
Two-Level Approach to Efficient Visualization of Protein Dynamics

Ove Daae Lampe, Ivan Viola Member, IEEE Computer Society, Nathalie Reuter and Helwig Hauser Member, IEEE

Abstract— Proteins are highly flexible and large amplitude deformations of their structure, also called slow dynamics, are often
decisive to their function. We present a two-level rendering approach that enables visualization of slow dynamics of large protein
assemblies. Our approach is aligned with a hierarchical model of large scale molecules. Instead of constantly updating positions of
large amounts of atoms, we update the position and rotation of residues, i.e., higher level building blocks of a protein. Residues are
represented by one vertex only indicating its position and additional information defining the rotation. The atoms in the residues are
generated on-the-fly on the GPU, exploiting the new graphics hardware geometry shader capabilities. Moreover, we represent the
atoms by billboards instead of tessellated spheres. Our representation is then significantly faster and pixel precise. We demonstrate
the usefulness of our new approach in the context of our collaborative bioinformatics project.

Index Terms—Molecular visualization, hardware acceleration, protein dynamics.

1 INTRODUCTION

Proteins are often considered to be static objects. However, proteins
are highly dynamic and their dynamics are often the key to their
function [2]. For example, some proteins have an open and a close
form and understanding the transition between both is crucial to be
able to design efficient drugs [17, 28]. Of particular interest are the
large amplitude movements of complex protein assemblies. Molecu-
lar dynamics simulations (MD) are widely used to study the confor-
mational changes of protein structures along time, but very long MD
simulations of molecular systems containing hundreds of thousands of
atoms remain challenging. Normal modes analysis (NMA) with coarse
grained models is much less computer demanding and appears to be
a better approach; it has been successfully applied to predict the col-
lective large amplitude motions of, for example, nanoengines or virus
capsids [15].

Proteins are made of amino acids, referred to as residues. In this
work, we exploit the fact that protein structures can be divided into
two hierarchically separate levels. Although there are only 20 differ-
ent standard amino acids, which contain between 7 and 24 atoms, also
including the hydrogen atoms [16], some proteins need other refer-
ence constructs to make sense, such as water or other more complex
molecules. To support such constructs, we need a model that allows
mixing of two level structures, like proteins and one level structures
such as water. All amino acids have 6 atoms in common (forming the
so called backbone) and they differ by side chains of different form
and complexity. Refer to Fig. 6 for more detail with respect to the
structure of proteins. Amino acids are linked by amide bonds to form
proteic chains. These chains often contain several hundreds of amino
acids. A protein can be made of one or several chains. In living or-
ganisms, several proteins can interact with each other and aggregate to
form a complex assembly whose function can differ from the originals.
In fact, the biological structures we have to look at, for a better under-
standing of crucial biological processes, often contain a large number
of atoms. With all the progresses made in our post-genomic era, the
number of atoms in biomedical structures under investigation steadily

• Ove Daae Lampe is with Christian Michelsen Research, Norway, E-mail:

ove.lampe@cmr.no.

• Ivan Viola is with Department of Informatics, University of Bergen,

Norway, E-mail: ivan.viola@uib.no

• Nathalie Reuter is with Computational Biology Unit/BCCS, University of

Bergen, Norway, E-mail: nathalie.reuter@bccs.uib.no

• Helwig Hauser is with Department of Informatics, University of Bergen,

Norway, E-mail: helwig.hauser@uib.no

Manuscript received 31 March 2007; accepted 1 August 2007; posted online

27 October 2007.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

increases.

One way of gaining insights into the dynamics of proteins is to ana-
lyze the geometric information arising from the NMA calculations and
visualize the results using two-dimensional plots or numeric tables. A
more intuitive approach which also enables a much better understand-
ing of the spatial relationships is dynamic 3D visualization. Immersive
three-dimensional visualization of protein dynamics, for example, has
the potential to serve as a very good exchange platform between ex-
perimental and computational biologists. Experimental biologists are
often not familiar with the methods employed by computational biol-
ogists (e.g., NMA [8]), which makes it difficult for them to analyze
computational results and connect them with the protein structure and
function. Interactive 3D visualization is more intuitive and results in
significant benefits in this case.

There are several different visual representations in use for the vi-
sual depiction of protein structures. Each visual representation serves
its own purpose. Some of them depict high-level information giving
visual prominence to certain characteristics (e.g., the helical twist of
a part of the backbone). Such a visual depiction is referred to as car-
toon rendering among the domain scientists. A more traditional but
still often preferred way of displaying the structure dynamics in pro-
teins is showing the atoms (all but hydrogens) and investigating how
they interact with each other. Rendering every atom in the protein with
connections to the other atoms in the structure is known as ball-stick
representation and rendering atoms as intersecting spheres is called
space-fill representation (see Figure 1). When visualizing ever larger
and complex structures, additional techniques like depth cueing, and
depth aware silhouettes [27] are vital to extract structural information
without loosing smaller details.

Interactive rendering of very large proteins (hundreds of thousands
of atoms) using the ball-stick representation is computationally very
demanding, even using the latest graphics hardware. In our project,
this task gets even more challenging since protein dynamics should
also be studied in an immersive environment using stereoscopic ren-
dering on a high-resolution projection wall. The complex geometry
of the protein representation is associated with dynamic changes in
the atomic positions of the proteins. Sending new geometry for each
frame will immediately drop the rendering performance to unaccept-
able frame rates because of constantly updated complex geometry cal-
culations and I/O GPU bandwidth [18, 1]. Especially in the case of an
immersive environment it is crucial that the performance does not drop
under 24 fps to avoid nausea and disorientation [24, 31]. In summary,
the more and more common scenario of molecular biologists aiming at
an interactive 3D investigation of protein dynamics and the interaction
of several proteins with each other, presents a substantial challenge for
visualization technology and interaction.

To achieve interactive rendering in the above mentioned scenario,
we now propose a new two-level approach for rendering dynamic pro-
teins. The basic idea builds upon the natural hierarchical structure of

Fig. 1. Different visual representations are needed when visualizing
atom structures. Top: left Caffeine using ball-stick, right Caffeine using
space-fill. Middle: left GroEL using separate chain color and cartoon
borders, right GroEL backbone only. Bottom: left Bacteriophage phi-
29 [32] connector array using cartoon Sketch, right same using depth
cue (fog).

proteins. Accordingly, we decompose the rendering pipeline into two
levels: (a) dynamic changes are applied to high-level structures of the
proteins such as the backbone; (b) the geometry of low-level structures
(residues) is generated on-the-fly for atom-by-atom rendering.

The remainder of this paper is organized as follows: In the next sec-
tion we review related work. The main idea of two-level rendering and
its individual steps are described in Section 3. Section 4 demonstrates
the use of our new approach in the context of our cooperative project.
In Section 5 we report performance and quality measures. Finally, we
summarize our contribution and draw conclusions in Section 6.

2 RELATED WORK

Visualization of protein dynamics is an active research area. One of the
latest approaches in the field resulted in the publicly available frame-
work known as VMD (Visual Molecular Dynamics) [12]. This frame-
work has become very rich in features over the years which makes it
popular for computational biologists. However, when it comes to the
visualization of large protein structures, the rendering performance is
not usable in immersive environments [31].

The high computational costs of rendering complex protein geome-
tries have been partly alleviated by reducing the number of dynamic
graphics elements to high-level protein structures using so-called car-
toon rendering [26, 11]. Displaying the simple geometry of high-level
structures also allows to study molecular dynamics in virtual environ-
ments [21].

More recent approaches are focusing on displaying the dynamics of
every atom in the molecule. Hao et al. [6] achieve interactive fram-

erates for mid-sized proteins (ca. 10,000 atoms) in a desktop environ-
ment through simplifying geometry that represents a single atom.

Reducing geometry complexity and increasing performance by de-
picting the details using image-based representations is a very pow-
erful technique in various fields of computer graphics [13]. Recently,
billboard-based techniques have been applied for molecular visualiza-
tion such as Qutemol [27]. Billboarding results in very high framer-
ates even for reasonably sized non-dynamic molecules. Our render-
ing of single atoms extends this billboarding technique. As Qutemol
is limited to orthogonal projections only, we use the technique pro-
posed by Gumhold [5] for rendering perspectively correct spheres. In
the context of the ball-stick representation we use a very similar con-
cept [25, 23] to render the bonds.

Our two-level rendering approach is especially designed to support
the dynamic visualization of large atomic structures for stereo pro-
jection. In addition to the pre-computed animations of protein struc-
tures, we utilize focus+context techniques [7] for interactive explo-
ration such as 3D magic lens [29, 4] or view dependent disptortion [3].

In this paper, we demonstrate how the newest graphics hardware ca-
pabilities are utilized to come up with an elegant two-level approach to
interactive visualization of large and at the same time dynamic protein
structures. Additionally, we improve and integrate the above reviewed
techniques for billboarding, perspective correction, and explorative in-
teraction to better suit our purposes.

3 INTERACTIVE DYNAMIC PROTEINS

To understand the spatial relationships in the interaction amongst sev-
eral dynamic proteins, biologists need to study such behavior using
stereo projection and on high-resolution projection walls. To satisfy
their needs, user interactivity cannot be compromised by the extent of
the scene complexity. In the following we describe a new rendering
approach which enables this required interactivity, even for very large
protein structures. Position updates for every single atom in large pro-
teins in every single frame would normally drop the rendering perfor-
mance unacceptably due to the CPU time needed to translate atoms
and due to limited I/O GPU bandwidth. By exploiting the fact that
the NMA simulation only calculates vectors for backbone elements
and then afterwards applies them to all atoms, we can send the ini-
tial vector to the graphics card and have it applied to the atoms in the
corresponding residue on the graphics card.

In the first level of our new rendering pipeline, dynamic changes in
the protein therefore are applied only to the backbone control points,
where each residue is represented by a one control point, i.e., by a
single vertex. These comparably small numbers of vertices are then
transferred to the GPU. In the second rendering level we dynamically
generate the atoms which are contained in the residues, utilizing the
geometry shader as featured in the latest graphics hardware gener-
ation [18]. For every atom we emit four vertices from the control
point of the residue and represent the atoms by perspective-correct
billboards. The shading of the spheres which represent the atoms is
done in the fragment shader resulting in pixel-precise spheres. The
entire rendering pipeline is illustrated in Figure 2 and the individual
steps are described in detail in the following subsections.

3.1 Two-Level Rendering Pipeline

Prior to rendering protein structures, we parse the input files [20] that
define the protein and generate the protein hierarchy. All residues in
the proteic chain are identified and attached to the backbone by their
control point. The control point is a particular carbon atom which
is present in every residue and which is denoted in the backbone as
Cα . This atom serves as the origin of the local coordinate system
of the residue. The atoms in the protein are assigned to respective
residues and their relative position to the control point is computed.
This transformation is defined as translation from the origin of the
residue.

For each residue we store the following information:

• control point position (X ,Y,Z) – residue position array

• rotations φ ,θ ,ψ – residue rotation array

• index of first atom Λ – atom offset array

C
P

U
V

e
rt

e
x
 S

h
a

d
e

r

PCIe Bus

L
e

v
e

l
2

 A
m

in
o

 A
c
id

 C
o

n
s
tr

u
c
ti
o

n

G
e

o
m

e
tr

y
 S

h
a

d
e

r
F

ra
g

m
e

n
t

S
h
a

d
e

r

transform of entire

residue

X,Y,Z

φ ,θ ,ψ

animation

calculations

atom

offset Λ

VBO

atom

count δ

atom

assembly
atom color texture

complete protein

definition

atom position and

radius texture

4 vertices (billboard), color,

parameteri zation, radius, silhouette

normal caculation

fragment color,

z correction

fragment color and depth

atom control

point

L
e

v
e

l
1
 C

h
a

in
 M

a
n

ip
u

la
ti
o

n

X,Y,Z

φ ,θ ,ψ

Fig. 2. A data flow diagram showing the different stages in our pipeline,
from the CPU through the vertex shader, the geometry shader, to the
fragment shader. The data sent, noted by arrows, are multiplied up by
the number of residues in all process blocks under Level 1 and by atoms
in Level 2

• number of atoms δ – atom count array

The information stored for every residue is also listed in Table 1
with the associated data type.

X Y Z φ θ ψ Λ δ
float float float float float float int int

Table 1. Residue Composition

All rotations are initially set to zero. We have selected Euler angles
as our rotation representation because of their low bandwidth foot-
print, i.e., 3 floats. This could be implemented by use of quaternions
for more efficient calculation and better handling of interpolation.

We reduce the bandwidth requirements during animations by up-
loading all elements that are static during animations to the graphics
memory once. We create two textures, one containing the colors and
one containing the positions and radii of all the atoms. Next, we as-
sociate the Λ and δ values with the residues vertex array and upload
them to the graphics memory as vertex buffered objects (VBO). The
atom information is now stored in textures, and the residue informa-
tion stored in vertex arrays, some residing in main memory, and some
in texture memory.

To render the residues, we bind the four above mentioned arrays
and the two textures, and then render points by sending indices. This

transports our values from our two main memory residing arrays, join-
ing them with the other two from graphics memory, and sending them
to the vertex shader. Transformations, which are applied to this one
point, done by the vertex shader, then affect the entire residue (and not
only Cα).

To render all the atoms which are associated to a residue, the geom-
etry shader fetches the atom information, starting at Λ, and iterating
until Λ+δ . The maximum of atoms this algorithm can output is then
limited by the hardware platform. By the time of writing the upper
limit of the G80 was set to 1024 scalars. This means that our algorithm
could theoretically output 64 atoms per geometry call. To resolve the
location of such an on-the-fly created atom we need to translate the
iterated value to texture u and v values where the color, the position
(relative to the origin of the residue), and the radius are stored. This
is done by exploiting the newest features in the shader specification
textureSize and texelFetch.

To place the atoms correctly, the geometry shader creates a matrix
from the Euler angles (φ ,θ ,ψ) and the position provided (X ,Y,Z). The
atom positions previously fetched from texture memory must then be
multiplied by this matrix, before they are sent to the next step which
creates the actual geometry that is sent to the fragment shader.

We represent atoms by billboards (see Section 3.3 for a detailed
discussion). To render one atom, the geometry shader generates four
vertices in a billboarded quad (in fact in a small tri-strip since the
geometry shader cannot output quads), the radius of the atom, the atom
color, and other information which the fragment shader requires to
accurately portray the intended sphere that represents the atom.

One call to render a residue consists of 6 floats · 4 bytes/float = 24
bytes. Rendering one residue is a factor of 24bytes/12bytes = 2 times
bigger than rendering a single atom. However, residues are of size
7–24 atoms and on average about 10 [16]. Therefore we observe that
the bandwidth usage is reduced (on average) by about 10/2 = 5 times.
Ignoring the hydrogen atoms, all residues consist of at least 4 atoms
each (NCCO, as in glycine). Even if we only render the backbone of a
protein (containing the four minimal atoms per residue), we still save
half of the bandwidth with our approach.

3.2 Dynamic Scene Rendering and Exploration

Animations often adhere to certain skeleton restrictions. This is also
the case with proteins. Especially in NMA simulations; the backbone
of the protein is animated and the side-chains follow this movement.
To dynamically update the scene, we first send the movement of the
backbone to the graphics card. Every transformation of a control point
of the backbone, defining the origin of a particular residue, is defined
through a new position (X ,Y,Z) and new Euler angles (φ ,θ ,ψ). We
then apply a local coordinate system to render the residue relative to
the control point in the backbone. In the second level of rendering we
reassemble the entire residue (7–24 atoms) by providing the graphics
card with one translation and one orientation description.

With our rendering pipeline we support two different types of dy-
namics, i.e., the animation sequences as resulting from the simulation
of protein dynamics and the displacements of protein elements accord-
ing to explorative interactions such as the 3D fisheye lens distortion.

The simulation of protein dynamics is usually a computationally
very expensive process. Therefore, this is done in a pre-processing
step, separated from the rendering pipeline [10]. In order to achieve
the highest possible compatibility with all available tools, the result
of such a simulation is stored using a standard file format [20] for
every frame. To reconstruct the backbone animation, we parse the
simulated frames prior to rendering. We extract the position changes
and orientation angles, which then define the transformation of the
residue in the second level of our rendering approach (see Section 4
for a specific example).

In addition to these simulated protein animations, we also support
procedural animations which increase the understanding of the com-
plex spatial arrangements of atoms in the proteins. Motion cues are of
significant advantage when it comes to 3D space perception, even in
the case when combined with stereo projection [30]. The overall struc-
ture of a complex protein can be well studied using global movements

Fig. 3. Top row: Complex (proteinase/inhibitor) visualized with separate color per chain and fisheye to study weak bonds connecting the two chains.
Bottom row: Shows procedural pulsation, where the global symmetries become well visible in the GroEL protein visualized here. See also the
accompanying videos.

such as a pulsation from the center of the protein or along a protein
symmetry axis. For demonstration we perform a pulsation procedu-
ral animation on the GroEL protein along its rotational symmetry axis
(see Figure 3 top row). The displacement function is in this case de-
fined as:

~d = −

px/
√

p2
x + p2

y

py/
√

p2
x + p2

y

 (1)

∆ =
√

p2
x0 + p2

y0 · r · (1+ sin(ϕ +k · pz0)) (2)

px

py

pz

 =

px0 +∆ · ~dx

py0 +∆ · ~dy

pz0

 (3)

To calculate a distortion effect that creates a pulsating movement
around the z axis, i.e., the axis of rotational symmetry, we first cal-

culate the displacement direction ~d that will point away from the z
axis. The pulsation ∆ is proportional to the distance from the z axis.
Furthermore, we define ∆ to vary with a sine wave depending on a
time-varying parameter ϕ and the z height pz0. To control the phase of
the sine wave in z we also introduce phase shift k and sine amplitude r.
This pulsation effect is as a result of its large relative distortion along
its center axis, only suitable for a class of proteins that have either
rotational symmetries or a cavity along this axis.

In case of tightly clustered structures it may become difficult to cor-
rectly understand the spatial arrangement. Using the small movements
in the structure, the depth perception can be significantly strengthened.
For this purpose we use a jittering procedural displacement. This is
demonstrated in the bottom row in Figure 3. The displacement func-
tion is defined as:

px

py

pz

 = ~p0 + r ·

sin(ϕ + px0)
sin(ϕ + py0)
sin(ϕ + pz0)

 (4)

where ϕ is the time-varying parameter, ~p0 the origin of the atom, and
r the distortion amplitude.

When the structures in the protein are very tightly clustered it is
difficult to understand the connectivity and jittering helps. Another
useful opportunity is a user-steered rearrangement by means of fo-
cus+context visualization [7]. To do so, we apply local distortions
utilizing a fisheye lens approach. Our lens function is defined as

f (d,r) =

{
(

sin(π + 2dπ
r

)+1
)

/2, if d ≤ r

0, ifd > r
(5)

where f (d,r) is the force magnitude applied to atoms, with r being the
radius of the area to be affected by the distortions, and with d being the

point-line distance from ray (~p, ~d) when defined by viewer position ~p

and direction ~d of the mouse pointer. While d defines the magnitude,

force ~F defines the direction of the force as given below (with ~A being
the position of the atom to be tested).

~f = ~d ×
(

~d × (~p−~A)
)

(6)

~F = ~f /|~f | (7)

3.3 Atom Rendering

Our visual representation uses spheres of different size and color to
depict the atoms in the protein. Rendering spheres by the use of bill-
boards is a technique that significantly increases speed performance
as compared to tessellated primitives. Billboarding is often used as a
load balancing method of increasing speed while loosing visual qual-
ity. Using advanced z-buffer correction on these billboards and per-
pixel shading calculations accurately displays pixel-precise spheres.
Our rendering approach using billboards for atoms and bonds builds
upon existing works in the field [27, 5, 25].

For the parallel projection, the sphere/atom billboards are drawn
orthogonal to the view plane. Then the correct z is computed in the
fragment shader as follows:

r2 = z2 + l2 ⇒ z =
√

r2 − l2 (8)

Fig. 5. Interactive visualization of the chaperonin GroEL protein dynamics. Top row: frames showing dynamic changes in the arrangement of the
entire structure. Bottom row: frames showing the exploration of structure movements inside the protein.

In Equation 8, r is the radius, l is the distance from the spheres origin,
and z is the height correction that needs to be applied.

Using the perspective projection, the above equation gets a bit more
complex since there are two important aspects which one has to take
care of. First, the radius, or the circumference will be smaller, since the
viewing ray will intersect the sphere before the ray hits the billboarded
circle. Therefore, the correct intersection depth has to be computed as
illustrated in Figure 4. The points on the circle where the view ray
is orthogonal to the circle tangent are s1

⊥ and s2
⊥. These points define

the plane displacement of the billboard. The second issue is that the z
correction is not parallel to m̃ either, but will follow the ray. In both
orthographic and in perspective projection the normal calculation is
the same once you have identified the intersection point on the sphere.

If the intersection point is~i and the origin of the sphere is ~o, then the

b

b

r

x|y

z

r̃

m̃
~v

s1
⊥

s2
⊥

Fig. 4. Silhouette calculation. ~v is eye position. r̃ is the corrected bill-
board radius, according to projection.

normal is~n =~i−~o.

Previous billboarding techniques [5, 25] do not make use of the lat-
est graphics hardware capabilities. For each vertex in the billboard
they require to perform calculations for the silhouette, the camera di-
rection, and the cross product to define the orthogonal plane to the
camera direction. We utitilize the geometry shading capabilities to re-
duce these calculations to one vertex only, then emit four vertices (one
per billboard corner) and reuse the calculations from the original ver-
tex. This implies nearly four times performance gain for rendering a
single atom.

4 PROTEIN ANALYSIS

In this part of our paper, we briefly report from our cooperative bioin-
formatics project and demonstrate how the new two-level rendering
approach helped to improve our insights in complex and dynamic pro-
tein structures. In our research we aim at studying interaction of mul-
tiple proteins also considering their dynamics. Furthermore, we are
investigating re-structuring of existing proteins for efficient drug de-
sign.

When analyzing large molecular structures such as the trypsin pro-
tein with its inhibitor BPTI (Bovine Pancreatic Trypsin Inhibitor) or
the chaperonin GroEL protein and their dynamics (see Figs. 6 and 5),
we need to consider overall and detailed effects. Accordingly, it is very
useful to visually consider proteins on different levels of their internal
structure.

The chaperonin GroEL protein is a very interesting and an espe-
cially stable molecule which has been extensively researched. It plays
an important role in conjunction with the folding of many other pro-
teins, including prokaryotes, chloroplasts, and mitochondria. We in-
vestigate this protein and its function by taking a close look at its intra-
protein dynamics. For this purpose, we have previously developed a

web-based tool to calculate large amplitude movements of a protein,
starting from the Cartesian coordinates of its Cα atoms [10]. This tool,
based on the Molecular Modeling Tool Kit [9], is called WEBnma
and performs Normal Modes Analysis (NMA) of proteins [8]. Among
other things, this tool allows to create an animation of the movements
which a protein is susceptible to undergo. The animation can be vi-
sualized within the web browser or downloaded and visualized with
VMD. However, in both cases we display only the Cα and still the
animation is relatively slow.

Images in Figure 5, on the other side, are frames from our new
interactive visualization of the chaperonin GroEL dynamics.

The GroEL protein [33] contains 53,822 atoms and the animation
consists of 150 different structures. The visualization allows us to see
not only the Cα on which the calculation is made but also the side
chains. This is an important level of information. We get a better view
of the formation of cavities and the deformation of the surface. We
in addition incorporate halo effect around individual atoms to improve
the depth cueing. The animation also is much faster and smoother than
with other tools such as VMD [12].

In the case of the trypsin protein, for example, we are interested in
its associated inhibitor BPTI (2ptc) [22]. An inhibitor is a molecule
(protein or not) which prevents a protein from functioning. Inhibitors
are important regulative factors with respect to the activity of certain
proteins. An inhibitor binds to its partner following a key-lock model,
meaning that they have complementary structure (also referred to as
molecular docking). The investigation of the detailed structure of each
partner helps us understand whether they couple and, if yes, how they
couple. When a disease is caused by a malfunctioning protein, for
example, we aim at inhibiting its activity. In drug design, it is therefore
often important to find compounds which would have the necessary
characteristics to be inhibitors of the malfunctioning protein. To do
so, an in-depth 3D analysis of the structural aspects is very important
during the search for structural complementarity.

The new two-level rendering approach enables us to investigate the
proteins in their full complexity (with all atoms), even if they are com-
posed of hundreds of thousands of atoms, interactively in 3D (see
Fig. 6(a)). We are able to investigate their detailed shapes while they
are moving smoothly. When interactively operating in 3D space, how-
ever, we regularly aim at temporarily reverting to a more overview
kind of view for the purpose of mentally re-registering the overall
structure of the molecule to the current view – due to its complex
structure and large number of atoms it is not always immediately ob-
vious which parts connect to which others along the backbone. With
our new rendering approach we can very easily suppress the unfold-
ing of residues and thereby only show the backbone of the proteins
(Fig. 6(b)). In some situations, however, for a very detailed view, we
temporarily disable the rendering of all atoms but just those of one
selected residuum (Fig. 6(c–f)).

Another protein we are interested in is the goose lysozyme
(153L) [14]. It has a relatively complex structure and showing it with
all atoms results in a pretty packed visualization. For an overall analy-
sis, we again make use of the option to not show residues but only the
backbone. To better explore the structure of the backbone we apply an
interactive 3D fisheye distortion (with care, however, i.e., moving the
fisheye around slowly). The fisheye lens locally separates parts of the
backbone and thereby reveals details relations (see Fig. 8).

We have performed initial tests of our application in our VR lab.
First impressions indicate that immersive visualization is very use-
ful for protein dynamics investigation. The spatial arrangement of
protein structures is conveyed much clearer from stereo projection
as opposed to desktop environment. Figure 7 demonstrates interac-
tive visualization session of trypsin protein with its inhibitor BPTI
(Bovine Pancreatic Trypsin Inhibitor). Additional material is available
on http://www.cmr.no/research/protein dynamics/.

5 PERFORMANCE ANALYSIS

We have tested the performance of our two-level rendering approach
on the chaperonin GroEL (1AON) consisting of 58,884 atoms for
NMA and several other (see Table 2) with fisheye force calculations.

While rendering the GroEL NMA analysis we achieve 29 FPS with a
3200×1200 resolution in the stereo mode (or 58 fields per sec). Fur-
ther results are presented in Table 3 and Figure 9 . These results were
made using a NVIDIA GF 8800 GTX graphics card. The stereo results
were made on the NVIDIA Quadro architecture.

By implementing force calculations on the GPU (once per entire
amino acid), we save an average 7 force calculations. One other sig-
nificant factor in our gain in performance lies in that with geometry
shaders we can reduce the calculations for billboarding and silhouette
offset to once per atom vs four times per atom without the geometry
shader.

We compare the bandwidth load between our approach and one-
level approach also using billboards for object representation but not
exploiting geometry shaders for geometry generation. Table 2 shows
that the average atom count per residue lies between 7−9 for proteins
used in our comparison. The bandwidth load is depicted in Table 3
where we use the following formula for the bandwidth in bytes per
pass:

One-level rendering:

(

atoms ·
vertex

atoms
·

f loats

vertex
·

byte

f loat

)

⇒ (atoms ·4 ·3 ·4) (9)

Two-level rendering:

(

residues ·
f loats

residue
·

byte

f loat

)

⇒ (residues ·6 ·4) (10)

It turns out that our method uses approx 15 times less bandwidth
as compared to a one-level approach. Moreover, this comparison does
not include rendering of hydrogen atoms as they are usually neglected
in molecular visualization. In cases when protein investigations would
require rendering of protein including hydrogens, the atom count will
drastically increase, while the residue count will stay the same. This
means that the bandwidth and calculation load for one-level approach
will be at least doubled, whereas our load will stay the same.

6 SUMMARY AND CONCLUSIONS

We have designed a two-level rendering approach for immersive visu-
alization and exploration of protein dynamics. Our approach performs
better than that of a One Level with approximate 60% and consumes
significantly less bandwidth as compared to a one-level approach; that
makes it superior in scenarios with frequent positional change of the
backbone in proteins.

During studies of proteins, biologists often like to switch between
different levels of abstraction in proteins, e.g., first we might be inter-
ested in getting the big picture and seeing the backbone structure only,

Fig. 7. Photograph taken from a visualization of structures of trypsin
protein with its inhibitor BPTI (Bovine Pancreatic Trypsin Inhibitor) in our
immersive environment . Photo c©Bjørn Erik Larsen, www.bel.no

(a) (b) (d) (e) (f)

Fig. 6. Hierarchical structures in the trypsin protein with its inhibitor BPTI (Bovine Pancreatic Trypsin Inhibitor): entire proteic chain, backbone
without side-chains (proteic chain build only out of glycine), individual residues arginine, threonine, and tryptophan.

Fig. 8. The protein lysozyme in its original arrangement, only the backbone, and with applied fisheye distortion by moving the lens from the center
and rightwards.

Fig. 9. Performance in FPS comparing One Level rendering to Two
Level rendering of dynamic proteins.

Atom Two One Atom Two Level One Level

Name Level Level Count Bandwidth Bandwidth

FPS FPS

2PTC 504 223 2241 6,672 107,568

10K Atoms 253 80 10000 32,904 480,000

1AON 61 23 58884 192,360 2,826,432

1AON*2 31 13 117768 384,720 5,652,864

1VRI 24 11 150720 444,960 7,234,560

Phi-29 9 3 391872 1,156,896 18,809,856

Table 3. Frame-rate and bandwidth comparison of our test cases.
Frame-rate presented for dynamic visualizations.

after identifying interesting regions we need to see the entire structure,
or the most prominent part of the structure only etc. As our approach
is aligned with the hierarchical structure of proteins, change in visual
complexity of the scene comes out straightforward from our algorithm.

Proteins are very complex structures and to visually understand
them may sometimes become difficult. Here immersive environments
coupled with advanced motion and depth cues convey much better
structural information than the desktop-based visualization.

Proteins are usually treated as static structures, however their dy-
namics are often the key to effective drug design. Therefore interactive
visualization of dynamics will play an important role in future protein
investigations.

ACKNOWLEDGEMENTS

Funding for Nathalie Reuter was provided by FUGE (Norwegian func-
tional genomics program) through the technology platform for bioin-
formatics. Lars Skjærven is acknowledged for having provided the
coordinates files of the NMA on GroEL. We also acknowledge CMR

Atom Name PDB Code Atoms Residues Bond count Chains Avg. Residue Size

Hydrolase(o-glycosyl) 153L 1,614 185 1,460 1 7.74054

Complex (proteinase/inhibitor) 2PTC 2,241 278 2,134 2 7.49281

Complex (groel/groes) 1AON 58,884 8,015 59,304 21 7.32227

Bacteriophage phi-29 upper 5 monomers 1VRI 150,720 18,540 161,164 60 8.12945

Bacteriophage phi-29 connector array 1VRI, 1RVJ, 1YWE 391,872 48,204 418,922 156 8.12945

Table 2. Characteristics of test data sets.

(Christian Michelsen Research) for their funding in this project. Chris-
tian Sigg, Simon Green and Stefan Guthe from NVIDIA for providing
expertise on the NV80. Vegar Kleppe and Anonymous IEEE Review-
ers for excellent feedback, and Mona Nijhof for correcting grammar.

REFERENCES

[1] ATI web page on hardware specs. http://www.ati.com/, 2007.

[2] C. L. Brooks, M. Karplus, and M. Pettitt. Proteins, a theoretical perspec-

tive of dynamics, structure and thermodynamics. John Wiley and Sons,

1988.

[3] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. Distor-

tion viewing techniques for 3-dimensional data. In Proceedings of IEEE

Symposium on Information Visualization, pages 46–53, 1996.

[4] P. Cignoni, C. Montani, and R. Scopigno. Magicsphere: an insight tool

for 3d data visualization. In Computer Graphics Forum, 13, pages 317–

328, 1994.

[5] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In

Proceedings of Vision, Modelling and Visualization Workshop, pages

245–252, 2003.

[6] X. Hao, A. Varshney, and S. Sukharev. Real-time visualization of large

time-varying molecules. In Proceedings of High-Performance Computing

Symposium, 2004.

[7] H. Hauser. Scientific Visualization: The Visual Extraction of Knowledge

from Data, chapter Generalizing Focus+Context Visualization, pages

305–327. Springer-Verlag, 2005.

[8] S. Hayward. Normal mode analysis of biological molecules. In Compu-

tational biochemistry and biophysics, pages 153–168, 2001.

[9] K. Hinsen. The molecular modeling toolkit: a new approach to molecular

simulations. Journal of Computational Chemistry, 21:79–85, 2000.

[10] S. Hollup, G. Sælensminde, and N. Reuter. WEBnma: a web applica-

tion for normal mode analyses of proteins. BMC Bioinformatics, 6(1):52,

2005.

[11] H. Huitema and R. van Liere. Interactive visualization of protein dynam-

ics. In Proceedings of IEEE Visualization, pages 465–468, 2000.

[12] W. F. Humphrey, A. Dalke, and K. Schulten. VMD - visual molecular dy-

namics. Journal of Molecular Graphics and Modelling, 14:33–38, 1996.

[13] S. Jeschke, M. Wimmer, and W. Purgathofer. Image-based representa-

tions for accelerated rendering of complex scenes. State of The Art Re-

port Eurographics, 2005.

[14] L.H.Weaver, M.G.Gruetter, and B.W.Matthews. he refined structures of

goose lysozyme and its complex with a bound trisaccharide show that

the ”goose-type” lysozymes lack a catalytic aspartate residue. JMol Biol,

245:54–68, 1995.

[15] J.-J. L. N. Reuter, K. Hinsen. Transconformations of the serca1 ca-atpase:

A normal mode study. Biophysical Journal, 85:2186–2197, 2003.

[16] D. L. Nelson and M. M. Cox. Lehninger. Principles of Biochemistry, 3rd

edition. Macmillan Press Worth Publishers, 2000.

[17] S. Noskov and B. Roux. Importance of hydration and dynamics on the se-

lectivity of the KcsA and NaK channels. Journal of General Physiology,

129(2):135–143, 2007.

[18] NVIDIA web page on hardware specs. http://www.nvidia.com/, 2007.

[19] Opengl web site. http://www.opengl.org/, 2007.

[20] An information portal to biological macromolecular structures.

http://www.pdb.org/, 2007.

[21] J. F. Prins, J. Hermans, G. Mann, L. S. Nyland, and M. Simons. A virtual

environment for steered molecular dynamics. Future Generation Com-

puter Systems, 15(4):485–495, 1999.

[22] R.Huber and J.Deisenhofer. The geometry of the reactive site and of the

peptide groups in trypsin, trypsinogen and its complexes with inhibitors.

acta crystallogr, 39:480, 1983.

[23] M. Schirski, T. Kuhlen, M. Hopp, P. Adomeit, S. Pischinger, and

C. Bischof. Efficient visualization of large amounts of particle trajecto-

ries in virtual environments using virtual tubelets. In Proceedings of the

ACM SIGGRAPH international conference on Virtual Reality continuum

and its applications in industry, pages 141–147, 2004.

[24] SGI techpubs library, http://techpubs.sgi.com/. http://techpubs.sgi.com/,

2007.

[25] C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization with stylized line

primitives. In Proceedings of IEEE Visualization, pages 695–702, 2005.

[26] J. E. Stone, J. Gullingsrud, and K. Schulten. A system for interactive

molecular dynamics simulation. In Proceedings of the 2001 symposium

on Interactive 3D graphics, pages 191–194, 2001.

[27] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge cue-

ing to enhance real time molecular visualization. IEEE Transactions on

Visualization and Computer Graphics (Proceedings of IEEE Visualiza-

tion 2006), 12(5):1237–1244, 2006.

[28] D. P. Tieleman. Computer simulations of transport through membranes:

Passive diffusion, pores, channels and transporters. Clinical and Experi-

mental Pharmacology and Physiology, 33(10):893–903, 2006.

[29] J. Viega, M. J. Conway, G. Williams, and R. Pausch. 3d magic lenses. In

Proceedings of ACM Symposium on User Interface Software and Tech-

nology, pages 51–58, 1996.

[30] C. Ware and G. Franck. Evaluating stereo and motion cues for visualizing

information nets in three dimensions. ACM Transactions on Graphics,

15(2):121–140, 1996.

[31] S. D. Young, B. D. Adelstein, and S. R. Ellis. Demand characteristics

in assessing motion sickness in a virtual environment: Or does taking a

motion sickness questionnaire make you sick? IEEE Transactions on

Visualization and Computer Graphics, 13(3):422–428, 2007.

[32] Y.Y.Guo, F.Blocker, F.Xiao, and P.Guo. Construction and 3-d computer

modeling of connector arrays with tetragonal to decagonal transition in-

duced by prna of phi29 dna-packaging motor. J Nanosci Nanotechnol,

5:856–863, 2005.

[33] Z.Xu, A.L.Horwich, and P.B.Sigler. The crystal structure of the asym-

metric groel-groes-(adp)7 chaperonin complex. Nature, 388:741–750,

1997.

