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Figure 1: SpectraMosaic supports exploration and comparison of magnetic resonance spectroscopy (MRS) metabolite ratios with an anatom-
ical view (A), a spectral heatmap panel (B), a legend view (C), data loader (D) and metadata table (E).

Abstract
Magnetic resonance spectroscopy (MRS) allows for assessment of tissue metabolite characteristics used often for early detection
and treatment evaluation of brain-related pathologies. However, a steep learning curve for metabolite interpretation, paired
with limited visualization tools, have constrained the more widespread adoption of MRS in clinical practice. In this design study,
we collaborated with domain experts to design a novel visualization tool for the exploration of tissue metabolite concentration
ratios in MRS clinical and research studies. We present a data and task analysis for this domain, with categorization of MRS
data attributes into tiers of visual priority. We furthermore introduce a novel set of visual encodings for these attributes. Our
result is SpectraMosaic (Figure 1), an interactive insight-generation tool for rapid exploration and comparison of metabolite
ratios. We validate our approach with two case studies from MR spectroscopy experts, providing early qualitative evidence of
the efficacy of the system and affording deeper insights into these complex data.

CCS Concepts
• Human-centered computing → Scientific visualization; Information visualization; User centered design;

1. Introduction

Magnetic resonance spectroscopy (MRS) is an in vivo non-invasive
biochemical imaging technique utilized for tissue metabolite char-
acterization. Metabolites are chemical compounds that are the end
product of metabolism, a process necessary to maintain life. In
medical research, MRS has been used in psychiatric and neuro-

logical studies, including those for tumor tissue differentiation,
Parkinson's disease, stroke causality, neonate oxidation status, and
schizophrenia. As it is extremely sensitive to subtle local tissue
composition changes, clinical researchers have begun to explore
MRS as a tool for tracking metabolite variation over time, space,
and individuals [VDG10]. Although recent technology improve-
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Figure 2: Typical visual output of MRS from a clinical imaging
workstation with spatial context for the spectral voxel in a T1-
weighted high resolution MRI slice view (A) and spectral peaks
quantified within that voxel (B).

ments in MRS acquisition have produced higher data resolution
and improved signal-to-noise ratio (SNR) [VKV∗16], visualiza-
tion tools for interpretation and comparison are still limited. The
current visualization standard in most medical imaging application
systems is placement of a voxel cube with a spectral graph jux-
taposed with or superimposed onto a high resolution anatomical
image (Figure 2), occasionally with a single metabolite heatmap
overlay [NLK∗14]. A spectral graph is visually similar to a function
graph (Figure 2B), where peaks in the spectrum represent metabo-
lites. The x-axis of the graph indicates chemical shift values used to
describe metabolite characteristics while the y-axis indicates signal
intensity. The abstract nature of this visualization method creates a
steep learning curve to spectral interpretation, often requiring rote
memorization to derive insights.

MRS data is relatively unexplored in visualization research. Ap-
proaches have focused on different specific tasks in MRS multi-
voxel spectroscopy data analysis than those explored in our appli-
cation [FKLT10a,FKLT10b,FLKT09,NRS∗14]. We have designed
SpectraMosaic to provide an simple entry point to spectral interpre-
tation while offering the flexibility to explore and form new insights
through multiple facets of the data. The goal of this work is to show
the range of different metabolite concentration ratios at different di-
mensional tiers, represented through basic visual encodings, to aid
in MRS data interpretation and analysis. Our main contributions of
this design study include:

• MRS data and task analysis with subsequent task abstraction,
guided by domain expert needs
• Proposed system of visual encodings for MRS data
• Iterative development of SpectraMosaic, a novel MRS visualiza-

tion tool, in close coordination with target end users
• Validation of our design approach with two case studies illus-

trating the utility and value of SpectraMosaic in addressing user
needs.

Flexible and simple to use, SpectraMosaic is the first MRS appli-
cation to allow interpretation of processed metabolic spectra over
four dimensions: space, time, state, and cohort size.

2. Related Work

Table Visualization First introduced by Bertin [BBW83], nu-
merous solutions leveraging small related graphics series have

been developed as a method for visualizing heterogeneous, mul-
tivariate, multidimensional data. SpectraMosaic draws inspiration
from this concept but layers visualizations with dimensional pri-
ority, with secondary dimensions presented inside the first. Piv-
otTable, subsequently trademarked by Microsoft and extended by
Polaris [STH02], allowed exploration and analysis of multidimen-
sional data with the flexibility to modify visual encodings, graphics,
and table configuration for visualization. Our approach is related in
that we allow on-the-fly reconfiguration of our table matrix inputs,
but we extend this concept further by including a second layer of
nested visual encodings as inspired by Atom [PDFE17], a grammar
for unit visualizations where individual data items are represented
by unique visual marks (units) in a visual encoding system.

Complex Heterogeneous Data Visualization InSpectr [AFK∗14]
utilizes multiple linked views from multimodal data sources (x-ray
computed tomography and x-ray fluoroscopy) to provide insights
into composition of a sample. Comparative visualization tech-
niques as described by Gleicher et al. [GAW∗11] are realized with
magic lenses to show relative element distributions. SpectraMosaic
similarly combines multimodal imaging techniques, but is applied
to a medical domain and focuses on nesting spatial distribution data
inside abstracted data. Isosurface similarity maps defined by Bruck-
ner and Möller [BM10] were applied to spectra in Spectral Simi-
larity Maps in an extension of the Inspectr framework, where cor-
relations between spectra are shown as an intensity map. We adopt
a similar concept in our tool, but rather than mapping energy cor-
relation we instead map ratio strength between metabolites. Mul-
teesum is a tool developed for visualization of gene expression over
time within a spatial context and permits similarity measurements
of gene expression and localization across species [MMDP10]. Of
particular note is Multeesum’s approach to presenting time-varying
gene expression data in a small multiples view, which was first es-
tablished in Pathline [MWS∗10]. We are inspired by this handling
and display of time series data in our visual encoding of time data.

MRS Visualization Research Prior visualization approaches for
MRS data have been limited to the analysis and visualization of a
subset of metabolites at a time. SDDS (scale driven data spheres)
adopted by Feng et al. [FLKT09] provide a 3D representation of
metabolites within a voxel. This application was later extended to
include scatter- and parallel coordinate plots with limited metabo-
lite types for comparison [FKLT10b]. SpectraMosaic remains in
the abstract visualization space, but allows for comparison of all
potential metabolite ratios within a given spectral set. Nunes et
al. [NRS∗14] presented a visual analysis framework combining
ComVis [MFGH08] and MITK [WVW∗05] where MRS data are
plotted in linked histogram or scatterplot views with other molec-
ular or anatomical data with different brushes to define biologi-
cal target volumes. However, this work was developed specifically
for radiotherapy treatment visualization, where retention of spec-
tra was not the focus of the application. It also supported only
simple comparisons of metabolite ratios. SpectraMosaic extends
this flexibility of metabolite ratio calculations, and displays addi-
tional MRS data attributes (temporal, spatial, and individual) in a
focus+context visual representation. Marino and Kaufman [MK11]
implemented direct volume rendering (DVR) to represent male
prostrate anatomy from MRI data combined with PET and MRS in
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prostate tumor delineation. Their technique utilized color mapping
and layering to represent different imaging modalities combined
with a score qualification metric to validate the data. However, this
application was focused on a single metabolite ratio, and could only
present an individual in a single time slice.

SpectraMosaic uniquely leverages abstract visualization meth-
ods in a layered discovery approach to medical spectroscopy data.
It is the first of its kind to input processed spectral curves directly
into a visual analysis tool for deeper exploration of metabolite at-
tributes and relationships.

3. Background

MRS works by detecting non-zero atomic nuclear spins, where en-
ergy is released as the nuclei return to their initial energy state af-
ter a radiofrequency excitation. This release of energy separates the
MRS signal peaks in the spectral readout, because spectral peak po-
sition is determined by the degree of shielding provided by the elec-
tron cloud surrounding the atomic nucleus. This property is known
as chemical shift, and is the basic premise enabling MRS [UBA16].
The area under each peak is proportional to the concentration of
nuclei giving rise to this peak; a given metabolite may have single
or multiple nucleic peaks that additively comprise its voxel sample
concentration. Although MRS can be performed on any atomic nu-
cleus with non-zero spin [VDG10], 1H (proton) MRS is used most
often in clinical routine, capable of detecting metabolites in con-
centrations 10,000 times lower than that of fat or water as imaged
in conventional magnetic resonance imaging (MRI). Additionally,
proton MRS can be performed using a conventional MRI system,
requiring no extra hardware or machinery. Signal acquisition tech-
niques include single voxel spectroscopy (SVS) or multivoxel spec-
troscopy (CSI). CSI, essentially a slab of multiple smaller single
voxels, covers a much larger area than SVS but the trade-off is that
the signal-to-noise ratio (SNR) is often much lower than in SVS.
Since SVS acquisition techniques afford more detailed spectra for
analysis we focus the remainder of our work on this technique.

Following signal acquisition, a series of processing steps must
be taken to quantify the MR spectra and produce the spectral out-
put graph as seen in Figure 2. LCModel [Pro01] is a widely-
used commercial tool used for processing MRS data, while open
source tools such as jMRUI [SDCA∗09], TARQUIN [WRK∗11],
SIVIC [CON13], OXSA [PCB∗17], and Gannet [MMO∗14] of-
fer open-source solutions to spectral quantification with rudimen-
tary visualization options. The typical output from these tools is
a spectral plot of signal intensity against frequency – this can be
representative of a single time slice as in a longitudinal study, or
as a time-resolved functional study. Individual metabolite concen-
trations vary by their peak integral(s). Because acquisitions can
vary considerably depending on the patient and sample location,
results are often reported as ratios between metabolites, and for
group analysis significance thresholding is applied. MRS data are
typically visualized relative to a high resolution structural image to
provide positional context [LSBP18]. These tools, as well as MRS
standard clinical imaging workstation tools, display spectral curves
placed adjacent to the voxel position image (see Figure 2), or with
single-metabolite spectral color maps overlaid onto the comple-
mentary structural image. SpectraMosaic does not aim to compete

with these spectral processing tools, but rather provide a new way
to visualize spectral data following the spectral processing step.

4. Data and Task Analysis

We worked iteratively with domain experts through a series of indi-
vidual and group interviews to delineate and abstract this problem
domain into a set of core user task and design requirements. Our
collaborators, one of whom is a co-author of this paper, include 2
MD/PhDs, 3 PhD researchers, and one engineer, all specializing in
MR spectroscopy research and working primarily with SVS data in
an academic hospital setting.

Data Collection The majority of spectral acquisitions are static,
meaning a single session captures a single moment in time of
metabolite concentrations in a tissue region. Less common is a
functional approach, which considers the variation of metabolite
concentrations within an acquisition session period. In this ap-
proach the subject can also be asked to perform tasks, such as tap-
ping fingers during the acquisition, and alternately resting – these
time- and state-resolved acquisitions consider the same four at-
tributes as in a static acquisition, but represent different scenarios
and are important for the researcher to be aware of in their analysis.
The signal is then output into a P-file, a file format proprietary to
GE Healthcare MR systems. Subsequent processing and quantifi-
cation of these raw P-files in TARQUIN or LCModel generate the
following information for visual analysis: an averaged raw metabo-
lite spectrum, a spectrum baseline, a model fit, and a list of the
peak frequencies of all metabolites. Because MRS data is patient
data, special care must be taken to anonymize these data for use
in analysis applications. Following data collection researchers then
perform a series of tasks that can be grouped into the following core
tasks as defined by Brehmer & Munzner [BM13]: data discovery,
production, search, and querying.

Tasks We use Brehmer & Munzner's multi-level typology of ab-
stract visualization tasks [BM13] in our MR spectroscopy task
analysis. We follow each of our four abstracted tasks with the con-
crete MRS domain tasks falling therein.

The first set of tasks relate to data consumption to discover and
verify key information about the source data (T1). MRS spec-
tra, anatomical reference images, and associated anonymized pa-
tient data are first imported into an analysis tool. To analyze spectra
and verify hypotheses it is critical to correlate spectral peaks with
their corresponding metabolites. Although metabolites have con-
stant chemical shift values, variations in acquisition parameter set-
tings may change the shapes of, or hide, metabolite peaks [SR13].
A second core discovery task requires matching the voxel sample
location to the spectral output as a means to contextualize and un-
derstand normal versus aberrant spectral outputs.

Secondly, data are derived to produce new computed data
elements from raw spectral input for analysis (T2). Because
metabolic spectra vary considerably between and within individ-
uals, peak integral ratios calculated from the raw spectrum are the
gold standard for understanding variability. The use of ratios is a
core critical task for any MRS application for two reasons, (1) as
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a method to correct for homogeneity issues across samples and (2)
as a basis for subsequent tissue composition analysis.

A third task set involves selection and filtering of MRS input
or derived data for exploration and comparative analysis (T3).
Our collaborators often wish to select a subset of spectra for fur-
ther analysis – they may wish to look only at the variation at a
single time point in a longitudinal population study, or to exam-
ine gender variation within a study. Performing tasks of this type
means the user must search MRS voxel and structural image data to
lookup subsets of interest using selection, filtering, and aggregation
tools. This brings us to a related search and query task: discovery
of outlier metabolite concentration ratios in a given spectral output.
An outlier is often of interest because it could represent an aber-
rant metabolite concentration that may be indicative of a pathology.
Outliers are also useful in quality assurance; unexpected or high
numbers of outliers may indicate a need to rerun the acquisition or
cull a particular spectrum from study analysis [SR13].

A final core discovery task involves data comparison and
summarization, where researchers search metabolite ratios via
browsing and exploration to identify, compare, and summarize
spectral ratios across key dimensions of interest via selection,
filtering, and navigation (T4). For example, comparison becomes
particularly useful in brain lesion mapping as researchers try to
understand how biochemical composition of the lesion compares
to the healthy side of the brain. Researchers also wish to develop
deeper insights into their data for how spectral metabolite ratios
vary spatially, temporally, individually, and between active or rest-
ing brain states. Each of these attributes for comparison represent
opportunities to visualize outliers, offering new windows for un-
derstanding sources of variation and patterns within a study. For
example, in the area of psychiatric research it is helpful for our
collaborators to see how key neurotransmitters such as glutathione,
GABA, and glutamate vary across individuals, brain state, and in
response to treatment. It can be useful to investigate the changing
concentrations of these metabolites over variable time scales and
over different locations in the brain to understand the complexity
in the data beyond statistical mean measurements.

MRS Data Tiers We can break MRS attributes into three tiers, or-
dered by visualization priority: Tier 1: Original spectral graph data,
Tier 2: Derived spectral data, and Tier 3: Spectral metadata. The
first tier is of primary importance and comprises the original spec-
tral graph that is critical for overview and quality assessment. Our
second tier is comprised of the metabolite concentration ratios we
calculate and then filter through the following dimensions: time,
space, patient, and brain state. Time indicates either the number
of separate spectral acquisitions performed on an individual over
a study period, as in a longitudinal study, or can indicate recorded
metabolite values within an acquisition session, as in a functional
MRS study. Space indicates the voxel sample position within the
brain. Patient refers to the individuals included in analysis. Finally,
brain state indicates if the subject was in an "active" (task-explicit)
state or "resting" (task-negative) state during signal acquisition. A
functional MRS approach may record both states in a single ses-
sion. Tier 3 comprises metadata important for context and filtering
that is unnecessary to include as explicit encodings in the visualiza-
tion. Gender, age, voxel location, and acquisition settings comprise

patient

1 single single single single

2 single single dualsingle

3 single singlesingle multiple

4 single dualsingle multiple

5 singlesingle multiple single

6 dualsingle multiple single

7 singlesingle multiplemultiple

8 dualsingle multiplemultiple

9 singlemultiple singlesingle

10 dualmultiple singlesingle

11 singlemultiple multiplesingle

12 dualmultiple multiplesingle

13 singlesinglemultiplemultiple

14 dualsinglemultiplemultiple

15 singlemultiplemultiplemultiple

16 dualmultiplemultiplemultiple

Case voxel time pt state encoding patientCase voxel time pt state encoding

Figure 3: Breakdown of all 16 possible permutations of MRS case
study scenarios with sample encodings for each case. Key attributes
fall under four main categories: patients (single individual, mul-
tiple individuals), voxels sampled (single voxel, multiple voxels),
acquisition runs (single time point, multiple time points), and ac-
quisition state (single state, or dual: active, resting).

other important patient attributes to track because the shape of the
spectrum can vary considerably with these factors [XV10, SR13].

Design Requirements Our colleagues often switch between hos-
pital workstations while accessing sensitive patient data. A web ap-
plication permits seamless workflow as researchers move between
different stations and avoids downloading third party software to
machines in a setting where security and privacy is paramount (R1).
Sensitive patient data must also be properly anonymized prior to
loading into the visualization tool, achieved by culling identify-
ing attributes from the source scan files to produce de-identified
data files (R2). To further support T1, discover and verify key
source data information, we can map chemical shift numbers to
peaks in satisfaction of T1 as a third design requirement (R3), since
chemical shift values are constant for all proton metabolite spec-
tra. Lastly, we visually link our three data tiers in support of T1
to form our our fourth design requirement (R4): maintenance of
data linkage between voxel sample location information, spectral
output, and patient-specific information.

Since user analysis tasks center around calculation and compari-
son of peak concentration ratios (T2-T4), this application must also
support individual and aggregate concentration ratio calculations
for any permutation of peaks in a spectral set (R5). A layered de-
sign approach combining an aggregate ratio overview with nested
individual ratio dimension information forms the basis of our final
design requirement (R6).

5. SpectraMosaic Visual Encodings

Because spatial resolution of metabolic spectra is low, we opted
for an abstract heatmap matrix presentation of these data, as seen
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in Figure 1B. Given that we wish to visualize metabolite concen-
trations as ratios, we place spectra (tier 1 MRS data) for compar-
ison perpendicularly along an x- and y- axis to provide the inputs
for a metabolite comparison matrix between the two axes. Since
each spectrum typically has at most twenty interesting metabolite
peaks [PODA13], we can discretize each continuous spectrum into
20 tile blocks – this allows us to produce a 20 by 20 cell table,
where each cell corresponds to the ratio of averaged spectral tile in-
tegrals along the x versus y or y versus x axes (Figure 1B). We can
then plot additional interesting information relevant to each spectral
ratio (tier 2 data) inside each heat map tile. To provide the user with
a range of hues for rapid visual inspection of areas of major differ-
ence we chose diverging colormap sets from ColorBrewer [HB03].
We discuss our color choices in more detail in Section 6.

Within each heatmap unit cell we define a nesting structure for
spectral concentration ratios as inspired by dimensional stacking
visualization techniques pioneered in Xmdvtool and N-land by
Ward et al. [War94, WLT94]. We apply our visual system to each
of the sixteen potential case scenarios in Figure 3. Each MRS at-
tribute receives a consistent visual encoding in the form a simple
glyph. We represent voxels as pill box glyphs, and in each unit cell
evenly divide the space vertically. Patients are presented as filled
disks when only shown in a single time acquisition (e.g., case 1),
but expand into rounded squares when time series data are incorpo-
rated (e.g., case 3). This shape change is to permit a time spark line
to move evenly across a space, rather than extend past or be cropped
out by the rounded disk shape. Disks scale automatically to fill
space optimally within their voxel frame to maximize pixel screen
space. In instances where different brain states (active versus rest-
ing) are analyzed we break the patient disk/square horizontally in
half. Finally, we encode time steps as points connected via a spark
line, inspired by Meyer et al. in their work, Pathline [MWS∗10].
This spark line is nested into the relevant glyph: if a multi time
step series were captured in a study analyzing different brain states,
the spark line is placed within each state half-moon "state" glyph
(e.g., case 4). If analysis is only for a single state, the spark line
nests inside the patient square glyph (e.g., cases 3, 11), or inside
voxel glyphs if analysis is for a single patient (e.g., case 7). The re-
maining 16 cases comprise different permutations of these patient,
voxel, state, and time arrangements.

6. SpectraMosaic

We now present SpectraMosaic, an exploratory tool for interactive
visual analysis of complex heterogeneous MRS data. This design
was guided by our data and task analysis outlined in Section 4 and
by our visual encoding system outlined in Section 5.

SpectraMosaic Calculations At its core SpectraMosaic presents
a visual comparison of single and aggregated metabolite ratios in a
given MRS spectra collection based on data in the first and second
tiers of our visual encoding system. The third tier of information
is included in a header file to the spectral data and displayed as a
table below the spectral heatmap. Although the general concept of
peak integral ratio calculations are standard in MRS analysis, our
layered approach described below is novel for MRS visualization.

We first normalize spectral input data along each axis to joint

maximum and minimum values. These values update with each
modification to the spectral collection. Throughout these calcula-
tions we maintain connection between our header and data files so
that semantic linkages are preserved (R4). Our image panel data are
stored hierarchically, with relevant attributes such as TE setting, pa-
tient age and gender, as well as timepoint, state, and voxel ID. Once
loaded into the spectral heatmap view (Figure 1, panel B) this hier-
archy is flattened and the data are split into separate voxel arrays,
one for each axis. For each MRS spectral voxel we store a label
with including values for patient ID, voxel ID, state, time, scale in
ppm. Each spectrum is divided into 1024 normalized samples – the
vectors of these samples are also stored with each spectral voxel
and used in integral calculations. These data values are summed
into tile values, which are stored with the voxel and subsequently
used to calculate spectral tile integral values then used for ratio
calculations, approximated by the stored sum value within a tile
region. We store 20 tile values per axis; these tiles can be resized
by the user on-the-fly for customized analysis. Tile integral values
are assigned either a positive or negative sign, as determined by the
position of the corresponding metabolite peak(s) as either above or
below the baseline. Peaks above the baseline, where the baseline is
calculated as a pre-processing step in generating the spectral model
fit, are assigned a positive sign in their integral calculations. Peaks
falling below the baseline are correspondingly assigned a negative
sign. These negative peaks are typically clinically significant as ei-
ther pathological indicators or as indicators for changes in acquisi-
tion settings or techniques [SR13], and are therefore important to
recognize in the visualization. Following tile integral calculations,
all ratios are calculated as the average tile integral of x divided by
the average tile integral of y.

We apply a diverging colormap to our normalized spectral table
cell calculations, where cell color is determined by the ratio be-
tween the average tile integral on each axis. Our diverging color
mapping function uses two maps; red-blue and gold-green. In our
subsequent metabolite ratio calculations, red-blue is used if the cal-
culated ratio is a positive value, while gold-green is used if the cal-
culated ratio is a negative value. We selected these two maps from
ColorBrewer [HB03]. Red-blue color maps are used frequently in
scientific visualization and are a familiar sight to our collaborators,
while green-gold shares an analogous color space and thus avoids
generating too many disparate colors in the matrix space and over-
whelming the viewer. In instances where our positive ratio calcu-
lations yield a value less than 1, we invert the ratio and switch the
sign. Red indicates a higher ratio value while darker blue indicates
a lower ratio value. Similarly, negative ratios using the green-gold
map that are higher than -1 also are inverted with a sign switch to
achieve the full range of divergent coloring. High ratios encoded as
red or gold in hue mean that the metabolite(s) identified on the x-
axis of the table matrix are present in greater concentration than the
metabolite(s) on the y-axis. Lower ratios encoded in blue or green
hues depending on the ratio sign indicate a greater concentration
of the metabolite(s) initially identified on the y-axis of the matrix.
Lastly, for the visualization we drop all values by 1 so the diago-
nal of the heatmap matrix is 0, rather than 1, to achieve a cleanly
divergent color mapping structure in both maps.

On cell expansion we create a new data hierarchy that reflects the
hierarchy of elements inside the cell: data from the spectral tile seg-
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Figure 4: Workflow image demonstrating the calculations neces-
sary for a single-voxel two-patient case scenario (as in Figure 3,
case 9). The overview spectral heatmap shows a single-voxel ac-
quisition with the metabolite spectrum of patient 1 (V1p1) along
the y-axis with the spectrum of patient 2 (V1p2) along the x-axis.
The ratio of V1p2 peak A vs V1p1 peak B is shown in cell C, with
dashed lines to indicate tile areas used in the ratio calculation for
this cell. Subsequent expansion of cell C shows the average ratio
in voxel 1 of peak A to B for both patients as a pill box, while the
two nested disks represent peak A versus B for V1p1 and for V1p2,
respectively. The darker blue coloring of V1p1 indicates a lower
ratio value than V1p2.

ment along both x- and y-axes are flattened into a single array and
ordered first by voxel, then patient, followed by state, then lastly
by time, for each present attribute. We then count the ratio for each
voxel (average of all patients for this voxel), each patient (average
of all states for given patient in a given voxel), each state (average
of all timepoints for a given state of a patient from a voxel location)
and each time point. Ratios are counted between tile regions of the
same data for each visual tier. An example of our calculation work-
flow is demonstrated in Figure 4. In this scenario the user is inter-
ested in comparing the concentration ratio of peak A to peak B in a
voxel sampled from the same brain region in two different patients.
The spectral heatmap overview tile C shows the average metabo-
lite concentration ratio of peak A (patient 1) to peak B (patient 2).
This affords the researcher an opportunity to compare a metabolite
peak from one patient against a different metabolite peak in a dif-
ferent patient, which is potentially useful in reference comparisons.
Dashed lines leading from the x- and y-axes respectively indicate
the spectral tile integrals used in the ratio calculation for cell C.
Subsequent expansion of cell C shows a different set of calcula-
tions related to A versus B: the average ratio in voxel 1 of A to B
for both patients as a rounded rectangle, while the two nested discs
represent A versus B for patient 1 and for patient 2, respectively.
The darker blue coloring for V1p1 shows that the ratio of A to B
for patient 1 is much lower than patient 2. Researchers can com-
pare the ratios of these unit cell visualizations against the cell ratio
visualized in C as a further assessment of inter- and intra-patient
metabolite variation.

Interaction and Workflow In designing SpectraMosaic we chose
a multi-panel coordinated view (Figure 1); the panel A provides for
selection of spectral voxels for analysis while panel B serves as the
spectral exploration interface. This panel is a table matrix where
spectra are placed along the x- and y-axes based on user selection

and allocation from the left panel. We use a pre-processing stack
that anonymizes (R2) and extracts the raw data to a custom file for-
mat we use containing the relevant imaging and spectral data. Our
reason for this is that, unlike other imaging modalities, DICOM
formatting is not standardized for spectroscopy. Instead, medical
imaging companies (e.g., GE, Siemens) each have different propri-
etary formats for their MR machinery. Study datasets are loaded
into the application using a drag and drop window feature (Fig-
ure 1D)– these data remain linked semantically in the application
to ensure continuity between voxel location, spectral output, and
patient-specific information (R4). Spectral information is stored on
the client while the anatomical image with voxel sample informa-
tion is displayed in the voxel selection panel (Figure 1A). This
panel consists of a set of images which can be navigated by patient
along the vertical axis or by acquisition point (time) along the hor-
izontal axis. In each anatomical image, a fuchsia square indicates
the site in the brain where the spectral voxel was acquired. A ver-
tical axis to the left of the anatomical image set shows small filled
disks; each disk indicates the MRS acquisition type used for each
image. Using the standard CPK coloring scheme for atomic ele-
ments seen in standard molecular visualization tools such as Ras-
mol [SMW95] and JMol [Her06], we represent a 1H collection with
a white-filled disk. A light gray bar behind the disks show the im-
age the user is actively viewing, while the disk becomes filled in
fuchsia to indicate image linkage to a spectrum that is selected in
the spectral heatmap panel (Figure 1B). Researchers may use this
axis to traverse the sample stack to verify homogeneity of voxel
position and voxel-image registration for quality assurance.

Data are loaded from the left voxel selection panel (Figure 1A) to
the right spectral heatmap panel (Figure 1B) by clicking and drag-
ging voxels from the left to right panel. Users can load as many
spectra as they like, in any combination, onto each axis for more
flexible analysis. The spectral map overview (Figure 1) dominates
the right panel of the interface and is the main portal for metabolite
comparison. Hovering with the mouse over any heat map unit cell
shows a tooltip of the metabolites (R3) analyzed within that par-
ticular unit cell, as well as the tile region integral values for each
axis and the mean metabolite concentration ratio for that cell (R5).
Users may interactively expand the width and height of an inter-
esting unit cell by clicking within the cell, as inspired by Berti-
fier [PDF14] for more detailed inspection (R5, R6). The expanded
cell containing tier 2 attribute glyphs may be scaled to fill the entire
space of the matrix in instances where larger cohorts are being ana-
lyzed, although MRS studies by our collaborators generally include
only a handful of patients. Hovering over any of the unit cell ele-
ments correspondingly highlight the associated spectral graphs and
image voxel slices in fuchsia (Figure 1A,B) as well as table rows in
green below the heatmap visualization (Figure 1E) to correlate all
visualization elements (R4). Figure 4 demonstrates unit cell expan-
sion to compare detail metabolite ratios of individual elements (tier
2 data) contributing to the aggregate ratio color encoding. These
unit elements scale automatically and uniformly for optimal space-
filling in the cell. The background of the cell remains visible behind
individual ratio elements for all expansions to preserve context of
the aggregated value in navigation. A legend at the far right (Fig-
ure 1C) indicates the mapping between color and metabolite ratio,
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as well as representing each glyph with its corresponding tier 2
MRS attribute.

7. Implementation

SpectraMosaic is a web-based application implemented with
HTML, CSS, and p5.js for visualization of graphs and images in
a Bootstrap framework (R1). Assets are stored on the client and
fetched on-demand. Both left and right panels in the interface are
drawn as p5 instances. We use the HTML Drag and Drop API to
load data as a single root directory containing header and patient
data; individual voxel data information are nested within each pa-
tient directory. Image data are read and converted by PNGReader
to a p5 image displayed in the left panel. Data are shown in this
panel based on patient, voxel, timepoint, and state selection. Once
a voxel has been selected these data are stored as a global variable,
which can then be accessed by the right spectral heatmap panel.
Each global variable, once dragged to the x- or y- spectral heatmap
axis, is then stored with that axis. When data have been added to
both axes the heatmap is drawn as a 20 × 20 tile grid, where each
tile counts the average of all spectra integrals stored on the x- ver-
sus the y-axis. The inverted ratio is also calculated and mapped to
a D3 diverging color mapping function (D3 scale chromatic) for
both the heatmap and unit cell detail views. Inside the cell, data are
flattened to a single array and integrals of the metabolite regions
from x- and y-axes are counted for each set (all data for a voxel, a
patient-voxel pair, the patient-voxel-state and finally patient-voxel-
state-timepoint) as a measure to avoid duplicate data in calcula-
tions.

8. Case Studies

We now present two MRS case studies to provide preliminary ev-
idence for the value and utility of SpectraMosaic in both clinical
study and in research settings. Case study data were analyzed by
three unpaid, volunteer participants recruited from our group of
collaborators from the hospital MR spectroscopy lab group. All
three are experienced MR spectroscopy researchers who are not
co-authors of this work, and who are unfamiliar with this or similar
visualizations. One user is an MR physicist specializing in develop-
ment and refinement of spectroscopy protocols for clinical studies
of neuropsychiatric and developmental disorders. Our second ex-
pert uses 31P and 23Na-labeled pyruvate timecourse data to look at
real time metabolism. Finally, our third user is interested in using
MRS with fMRI to study correlation between these two modali-
ties as well as group differences in neurodegenerative and develop-
mental disorders such as Parkinson’s disease, stroke, stuttering, and
dyslexia. All three users explored the application, after some brief
instruction, with the aim of addressing all tasks outlined in Sec-
tion 4, following a “think aloud“ protocol and follow-on interview
after both cases were completed. We then reviewed and collated the
feedback from all participants.

Case Study: Difference Assessment Our first case study dataset
compares single timepoint spectral acquisitions from a single spa-
tial area at two different echo times (TEs) for a patient cohort. With
large changes in echo time it is expected that there will be a major

Figure 5: Detailed inspection in a single-patient, single-voxel sam-
ple acquired with 2 different TEs: 35ms (x-axis) and 144ms (y-axis).
The user is interested in comparing the ratios of various metabolite
peaks, such as lactate:lactate, between the two acquisitions.

difference in the shape and orientation of spectral peaks – specif-
ically of interest is the shape and orientation of the lactate peak.
With this study the user wishes to understand the degree of differ-
ence between spectral ratios due to TE changes in the MRS proto-
col sequence.

In Figure 5 we show a phase of the visual analysis performed by
one of our collaborators. Using this case study data they were inter-
ested to see how lactate, which typically exhibits a peak inversion
at TE=144ms, differs from its shape when captured at a lower TE.
Since they were also interested in close inspection of the spectral
curves, they chose to compare the different TE spectra for just one
patient in order to clearly visualize the line shape. With SpectraMo-
saic they were able to see the peak inversion of lactate at TE=144ms
as well as determine the ratio of lactate at TE=35ms versus lactate
at TE=144ms. As their comparison was for a single patient there
was no need to expand the heatmap to a more detailed unit cell
analysis; this affords an example of the utility of SpectraMosaic at
any level of visual analysis.

A major difference case such as this study with different TE
acquisitions can mimic a range of neurological and neuropsychi-
atric pathologies where an entire spectral peak may be absent, a
new peak may be introduced, or the shape and orientation of ex-
isting peaks may be altered. For example, in brain lesion mapping
it is often of interest to understand how biochemical composition
of the lesion versus the collateral healthy hemisphere. In Figure 5,
the one-patient, two voxel representation makes it easy to visual-
ize which compounds, e.g., Cho/Cr ratio, are elevated and also how
they behave at repeated visits. Alternative useful comparisons in-
clude using a group average of normal data, or a group average
of the expected pathology, to visualize how the single brain lesion
sample compares. This could provide insight into the underlying
numeric data and provide assistance in staging the disease or mon-
itoring effectiveness of treatment.
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Case Study: Similarity Assessment We now present a neuroin-
flammation research case study for assessing biochemical similar-
ity in multiple spatial voxel locations in multiple patients. With
these data the user hopes to answer two primary questions: At a
single point in time for a uniform resting state, how similar are con-
centrations of various spectral metabolites between spatial regions
of the brain, and how similar are they between the two individuals?

Figure 6 demonstrates the analysis process of one user who was
interested in comparing spatial variation across two individuals in
the average and individual concentration ratio of NAA versus lipids
(ML). In this exploration they were able to quickly discern the sub-
tle value differences for not only all three voxel locations but also
for each patient within these areas of the brain. Although these dif-
ferences are small, as indicated by the correspondingly close hue
values, one can quickly see that the prefrontal sample in the female
patient exhibits the largest ratio value of NAA to lipids at 4.6, while
the male patient at that same spatial sample has a ratio of approxi-
mately 3.5. Insights such as this led our user to consider the effect
that gender, or age, may have in this case, offering new avenues of
further exploration for this dataset.

This research study dataset can be considered as a model for a
larger class of cases where visual detection of subtle differences are
key in the analysis process. For example, in psychiatric research
metabolites are mapped to understand how underlying biochemi-
cal conditions could influence clinical symptoms. Neurotransmitter
concentrations, i.e., glutathione (GSH), glutamate and GABA, can
easily vary across individuals, brain states and in response to treat-
ment. The subtle changes in concentrations of these metabolites
may be investigated on shorter time scales (response to a cognitive
task or experimental manipulation such as tDCS) and longer time
scales (across imaging sessions). SpectraMosaic can contribute in
the assessment of individual variability, variability across time and
space (voxel placement) and in understanding the complexity in the
data beyond inference on statistical mean values. This constitutes a
novel approach to investigate MRS data.

User Feedback All three case study participants expressed en-
thusiasm for a novel MRS visual analysis tool and expressed in-
terest for its use in their research areas. Our experts felt that the
tool was overall intuitive and easy to use – all three liked the drag
and drop feature for loading in data and selection of spectral vox-
els for heatmap ratio comparisons. One user specializing in clini-
cal research expressed interest in seeing clearly in the anatomical
image spatial voxel placements layered onto a single normalized
brain image as a means to understand sample location consistency
over a study cohort, or to enable simultaneous views of all pa-
tients for each spatial sample. Conversely, more general research-
oriented users preferred the individualized anatomical images with
one voxel placed per image. One suggestion was to keep the single
image but allow an option for the user to select the voxel image
plane: sagittal, axial, or coronal.

Regarding the the spectral heatmap and detail cell visualizations
for each metabolite, one user commented, "It automatically lines
up, I do not have to search for it or find some way to align them,
next to or on top of each other [when comparing metabolite ra-
tios]...this is useful for showing differences clearly and visually.".
Symmetric adjustment of spectral grid tiles was also suggested as

Figure 6: Similarity case study example where the user has chosen
to inspect individual ratio variation for NAA versus lipids (ML) for
two patients with three spatial voxels acquired for each patient. In
this detail image we can see subtle variation in metabolite concen-
tration ratios in each patient, with the greatest difference arising
from the prefrontal voxel sample resulting from a higher ratio for
patient F425.

an interaction alternative or addition to the current asymmetric grid
adjustment scheme for greater usability. In the visualization of large
cohort spectroscopy datasets, one collaborator suggested we apply
the individual patient disk visual idiom to also represent patient
groupings, serving as a middle layer between our existing first and
second visualization tiers. We could then add as option for users to
create these groups on-the-fly, which can be flexibly recomposed
with changing analysis needs. Our collaborators saw the metabo-
lite listings along each axis as a high-value feature: “In itself it is
actually very useful to be able to see where the [metabolite] peak
should be, and to see the multiple peaks for metabolites, such as the
double peak of creatine.“. The ability to make modifications to this
listing set based on analytical goals would help users pinpoint more
quickly metabolite(s) of interest for their study. Finally, each user
indicated interest for an option to extraction spectral heatmap data
as a CSV to use for subsequent statistical analysis. One collabora-
tor expressed interest in seeing this output to the hospital PACS for
access by radiologists to aid in more rapid interpretation of spec-
troscopy data for more widespread use in a clinical setting.

In considering the utility of SpectraMosaic when applied to their
specific areas of research, whether clinical research or spectral pro-
tocol development, all three of our collaborators felt this could aug-
ment their current workflow and provide deeper and more rapid in-
sights to their data: “ ...this [spectral heatmap] feature is useful to
have a closer look at, for example, neurodegeneration [in Parkin-
son's] with the loss of dopaminergic connections, as seen with con-
centrations of glutamate or GABA... and it is ideal for testing new
protocols against established protocols.“ In particular, all felt this
tool could be helpful in group comparison, especially in one collab-
orator’s research in Parkinson's disease. He felt that this tool would
be ideal for him to explore and display results of his cohort studies,
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where he could then select individuals on which to run subsequent
statistical analyses.

9. Discussion

SpectraMosaic currently supports single single or adjacent peak
comparison – a logical next step would be supporting compari-
son of one-to-many (or vice versa) non-contiguous peaks in a spec-
trum, as these relationships could potentially open up other new in-
sights for our collaborators. This would also address the challenge
of metabolites consisting of multiple peaks in a spectrum, e.g., the
doublet peak of lactate. As the tool is at the moment, our collabo-
rators have confirmed that it provides a valid, clear and easily read
approximation of the ratios and variability between samples for fur-
ther inquiry. Our tool is also not currently able to compare multiple
detail unit cells at once, this would be a helpful analysis feature.
Similarly, we also discussed with our collaborators the utility of
comparative analysis of two metabolite concentration ratios, i.e.,
GABA/NAA versus Glx/NAA, within a cell. This is theoretically
possible with our visual encoding system where we could recy-
cle the half-moon glyph visualization for state to instead compare
two metabolites, but would require reworking the basic setup of the
spectral axes to group selected metabolites into unit cells by user
selection rather than by chemical shift position.

SpectraMosaic also does not reveal detail glyph visual encoding
elements while in the cell overview – this would be an interest-
ing feature extension to allow users to even more rapidly see indi-
vidual data outliers rather than stepping through to a deeper detail
view for these visualizations. Support for uncertainty visualization
is also not yet in place as we instead focused our efforts with this
tool on developing a consistent core visual hierarchy language for
each relevant spectral data dimension. On the topic of visual hierar-
chy we found after our case studies that TE variation is frequently
performed in research for protocol definition and refinement, and
classifying this dimension as part of our second, rather than third,
visualization tier would be a more appropriate choice. Although
our diverging color mapping system is effective in demonstrating
large differences, subtle changes important in certain pathological
conditions are less obvious and investigation into more fine grained
color mapping options or automatic or user defined color map scal-
ing may help more clearly highlight these micro-changes in tissue
metabolic concentrations.

10. Conclusions and Future Work

In this design study we contributed a thorough characterization of
the data, task, and design requirements inherent to a successful
spectroscopy visualization tool. We followed this with presentation
of our design rationale and visual encodings for SpectraMosaic, a
novel visualization approach for hypothesis-driven MRS data com-
parison and exploration. Finally, we performed case studies with
three domain experts to validate our tool in spectroscopy clinical
and research studies. MRS is a ripe area for continued visualization
research, and we see a number of opportunities for expansion and
refinement of SpectraMosaic.

Although typical MRS studies are small (< 15 patients), a logical

extension is the expansion of our visual encoding system to suc-
cessfully manage larger cohorts. We envision this is a possibility
with the creation of analysis groups that would form a visualiza-
tion tier between our previously established first and second tiers.
It would also be interesting for future extensions of this tool to per-
mit calculations and comparisons of more complex metabolite re-
lationships, both outside and inside the unit cell visualizations. Ad-
dition of a visual idiom for data uncertainty characterization could
provide further validation of acquisition quality. Lastly, the flexi-
ble design of our tool is such that new statistical measures, e.g.,
correlation coefficient, may be swapped in or added to the space,
affording further insights into the data. We furthermore plan to ex-
tend this application for analysis of other elements used in clinical
spectroscopy research, including 31P and 23Na – this can be easily
done with the extension of our CPK color idiom with orange and
blue representing phosphorus and sodium, respectively.

We plan to continue working with our collaborators to
further refine SpectraMosaic and have deployed this tool
(https://folk.uib.no/lga066/spectramosaic/) for their use. Source
code for the application is also available for pull requests
(https://git.app.uib.no/Laura.Garrison/spectramosaic). Beyond the
medical space, an additional interesting line of inquiry would be in
exploring the adaptability of our abstracted tasks paired with our
visual encoding system in other domains facing similar challenges
with heterogeneous multidimensional data, such as meteorology or
geology.
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