

Digital Therapy Models for Clinical Decision Support

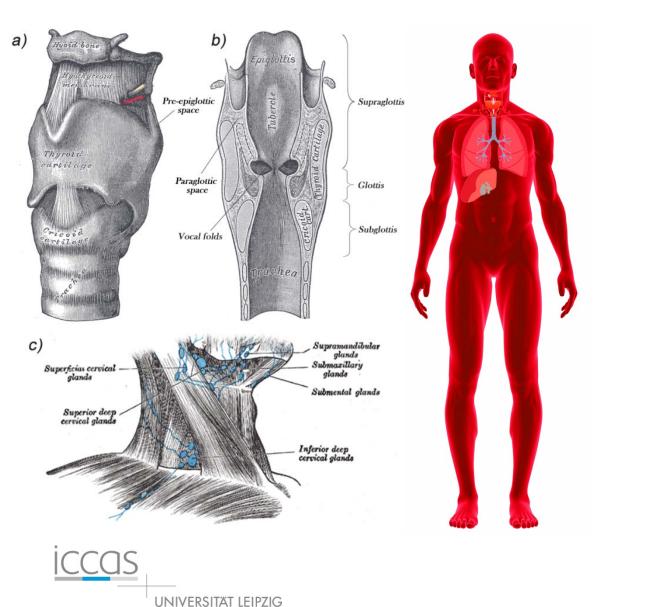
Steffen Oeltze-Jafra

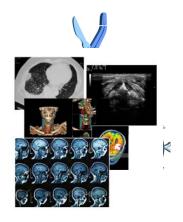
¹Dept. of Neurology, Univ. of Magdeburg, Germany ²Center for Behavioral Brain Sciences, Magdeburg

Outline

- Decision support scenario
- Competing approaches
- The DPM approach
- Deployment in the clinic

Slide acknowledgements: Mario A. Cypko





Decision Support Scenario

Scenario: Laryngeal Cancer Treatment

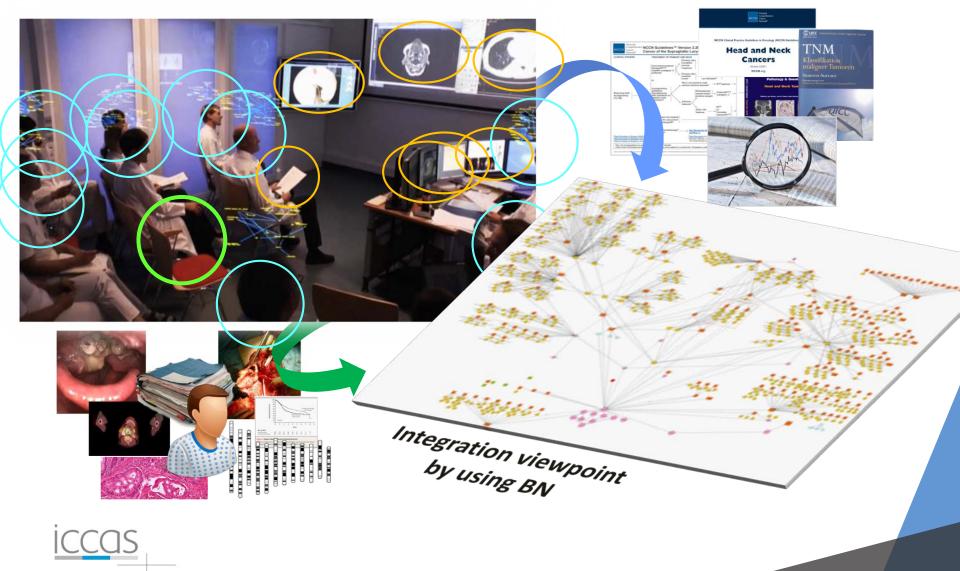
Tumor Board Meetings for Clinical Decision Making in Laryngeal Cancer Treatment

Competing Approaches to Supporting Clinical Decision Making

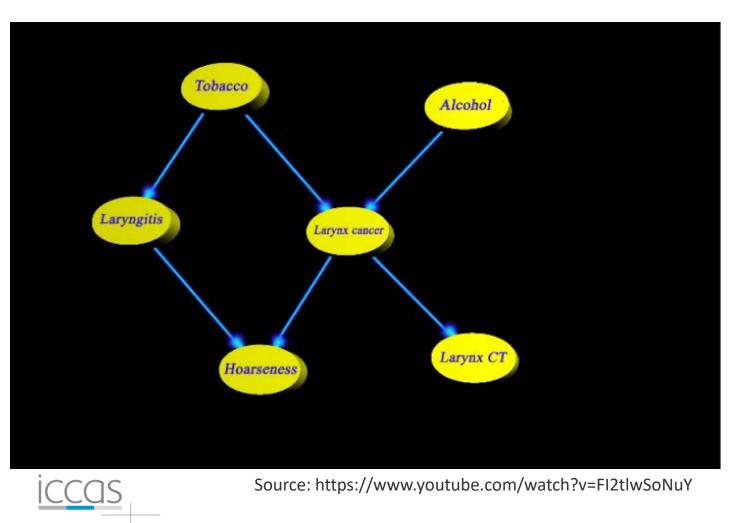
Competing Approaches

Data-driven Learning

- Integration of ML, NLP, information retrieval, knowledge representation, and automated reasoning
- Require huge amounts of high-quality (patient) data
- Reasoning of algorithms hard to understand
- Example: IBM Watson for Oncology [IBM2018]

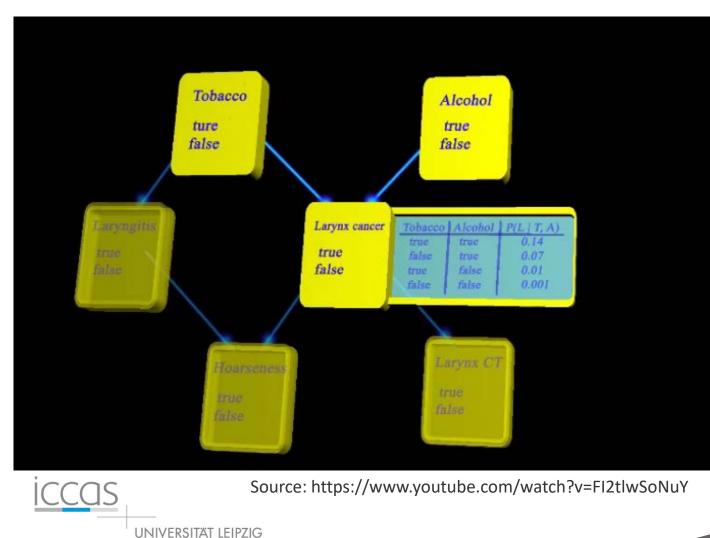

Knowledge-driven Modelling

- Explicit organization, modelling and integration of available knowledge from various sources
- Require expert modelers and update mechanisms
- Reasoning of algorithms is easy to understand
- Example: Warfarin therapy [Yet2013]

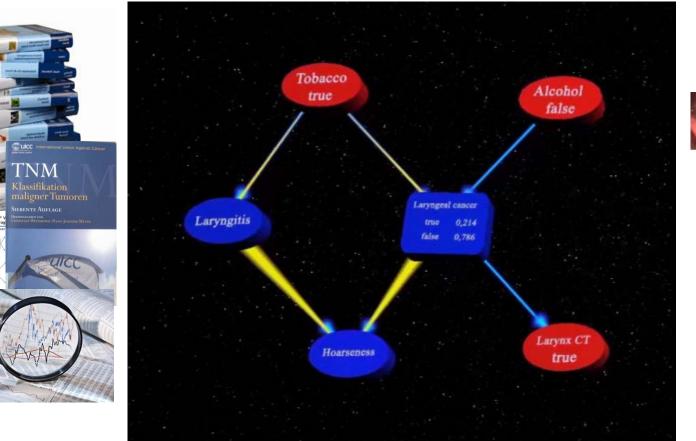

The DPM Approach: Knowledge-Driven Bayesian Network Modelling

The DPM Approach: Bayesian Network Modelling

Bayesian Network in a Nutshell

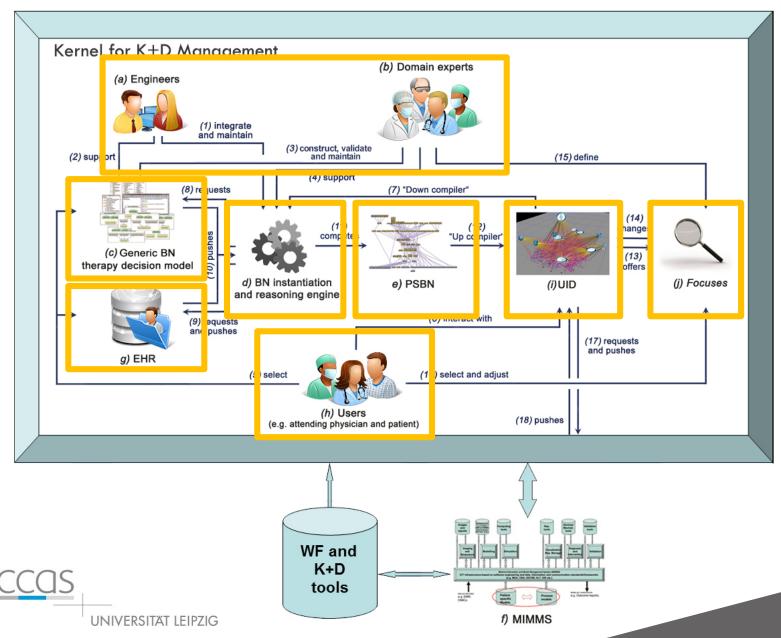

Graphical Modelling example of laryngeal cancer

Bayesian Network in a Nutshell

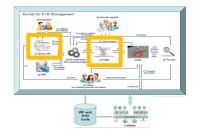

Probabilistic Modelling example of laryngeal cancer

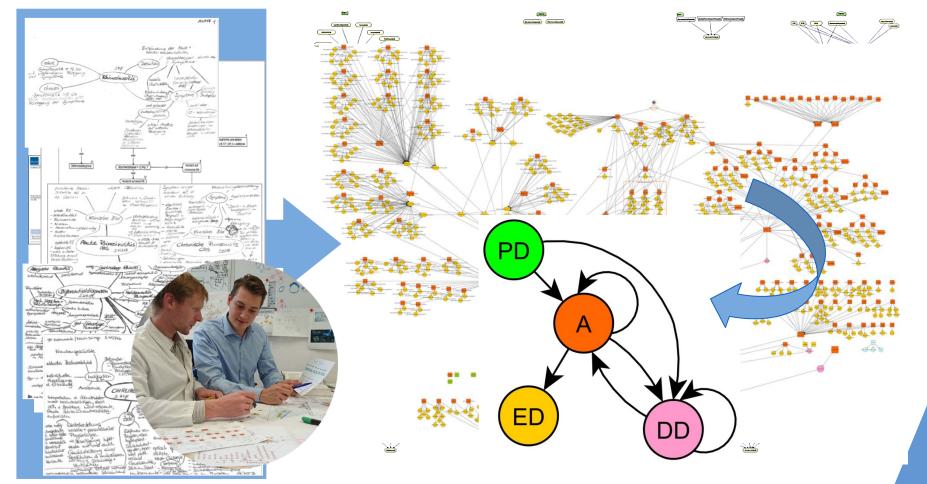
Bayesian Network in a Nutshell

Inferencing

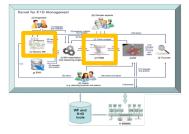


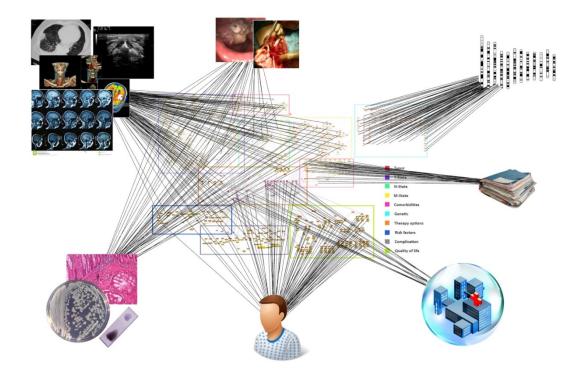
iccas


Requiring brympecte (T3, N0)

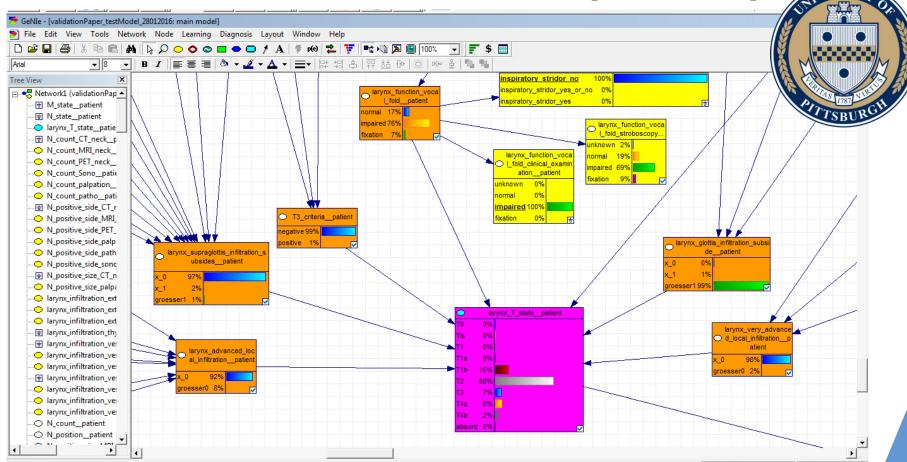

Source: https://www.youtube.com/watch?v=FI2tlwSoNuY

Concept of a CDSS using BN




Modeling BN Structure

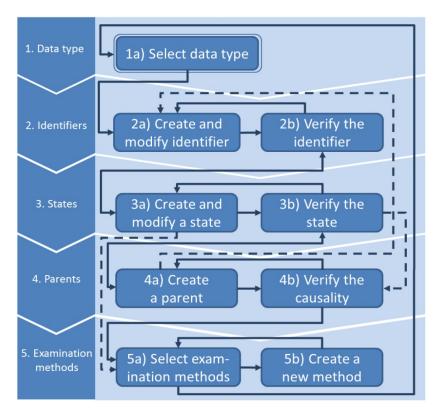
Treatment Decision Model for Laryngeal Cancer [Stoehr2014]



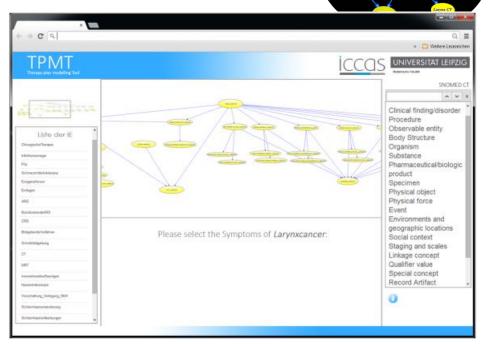
Three years of teamwork of one clinician and one engineer (+ expert meetings): <u>First year, every day full time</u>, second year, twice a week for four hours, third year, once a week for four hours

Modelling and Analysis Software

ERSI



🚯 No targets


UNIVERSITÄT LEIPZIG

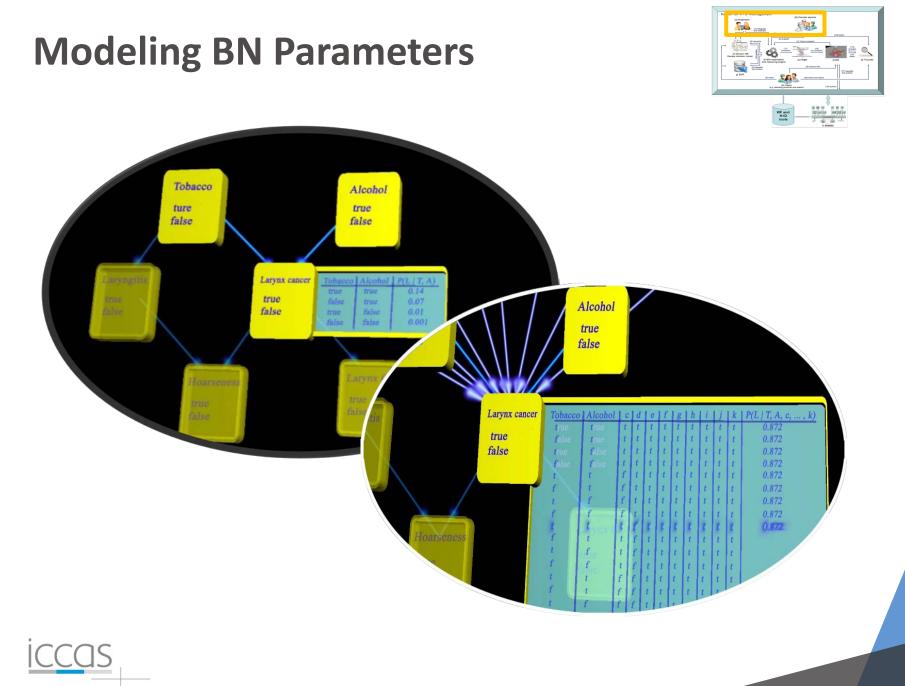
Ready

Expert-Friendly Structure Modeling [Cypko2017c]

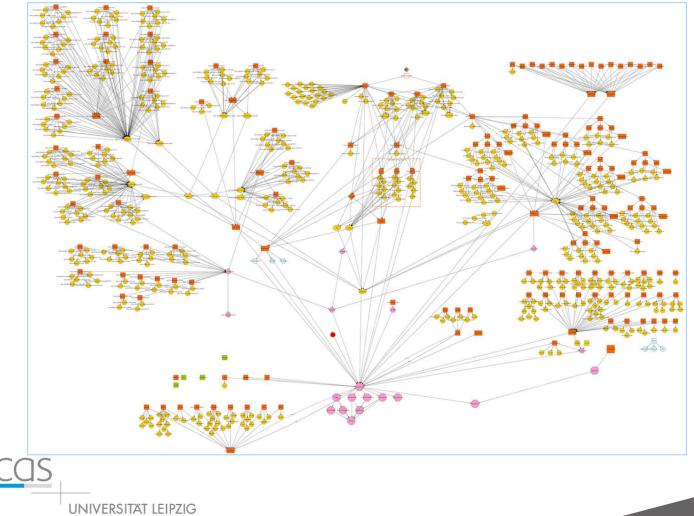
Modelling workflow

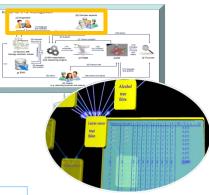
183 C

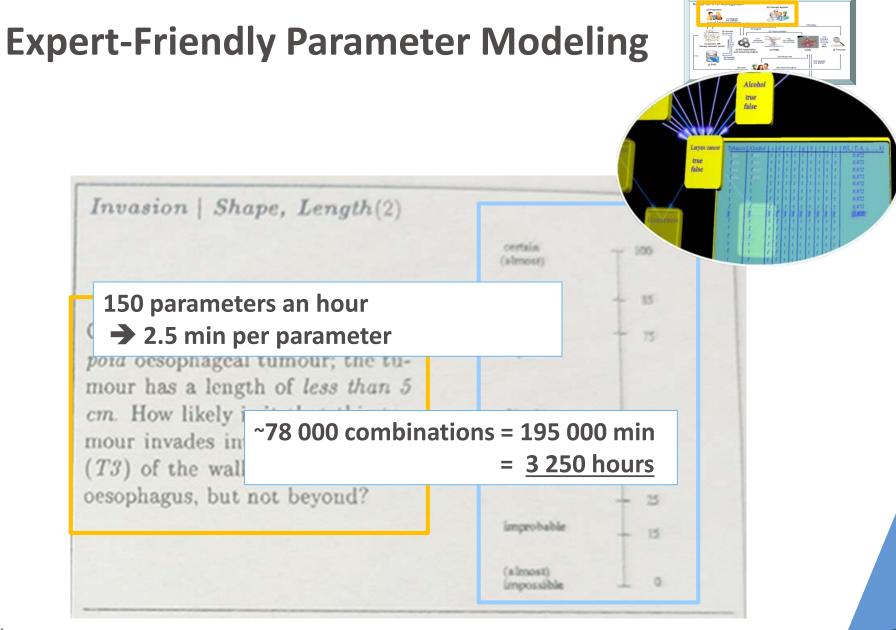
10


Development of a web-based tool for BN graph modeling

Berlin

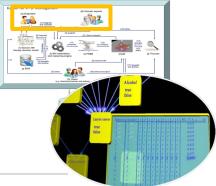

Freie Universität





BN Parameters in Large Networks

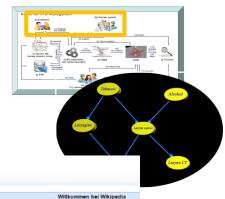
TNM-Staging Model Over 78,000 parameters/probabilities



[van der Gaag2002]

Expert-Friendly Parameter Modeling [Cypko2015]

UNIVERSITÄT LEIPZIG


We das؛ Ursacher	Netzwerk	_aCa_beta_2.xml	
N_state			
M_state			
larynx_T_s			
	- Automatically	generated	
	- Reduced ratin	g time to 10 sec per	narame
		s time to to see per	Parame
	- Web-based		
	10 sec per an	swer	
	-		nin
	-	oinations = 130 000 r	_
	-		_
	-	oinations = 130 000 r	_
	~78 000 comb	Dinations = 130 000 r = <u>over 216</u>	_
	~ 78 000 comb	Dinations = 130 000 r = <u>over 216</u> 3 3 C Besteter	hours

21

Expert-Friendly Parameter Modeling

How to build faster and how to decrease modeler bias?

WIKIPEDIA Die freie Enzyklopädie

Hauptseite Themenportale

Von A bis Z Zufälliger Artikel Mitmachen Artikel verbessen Neuen Artikel Autorenportal LINE

Lette Andeningen Kontakt Spenden Drucken/exportierer Buch erstellen

Druckversion Werkzeuge

> Anderungen an verlinkten Seiten Spezialseiten Permanenter Link Selfeninformationen Wikidata-Datenobiek

in anderen Sprachen 🚯 Alemannisch ترب Boarisch Català

Dansk Dolnosert Ελληνικά English Español

Hauptseite Diskussio

Wikipedia aktuell

Die aktuelle Spendenkampagne ist angelaufen. Gespendet werden kann direkt an den Betreiber, die Wikimedia Foundation &, und an die als gemeinnützig anerkannten Vereine Wikimedia Deutschland &, Wikimedia CH & und Wikimedia Österreich @

Artikel des Tages

Als PDF herunterladen

Links auf diese Seite

Čeština - 1864 - Die Bildhauerin Camille Claudel kommt zur Welt. . 1864 - Die Clifton Suspension Bridge, eine Kettenbrücke über die Avon-Schlucht bei Bristol, wird ihrer

Bestimmung übergeben . 1914 - Im Ersten Weltkrieg wird das deutsche Ostasiengeschwader im deutsch-britischen Seegel den Falklandinseln fast vollständig vernichtet.

angepasst sind. - Zum Artikol.

• 1984 – Mit der Besetzung der Hainburger Au protestieren österreichische Umweltaktivisten gegen die drohende Zerstörung

Verwandten sind die Ameisenbären und Faultiere. Alle drei Gruppen weisen besondere Skelettbildungen an der Wirbelsäule

auf, die sie gemeinsam die Überordnung der Nebengelenktiere (Xenarthra) formen lassen, einer der vier großen Hauptlinien

äußere Panzerbildung. Sie sind zudem weitgehend an eine einzelgängerische Lebensweise angepasst und leben in

unterschiedlichem Maße unterirdisch in Errhauen, wohei sie an diese Lebensweise durch mehrere Skelettmodifikationen

der Höheren Säugetiere. Als einzige bekannte Säugetiergruppe der heutigen Zeit verfügen die Gürteltiere über eine knöcherne

Die Gürteltiere (Dasypodidae) bilden die einzige überlebende Säugetierfamilie der so genannter

Gepanzerten Nebengelenktiere (Cingulata), denen darüber hinaus drei weitere, rezent ausgestorbene

Kontinent und die südöstlichen Teile Nordamerikas verbreitet; der Großteil der Arten konzentriert sich m zentralen Südamerika, fossil sind aber noch zahlreiche weitere Vertreter bekannt. Ihre nächsten

Familien zugeordnet werden. Heute sind die Gürteltiere mit 21 Arten über den südamerikanischen

Wikipedia ist ein Projekt zum Aufbau einer Enzyklopädie aus freien Inhalten, zu dem du mit deinem Wissen beitragen

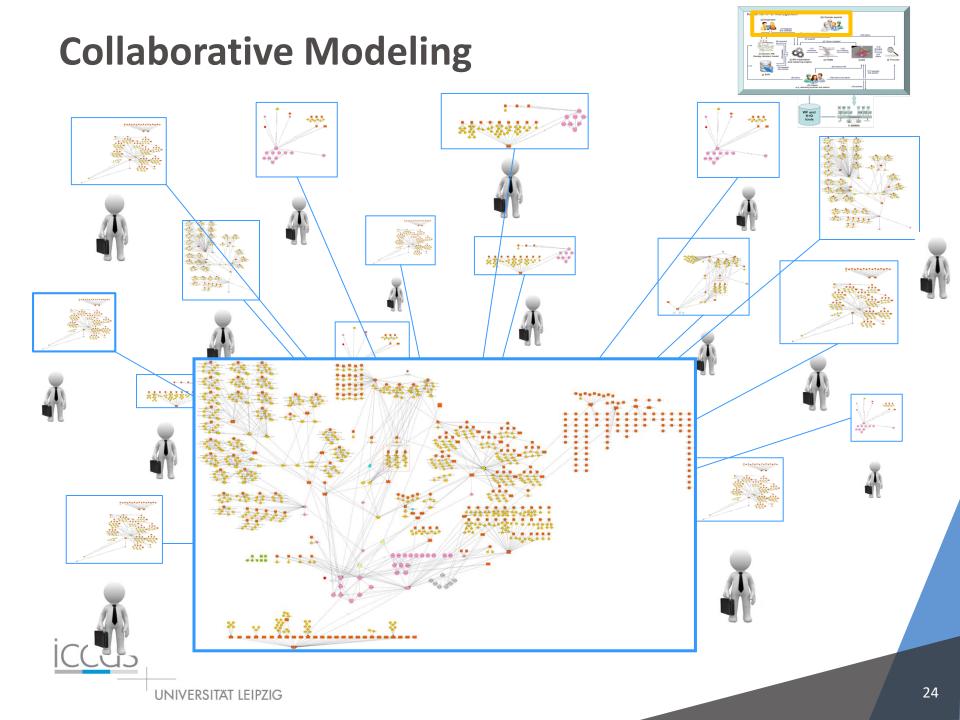
🐨 Geographie 🏽 😹 Geschichte 🍿 Gesellschaft 🖄 Kunst und Kultur 🧐 Rell

Archiv - Weitere exzellente und lesenswerte Artikel - CRSS-Food

Artikel nach Themen · Alphabetischer Index · Artikel nach Katego

Kontakt Presse Statistik Andere Sprachen Mitmachen M

0

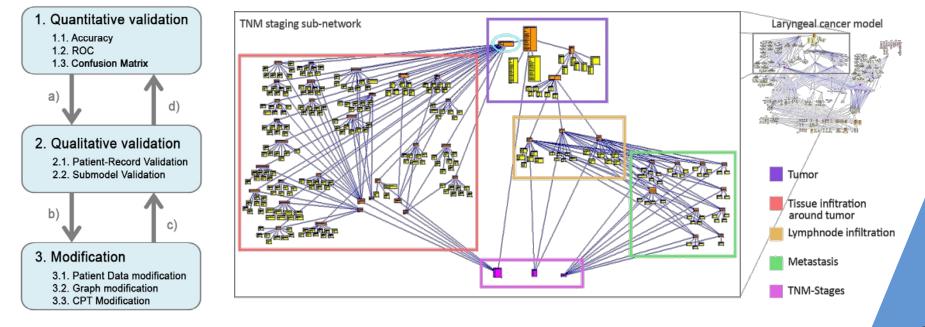

Thüringen de Opposition N des Präsident

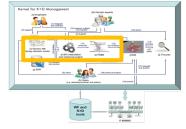
Kürzlich Versto

· Marie Marcks Ursula Voss - Luis Herrera · Menis Kouma · Jürgen Hein

Schon gewusst

 Der iranische in der Ölstad . In ihrem Tag-

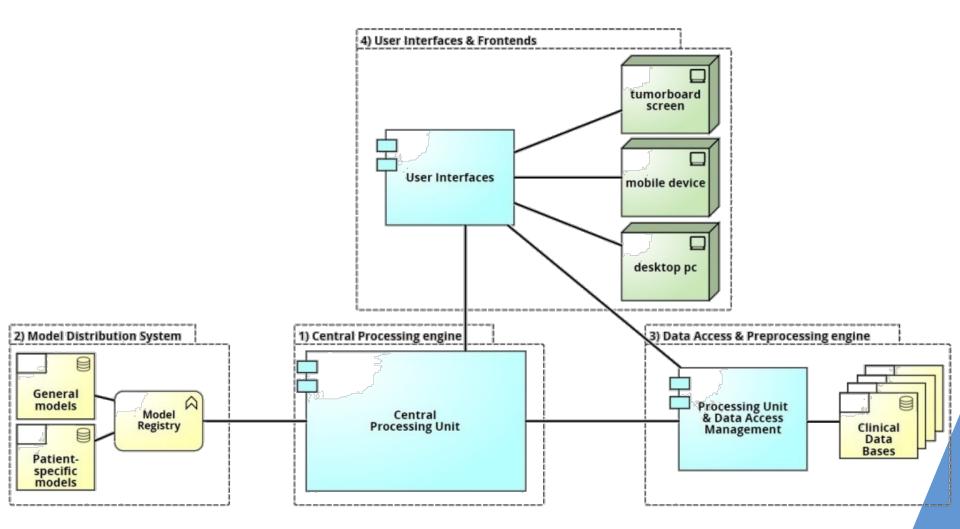

Semi-automatic Model Validation


Example of the TNM staging model

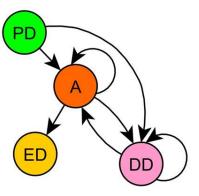
- has sufficient complexity (303 variables and 334 dependencies)
- is relatively well described by clinical guidelines
- has an adequate evidence base

UNIVERSITÄT LEIPZIG

- highly impacts the patient-specific treatment decision



Deployment in the Clinic



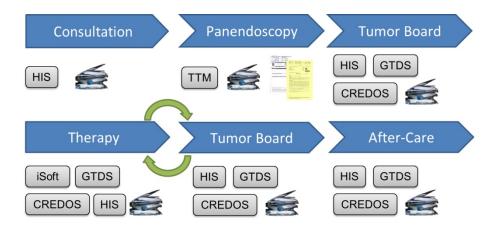
Modular Architecture [Gaebel2018]

Standards

Predefined structure and M&V workflows

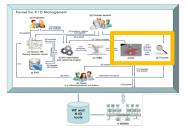
Established file formats and cross sharing

<pre>decomp emisser(http://bit/arg/forc*) seprement(in_sile="style/"very goodswilth_org/competificials") consisted maine="style/"very consisted maine="style/"ver</pre>	Extension with URI to definition
Control control with the "generation of "/ > entrol with the "the provide of a signal Static and the control of the signal of the Static and the control of the signal of the signal signal of the control of the signal signal of the control of the signal	Human Readable Summary
<pre>classical control control</pre>	Sandard Cata: - MMN - Name - Gradar - Gradar - Birth Date - Provider


Established medical knowledge

The global language of healthcare

Oncoflow – Interactive Tumorboard [Meier2014]


rsion: 1.0 Final Rev. 600	Max Musterman			mann, δ , 43	ın, ∂, 43 Jahre			Jens Meie	r (Logout)	Radiatio	0.0 %		
Patienten 💧 Team M	eetings	M. Au	swertung	Studien	Sc Workflows	Konferenzen	🛠 Einstellungen	Administra	tion				
Navigation	Üb	erblick	Diagnostik	Therapi	e Nachsorge							2. Option OP / Resektion	75.0%
* Anamnesen 30.11.12			Erstellt v Änd		Geändert von	Anamnese	Diagnosen	Prozeduren	istologie	C Zurück		3. Option	731070
* Diagnosen 03.12.12 C34.8 02.12.12 C78.1 01.12.12 C77.1 01.12.12 C32.9		Typ Turnorbe		Anmel	Jens Meier dung finalisiert?	Lokalisation Typisierung: Grading: nic UICC-Starlin	11.02.2013 Lokalisation: ICD-O-C-44,3 Typisierung: ICD-O-M807/3 Grading: richt vorgeschen UICC-Stadium: pT1 UICC-Stadium I			Abbrachen E		palliative Chemotherapie	25.0 %
 Panendoskopie 07.12.12 Histologie 11.02.2013 Radiologie Turnorboardanmeldung 28.02.13 		Anamne				Material:				Con Löschen			
		Klobgefühl im Hals, Schluckbeschwerden seit 6 Wochen, Gewichtsbanhme in 6 Wochen 4g; Berufssoldat in albanisch/kosovarischen Armee art, Hypertonie, G-Abusus					Basabzellkardinom medialer Augenwinkel links (rot = medialer Augenwinkel, weiß = 3 Uhr, blau = 6 Uhr). Beurteilung: Hauteszidat mit einem ulzerierten Basalzellkarzinom von 1,5 cm Lange, und					Enthaltung	0.0 W
		Diagnose verbal und ICD 10 0,4 cm Tiefeninfiltration mit Infiltration des Resektions 12 bis 6							andes				8
		C13.8 Hyp C77.0 Sel	popharynx-Ca li sundäre Neubilo	nks Jung Hals		Uhr. Klassifikation Lokalisation	н: ICD-O-C-44.3 ICD-O-M-8097/3		•		- 1		
		Diagnose bisher (in MW verfügbar)											

Structured, Model-Based Data Input [Unger2018]

Patient Data Tool	
Selected reg	ion: Neck
Number of existing patients: 1 currently viewing: 1	Date: 20.04.2017
Examination Details	
СТ	
larynx_infiltration_extrinsic_muscle_tongue_tunctionpatient	· · · ·
larynx_infiltration_extrinsic_muscle_tongue_CT_neckpatient	· -
larynx_infiltration_ACI_ACC_CT_neckpatient	yes 👻 99% - very sure
larynx_infiltration_pre_epiglottic_space_functionpatient	· · ·
larynx_infiltration_pre_epiglottic_space_CT_neckpatient	· · ·
larynx_infiltration_prevertebral_space_functionpatient	yes 🔻 85% - sure
larynx_infiltration_prevertebral_space_CT_neckpatient	· · ·
larynx_infiltration_thyroid_CT_neckpatient	· · ·
larynx_infiltration_thyroid_function_patient	no 🔹 15% - unsure
larynx_infiltration_trachea_CT_neckpatient	· · ·
larynx_infiltration_trachea_functionpatient	· · ·
larvnx infiltration pyriform sinus CT neck patient	· · · ·
Patient-ID: 34300 Jump to next e	examination OK Cancel
< Previous Print	t Next >
Patient ID: 34300 Name:	Date of birth:

User Interface Designs

Tumor board preparation

In the tumor board

Patient-Specific Tumor Board Dashboard [Oeser2018]

			MG M_state_patient	G
	Integrated Head and Ne			

Conclusion and Outlook

- Knowledge-driven modelling approach
- BN-based treatment model for laryngeal cancer
- Expert-friendly modelling approaches
- Partially validated model
- Deployment in the clinic

Outlook:

- Finalization of the model and validation
- Collaborative modelling and update mechanisms
- Deployment in the ENT department

DPM-Group

Prof. Dr. A. Dietz

Dr. M. Stöhr

Thank you!

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Questions?

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Literature

- Cypko, M. A., Stoehr, M., Kozniewski, M., Druzdzel, M. J., Dietz, A., Berliner, L., & Lemke, H. U. (2017a). Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment. International journal of computer assisted radiology and surgery, 12(11), 1959-1970.
- Cypko, M.A., Wojdziak, J., Stoehr, M., Kirchner, B., Preim, B., Dietz, A., Lemke, H. U. & Oeltze-Jafra, S. (2017b). Visual Verification of Cancer Staging for Therapy Decision Support. Computer Graphics Forum, 36(3), 109-120.
- Cypko, M.A., Stoehr, M., Oeltze-Jafra, S., Dietz, A. & Lemke, H. U. (2017c). Guided Expert Modeling of Clinical Bayesian Network Decision Graphs. In Proc. of CURAC, pp. 85-8.
- Cypko, M. A., Hirsch, D., Koch, L., Stoehr, M., Strauss, G., & Denecke, K. (2015). Web-tool to Support Medical Experts in Probabilistic Modelling Using Large Bayesian Networks With an Example of Hinosinusitis. Studies in health technology and informatics, 216, 259-263.
- Druzdzel, M. J. (1999, July). SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: a development environment for graphical decision-theoretic models. In Aaai/Iaai (pp. 902-903)
- Gaebel, J., Schreiber, E., Oeser, A., & Oeltze-Jafra, S. (2018). Modular Architecture for Integrated Model-Based Decision Support. Studies in health technology and informatics, 248, 108-115.
- IBM Watson for Oncology, <u>https://www.ibm.com/us-en/marketplace/ibm-watson-for-oncology</u>
- Meier, J., Boehm, A., Kielhorn, A., Dietz, A., Bohn, S. & Neumuth, T. (2014). Design and evaluation of a multimedia electronic patient record "oncoflow" with clinical workflow assistance for head and neck tumor therapy. Int J Comput Assist Radiol Surg., 9(6), 949-65.
- Oeser, A., Gaebel, J., Dietz, A., Wiegand, S., & Oeltze-Jafra, S. (2018). Information architecture for a patient-specific dashboard in head and neck tumor boards. Int J Comput Assist Radiol Surg., 13(8), 1283-90.
- Stoehr, M., Cypko, M.A., Denecke, K., Lemke, H.U. & Dietz, A. (2014). A model of the decision-making process: therapy of laryngeal cancer. Int J CARS 9(Suppl 1).
- Unger, C., Stoehr, M., Oeltze-Jafra, S. & Cypko, M.A. (2018). A Knowledge-based Data Entry Form for High Quality Clinical Data Collection. Extended abstract. In Computer Assisted Radiology and Surgery Congress, 2018.
- van der Gaag, L. C., Renooij, S., Witteman, C. L. M., Aleman, B. M., & Taal, B. G. (2002). Probabilities for a probabilistic network: a case study in oesophageal cancer. Artificial Intelligence in medicine, 25(2), 123-148.
- Yet, B., Bastani, K., Raharjo, H., Lifvergren, S., Marsh, W., & Bergman, B. (2013). Decision support system for Warfarin therapy management using Bayesian networks. Decision Support Systems, 55(2), 488-498.