill-down into more details. In that sense, this strategy is closer
to Shneiderman’s venerable mantra “Overview first, zoom and filter,
then details on demand” [65].

Consider, for instance, how Bruckner and Möller used visual pa-
rameter space analysis to support visual effect designers in finding de-
sired explosion animations [18]. Sampling the animation algorithms
with different parameter settings, they present interactive thumbnails
of clustered animations as shown in Figure 7(b). In doing so, they first
reveal the breadth of possible animations to the user, and then support
drilling down, identifying and refining good animation candidates.

5.4 Steering

In some cases, a user might want to change the input parameter settings
while a simulation runs. We refer to this strategy as steering. While the
above strategies focus on changing and analyzing control parameters
in a systematic way, steering often addresses environmental and model
parameters.

We refer to steering environmental parameters as simulation steer-
ing, which for instance can be found in real-time simulators such as
flight or driving simulators. World Lines by Waser et al. [76] is a
prime example for this category. As shown in Figure 7(c), their sys-
tem lets the user place different barriers to contain flooding of a city
while the water is rising. Different possible performances can be com-
pared. Users can evaluate alternative scenarios for the assessment of
potential hazards by actively steering the simulation while it runs.

On the other hand, steering model parameters refers to on-the-fly
adjustment of numerical or other aspects of the computational realiza-
tion of the model. Examples include changing the grid size or time-
stepping parameters. Adjusting these parameters is known as compu-
tational steering [50].

It is worthwhile to notice that, while we differentiate between local-
to-global and steering, others have used the word steering to express
local-to-global search [45]. We argue that these two strategies are
fundamentally different as one is based on pre-computation or re-
sampling (local-to-global), while the other is inherently tied to adjust-
ing parameters during simulation runtime (steering).

6 ANALYSIS TASKS

So far, we have characterized how data can be produced from their
underlying models, and how visualization can support different ways
of navigating this data. A third important component is understanding
the tasks that users eventually want to engage in when doing visual
parameter space analysis.

In general, tasks regarding input-output models are often coarsely
classified as model building, model validation, and model usage [22].
Our work on visual parameter space analysis primarily focuses on
model validation and usage tasks for which a computational model
already needs to exist. In model validation, modellers question the be-
havior of the model itself and try to derive formative insights on how
to make it better, or summatively judge its performance. In model
usage, analysts/scientists use a more or less trusted model without pri-
marily questioning its validity. Visual parameter space analysis of the
model can then be used for various purposes. It might be used to guide
design and engineering processes, for instance, of a biopsy device as
discussed above [21]. In policy making, decisions can be informed by
simulating different “possible futures” [14]. Similarly, a model might
be used to study scientific phenomena such as bird moving patterns
that would otherwise be hard or impossible to study [10]. Or, it simply
might be used for training purposes emulating real systems in a simu-
lation [76]. While there is no clear-cut line between model validation
and usage, we found it a helpful distinction when discussing visual
parameter space analysis problems.

With the goal of providing better guidance for visualization re-
searchers and designers, we intended to characterize visual parameter
space analysis tasks on a more fine-granular level. Based on our own
work and the literature review, we describe a set of six recurring anal-
ysis tasks: optimization, partitioning, fitting, outliers, uncertainty, and
sensitivity. These tasks essentially cross-cut both model validation and
usage. Note that it is very common that several of these analysis tasks
co-occur in real application scenarios.

6.1 Optimization: “Find the best parameter combination given
some objectives.”

One of the most common tasks is to find an input parameter setting
that leads to satisfying output results. Oftentimes objective functions



can be formulated and numerical measures be derived from the direct
outputs respectively. If the objective can be summarized in a single
scalar there is a multitude of numerical optimization strategies that
can be employed [15].

However, when there are multiple competing objectives finding the
best output often relies on subjective human judgement, a promise
that visual parameter space analysis holds. Consider the example of
a segmentation algorithm design as supported by our running example
Tuner [69]. On the one hand, 12 derived objective measures need to
be balanced. On the other hand, it is necessary to subjectively analyze
the performance of the segmentation as the objective measures are not
fully capturing the expert knowledge.

In some cases optimization might even be a completely subjective
process. Consider the above mentioned example of Fluid Explorer in
Figure 7(b): in this example, the optimization heavily relies on qual-
itative assessment of the outputs, the animated explosions. The users
are primarily interested in exploring the output space in order to iden-
tify a realization that most closely represents their envisioned goals.
A similar example is Marks et al.’s venerable work on Design Gal-
leries [44]. Both approaches rely on presenting thumbnails of images
or animations which are organized according to a similarity measure.

6.2 Partitioning: “How many different types of model behaviors
are possible?”

The goal of a partitioning task is to find a partitioning—or cluster-
ing, or segmentation—of the output space and relate that back to input
parameter settings. In doing so, it is possible to understand what dif-
ferent types of outputs can be expressed by the existing model. A good
example is Bergner et al.’s work clustering different fuel cell perfor-
mance graphs (model outputs), followed by mapping their cluster IDs
back into the input space [10]. The input space is shown as a 2D-
dimensional scatterplot with the sample points colored according to
clusters in the output space. This representation reveals “shapes” of
input parameter settings that lead to similar output results.

6.3 Fitting: “Where in the input parameter space would actual
measured data occur?”

During building and validating a model, it is of interest to see how and
whether real measured data can be expressed by the model. In that
sense, fitting represents an inverse problem: given model outputs only,
what input parameters would yield this behavior? This is also akin
to regression analysis in statistics or approximation and interpolation
methods in signal processing. While mathematically, this could be
formulated as an optimization problem, the user might need a differ-
ent mind-set and therefore a different visual encoding and interaction
design. Improving the understanding of differences between model
and reality helps to fit the model more closely to the underlying real
world system that is simulated. HyperMoVal [55] is an example that
specifically focuses on the validation of regression models. Hyper-
MoVal seeks to support the fitting task by simultaneously plotting the
regression model together with known validation data. This approach
allows users to analyze how well model outputs align with the real
system.

6.4 Outliers: “What outputs are special?”

The abstract task of finding outliers can have different specific mean-
ings in model usage and validation. When using a more or less trusted
model, it can refer to detecting anomalies in simulations, for instance,
to understand interesting and unique phenomena in weather forecast
models [56]. On the other hand, when building and validating a model,
it can refer to identifying implausible outputs that would not have been
possible in an underlying real system. The aforementioned example of
HyperMoVal [55], for instance, reports on a case study where an out-
lier turned out to be an implausible validation sample.

6.5 Uncertainty: “How reliable is the output?”

Understanding uncertainties in model usage and validation can come
in different forms [22]. In our literature analysis, we specifically iden-
tified:

• Aleatoric/statistical uncertainty (lack of knowledge modelled
through random variables, often found in environmental vari-
ables): “How much do (non-deterministic) runs with the same
parameter settings differ?”

• Structural uncertainty: “How much does the model differ from
reality?” (a form of epistemic uncertainty)

• Prediction uncertainty (of surrogate models): “How accurate are
predicted outputs?” (a form of epistemic uncertainty)

Understanding and integrating uncertainty into scientific, engineering
and design processes has gained considerable attention [22]. Yet, the
visualization and communication of uncertainty is done cautiously in
many systems. Consider, for instance, decision making tools such as
Vismon [14], a visual tool for fisheries data analysis. In the Vismon
project, the managers and stakeholders (the users of the system) were
already overwhelmed with the complexity of the data they need to
consider. Hence, the system was developed to bring aspects of uncer-
tainty to the forefront only when explicitly requested by the user. This
trend could change as the literacy about sources and quantification of
uncertainty sweeps through the different application areas.

6.6 Sensitivity: “What ranges/variations of outputs to expect with
changes of input?”

Mathematically, sensitivity might be expressed as an uncertainty of
the input parameter value, and is therefore often considered a subfield
of uncertainty quantification [22]. However, while some of the math-
ematical approaches of quantifying uncertainty might be applicable
to sensitivity analysis, the semantic understanding and articulation of
sensitivity is different. Hence, we find it helpful to articulate it as a sep-
arate analysis task. In the tools we have studied, sensitivity was never
merged or considered a form of uncertainty. In analyzing sensitivity
one distinguishes between global and local sensitivity [59], however,
we have only found support for local sensitivity in the tools we have
surveyed. Specifically, we have found sensitivity to be cross-cutting
through most other analysis tasks:

• Optimization: The question arising is the stability of the out-
put for slight changes of the optimal input parameters. Users
are willing to choose a less optimal solution, if it is guaranteed
that the solution is stable to small changes of input parameters
(specifically, environmental parameters that cannot be directly
controlled by the user)

• Partitioning: The question arising here is one of stability of par-
titions, i.e., how quickly or slowly does one partition change to
another when changing the inputs?

• Fitting: Given some specific measured data, the question is how
large a range of inputs will yield the model output representing
the data measured.

For analyzing sensitivity, it might be useful to predict outputs
with surrogate models. Reproducing a partial or full continuous-to-
continuous mapping between inputs and outputs supports a better un-
derstanding of local neighborhoods surrounding points of interests,
which in turn is crucial for sensitivity analysis. This approach is, for
instance, used in our running example Tuner, in which sensitivity anal-
ysis was identified as an important task. Figure 5 shows how Hyper-
Slices were used to navigate the continuous-to-continuous mapping
between inputs and predicted outputs.

7 DISCUSSION

Table 1 shows the final result of our iterative analysis of the 21 pa-
pers. The cells mark how we classified these papers according to our
framework. Naturally, the papers we analyzed were not written with
our theoretical lens in mind, necessitating interpretation and in-depth
discussions in their analysis. We see our main contribution in summa-
rizing, abstracting, and classifying different characteristics of visual
parameter space analysis into a holistic conceptual framework based
on these 21 papers.

After reviewing our framework’s relation to other theoretical visu-
alization models, we provide guidance on how to use the framework,
and discuss its focus and limitations.
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Coffey et al. [21] 2 Y Y Y * Y Y Y Y Y Coffey et al.: Design by Dragging [21]
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Konyha et al. [37] 2 Y Y * Y * Y Y Y Y Konyha et al.: Interactive VA of Families of Function Graphs [37]

Luboschik et al. [43] 1 * Y Y * Y Y A Y Y Y Y Y Luboschik et al.: Simulation trajectories [43]
Marks et al. [44] 3 * Y Y Y Y Y Y Y Marks et al.: Design galleries [44]

Matkovic et al. [45] 2 Y Y Y * Y * Y Y Y Y Matkovic et al.: Common Rail Injection System [45]
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Table 1. The table summarizes the 21 application/design study papers we analyzed in terms of our framework. A cell is marked with yellow when
a certain aspect of our data flow model is supported by the application. Blue marks indicate the main navigation strategy a certain tool follows.
Green marks the analysis tasks that are primarily supported. Secondary data operations/strategies/tasks are labeled with an asterisk (*). We label
a cell as secondary if a strategy or task was not explicitly targeted by the authors but might still be feasible with their tool. In the uncertainty column
we further differentiate between aleatoric (A), structural (S), and prediction uncertainty (P), as described in Section 6. Grey shows additional
information relevant to visual parameter space analysis.

7.1 Relation to Other Visualization Models

Our framework can be best contextualized using Munzner’s Nested
Model [51]. The Nested Model organizes the visualization design
and validation process into four levels: (1) domain problem char-
acterization, (2) problem/data/task abstractions, (3) visual encod-
ing/interaction design, and (4) algorithm design. Our work in general,
and the data flow model (Section 4) and analysis tasks (Section 6) in
particular, focus mainly on the abstraction layer (level 2). We ground
these abstractions in a thorough analysis (literature analysis and first-
hand experience) of domain problems (level 1). We also connect the
framework upwards to visual encoding/interaction design (level 3) by
characterizing navigation strategies (Section 5).

We also sought to organize our tasks and strategies using the multi-
level task typology proposed by Brehmer and Munzner [17]. This ty-
pology is organized as why, how and what and presents a set of abstract
tasks living in these categories. While we found the general categories
of why and how helpful in guiding our analysis, we could not directly
match our framework into this typology. Our work addresses analy-
sis tasks specific to visual parameter space analysis that have not been
discussed in their typology. We see this fact as a confirmation on the
many calls for more work on problem and task analyses [17, 47, 51].
Understanding the richness and variety of visualization problems, and
putting them together into a theoretical underpinning remains a major
challenge of our community.

7.2 Framework Usage

Our framework can be used in three different ways: (1) descriptive—
for describing a significant range of visual parameter space analysis
problems and solutions; (2) evaluative—to help assess design alterna-
tives; and (3) generative—to support creating new ideas [7, 8].

Descriptive Usage The terminology we proposed, the data flow
model, as well as the analysis task characterizations can be used to
abstractly describe domain problems for which visual parameter space

analysis solutions are generated. We refined and validated our frame-
work by describing visual parameter space analysis applications from
21 papers, and are therefore confident that the framework will be de-
scriptive for many other application examples as well.

We anticipate three major benefits when describing visual param-
eter space analysis work through our abstract lens. First, it will help
in problem-driven research, such as design studies [64], to abstractly
characterize the problem and translate domain knowledge into ac-
tionable design decisions. Second, technique-driven researchers can
use it to clearly characterize their goals and assumptions. Third, the
framework then can facilitate the communication between researchers.
Specifically, it will allow for an easier mapping between problem-
driven and technique-driven work. Additionally, it will allow to com-
pare and relate findings across different application domains, acceler-
ating progress in visual parameter space analysis research in general.

Evaluative Usage The navigation strategies and analysis tasks
we characterized will help to better assess multiple alternatives in de-
signing visual parameter space analysis tools.

Consider the example of deciding between local-to-global and
global-to-local navigation strategies. Global-to-local starts with a
broad overview over many/all possible model outcomes, while local-
to-global starts from a specific output and then allows the interac-
tive exploration of alternatives. From that perspective global-to-local
seems more powerful in many cases. However, this decision might
interact with other factors. For instance, deep immersion into specific
decisions might outweigh global exploration of alternatives in certain
situations. Also, such decisions depend on how complex the model
output is and how easy/hard it is to computationally derive objectives
and/or visually provide an evocative overview.

As intrinsically true for all conceptual frameworks, these identi-
fied strategies are naturally a simplification of the reality. For real
tools we found that aspects of local-to-global and global-to-local nav-
igation were often combined with different views supporting different
strategies. We marked these combinations with an asterisk in Table 1.



However, having a clear characterization of strategies and tasks helps
to better reason about choices and eventually make more informed de-
sign decisions.

Generative Usage Finally, our framework can also be used to
generate and inspire new ideas. We believe that the framework is con-
crete enough to depict visual parameter space analysis problems and
solutions, yet general enough to inspire other areas as well.

While we use our input-output data flow model to reason about sim-
ulations and algorithms it could, for instance, be similarly used to de-
scribe and analyze the visualization process itself. The idea would
be to generate, that is, sample many different visual encodings and
then use derived quality measures to spot interesting ones. Some
of the pioneering work in visualization includes the study of trans-
fer functions for volume rendering (Design Galleries [44], visualiza-
tion spreadsheets [32], parallel-coordinate-style interfaces [71], Vis-
Trails [6]), the analysis of the rendering pipeline [38], graphs [33],
and the analysis of multi-variate data projections [66, 77]. Our frame-
work gives a new theoretical lens to think about this line of work and
might be used to generate new ideas that have not been thought of with
the traditional perspective.

7.3 Focus and Limitations

Our work is grounded in our own experience working in visual param-
eter space analysis, as well as a structured analysis of 21 core-relevant
papers. This approach comes with standard limitations of qualitative
theory building [19]. Selecting and coding papers, as well as generat-
ing the framework was inevitably shaped by our previous experience.

To keep the effort of our in-depth literature analysis manageable,
we selected 21 core-relevant papers with a specific focus based on our
definition of visual parameter space analysis. Nevertheless, there are
many other papers that are closely related to our endeavor, which is
reflected in the larger set of 112 papers that we initially gathered (see
supplemental material for a full list).

For instance, we specifically focused on visualizing relations of in-
puts and outputs sampled from computational models. However, also
measured data often comes in a similar form of two groups of related
variables. In statistics, they are usually called independent (analogous
to our inputs), and dependent variables (outputs). Consider, for in-
stance, Guo et al.’s work on sensitivity analysis, which is a task that
also appears in our framework. Their focus is on previously measured
data. The example in their paper relies on a benchmark dataset of mea-
sured diamond weight, color, clarity, and cut (independent var.), and
their relation to price (dependent var.) [27].

We further selected core-relevant papers with a focus on the inves-
tigation of input-output relations. Other visualizations of simulation
data focus mainly on representing the output space. Nocke et al., for
instance, primarily look at solutions of how to visualize complex out-
puts from climate simulations [54]. Given the complexity of represent-
ing even individual climate simulation outputs, they only marginally
focus on input-output relations. Smith et al. address the question of
morphing between shape objects resulting from computational design
models, such as car CAD models [67]. Their work is closely related
to our prediction strategy.

We mainly focused on model validation and usage tasks of an ex-
isting computational model. We did not explicitly include other model
building tasks, such as feature extraction, selection, or transformation.
Consider, for instance, Mühlbacher’s and Piringer’s work that dis-
cusses how visualization can support building regression models [49].

Finally, we specifically set out to study visual parameter space anal-
ysis. While this focus was intentional, we believe that our framework
might be useful for more general parameter space analysis scenarios
with a less substantial role of visual encodings as well. We also be-
lieve that the framework is general enough to be useful for the closely-
related areas discussed above, although these lines of work were not
part of our core literature analysis. Naturally, all possible generaliza-
tions cannot be tested in a single paper. Validating, refining, and ex-
tending our framework to include other problem areas is an interesting
step for future work.

8 RESEARCH GAPS AND FUTURE WORK

Through our practical and theoretical work on visual parameter space
analysis, we additionally identified three research gaps that are de-
scribed in the following. We believe that these gaps provide ample
opportunity for future work.

8.1 Data Acquisition Gap
As described above, the visual parameter space analysis pipeline starts
with sampling the parameter space. All following analysis steps rise
and fall with this crucial first step. However, only a few current tools
directly support sampling from within the tool (4/21 papers address
it as a primary goal). Reasons for not supporting sampling might
include potential engineering and organizational hurdles when inte-
grating the model with the visualization tool [63], high computational
costs of the sampling process, and the fact that proper sampling of
multi-dimensional spaces is not trivial. Given that model computa-
tions are usually expensive, sampling multi-dimensional spaces and
categorical parameters pose challenges. Often, it is not clear which
sampling strategy to utilize and simple uniform random sampling be-
comes the default, without a deeper understanding of its implications.
For instance, not every instance of a random distribution truly assures
a uniform covering of the space [53].

While such decisions might not pose any challenges to domain sci-
entists with a strong mathematical background, they do for others
without this background. Ingram et al. classified the latter as middle-
ground users [28]. These users would tremendously benefit from easy-
to-use visual parameter space analysis tools that integrate the sampling
step and help reveal underlying sampling assumptions and implica-
tions.

8.2 Data Analysis Gap
Integrating computational analysis methods into the visualization
pipeline also poses a major challenge for future work. While the pre-
dict step in our pipeline refers to the challenge of building good surro-
gate models, the derive step deals with how to derive good objective
measures. While domain knowledge is crucial to be successful, there
are a number of general strategies that have been developed in the data
analysis communities of statistics and machine learning. Yet, they are
similarly important for visual analysis.

18/21 of our analyzed papers described models with complex ob-
jects as direct outputs. For those, deriving is a crucial step to open up
more sophisticated visual analysis approaches. Deriving fosters more
holistic and powerful global-to-local analysis strategies. Deriving also
better supports most of the tasks we characterized in our work, such as
multi-objective optimization, partitioning, or sensitivity analysis.

The actual model in our pipeline is usually a black box to us as vi-
sualization researchers (and also might be to the domain experts them-
selves). In contrast, we argue that we need to better understand meth-
ods for deriving and predicting. Making these steps a white box to
us will allow us to better support a much richer set of analyses steps,
and help to make them accessible to middle-ground users as in the
DimStiller project [28].

The visualization community is already very active in this area, for
instance, by focusing on quality measures for multi-variate data rep-
resentations [11, 66, 77]. Also, many examples we analyzed already
utilize derived measures (15/21 papers). Given the richness of poten-
tial model outputs, however, we deem this only as a starting point for
an important area of future work.

8.3 Cognition Gap
Another major challenge is how to facilitate the cognitive understand-
ing of and navigation through multi-dimensional spaces. As humans
we are inherently 3D plus time beings. Naturally, understanding
higher dimensions seems inherently impossible. While this challenge
is shared with general multi-dimensional visualization, visual param-
eter space analysis comes with specific characteristics that are impor-
tant to understand.

Consider, for instance, multi-objective optimization. Pareto front
visualizations have been found to be helpful for such endeavors [69].



A Pareto front basically connects all solutions where no objective mea-
sure can be improved without degrading another one, and therefore
gives useful constraints for output space navigation. Yet, while visual
Pareto fronts are straight-forward in 2D [69], it is not clear how to vi-
sually depict or even efficiently compute them in higher dimensions.
Vismon [14], for instance, samples specific multi-dimensional options
for direct comparison, not taking advantage of a higher-dimensional
Pareto front.

It is also not clear how many objectives in an optimization problem
can be cognitively handled by humans. Is this number, for instance,
following the general 7±2 rule of capacity limits in human informa-
tion processing [48]? A possible approach might be Gleicher’s work
on generating projections according to the users’ needs [25]. Here the
user builds an analysis system one dimension at a time, allowing the
gradual increase of complexity.

8.4 Other Areas of Future Work
Beyond these gaps, conducting research in visual parameter space
analysis gives ample opportunity to study many previously identified
visualization challenges. Scalability considerations are inherently part
of many computational model analyses necessitating out-of-core, par-
allel, and cluster computing solutions [12]. On the other hand, the
rich set of potential visual and computational analysis methods for
parameter space analysis problems calls for good concepts of user
guidance [28]. Sophisticated provenance approaches [23] could help
in this regard to better track what parts of the parameter space have
already been explored and which not. Especially policy making ex-
amples such as Vismon [14], inherently involve multiple stakeholders,
giving ample opportunity to study collaboration processes [30]. Even-
tually, we also need a stronger focus on user evaluation [39]. Analyz-
ing the current literature revealed that most parameter space analy-
sis applications were evaluated with usage scenarios. These scenarios
make clear how data could be analyzed, but leave out how users ac-
tually used these tools themselves. Some notable exceptions, such as
Pretorius [57], give richer usage descriptions, where actual users used
the tool and reported anecdotal evidence [51].

Finally, we want to echo previous calls on the importance of
problem-driven work such as case and design studies [47, 64]. Our
work is grounded in the first-hand experiences reported in 21 of such
application papers. Deriving our higher-level theoretical framework
would not have been possible without this problem-driven work.

9 CONCLUSION

We have presented a conceptual framework that characterizes the data
flow, navigation strategies, and analysis tasks in visual parameter
space analysis problems. We hope that our work will establish a useful
abstraction of otherwise domain-specific concepts and will propel the
fascinating area of visual parameter space analysis to a fruitful area of
further visualization research.
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[49] T. Mühlbacher and H. Piringer. A partition-based framework for build-
ing and validating regression models. IEEE Trans. on Visualization and
Computer Graphics, 19(12):1962–1971, 2013.

[50] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational
steering environments. Future generation computer systems, 15(1):119–
129, 1999.

[51] T. Munzner. A nested model for visualization design and validation. IEEE
Trans. on Visualization and Computer Graphics, 15(6):921–928, 2009.

[52] T. Munzner. Visualization Analysis and Design (Chapter 2). A K Peters
Visualization Series. Taylor and Francis / CRC Press, 2014. to appear.

[53] H. Niederreiter. Random number generation and quasi-Monte Carlo
methods. Society for Industrial and Applied Mathematics, 1992.

[54] T. Nocke, M. Flechsig, and U. Böhm. Visual exploration and evaluation
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