Interactive Visual Analysis of Multi-Dimensional Scientific Data

Helwig Hauser (et al.), Dagstuhl, 2011-06-06

Scientific data – one common view

Measured or simulated data of some phenomenon

- Usually in relation to space and/or time
- Useful data model d(x) with
 - domain x (usually 2D or 3D space, time), independent variables
 - range d (measured/simulated values), dependent values (dependent on x)
- Typical examples:
 - CT data $d(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^3$ and $d \in \mathbb{R}$
 - unsteady 2D flow $\mathbf{v}(\mathbf{x},t)$ with $\mathbf{x} \in \mathbb{R}^2$, $t \in \mathbb{R}$, and $\mathbf{v} \in \mathbb{R}^2$
 - flow sim. result $\mathbf{d}(\mathbf{x},t)$ with $\mathbf{x} \in \mathbb{R}^3$, $t \in \mathbb{R}$, and $\mathbf{d} \in \mathbb{R}^n$
 - Dimensionality?

High-dimensional vs. multi-variate data

DOC

CO2 H2O

DPF-

Increased dimensionality of d(x) wrt.

- range d → multi-variate data
- domain $\mathbf{x} \rightarrow$ multi-dimensional data
- Very often in SciVis: neither d nor x is high-dim.! Examples: CT scan, vector field, etc.

Also addressed: multi-variate scientific data

- multi-variate simulation data
 - ex.: simulated Diesel particulate filter, x∈R³×R, d∈R³⁷: range 37-dim. (or so)
 - integrated visualization, IVA w/ L&B, dim.-reduction techniques, etc.

multi-modal measurements, ...

Multi-dimensional scientific data?

Multi-dimensional scientific data

- More independent dimensions (more than space & time)
- One interesting & challenging class: multi-run / ensemble data
 - set of datasets, f.i.,
 - perturbed physics ensemble
 - initial condition ensemble

• data d(s,t,p) w/ $d \in \mathbb{R}^n$ – can be multi-variate, too – dependent on

- space s (2D or 3D)
- time t (or not)
- parameter(s) $\mathbf{p}, \mathbf{p} \in \mathbb{R}^m$
- dealt with in
 - climatology
 - engineering
 - ••••

Interactive visual analysis

Understanding data wrt. range d which distribution temperatur [~570°C – ~1160°C has data attribute d_i ? how do \mathbf{d}_i and \mathbf{d}_i relate to each other? CO, • which \mathbf{d}_k discriminate CO/CO₂ plume due to oxidation data features? Understanding data wrt. domain x (s, t, and p) where (in s) are interesting data features? when (in *t*) do they happen? how are they related to parameters p? early & strong enhancement Investigating multi-run / ensemble data

- Often: visualizing statistics
 - trend (e.g., mean) & variation (std. dev.)
 - data quartiles (e.g., via boxplots)
- Also: comparing aggregates
 - statistics per run (class of runs)
 - overlay of aggregates per run

One goal: sensitivity analysis

Trends vs. outliers wrt. parameter space

- Statistical aggregates across p to analyze
 - trends
 - mean μ , std.-dev. σ , ...
 - quartiles q_1 , q_2 (median), and q_3 , IQR q_3-q_1 , ...
 - octiles $e_i = q(i/8)$, quantiles q(p) with $p \in [0,1]$
 - ...

outliers

- mild outliers: $< q_1 1.5 \cdot IQR$, $> q_3 + 1.5 \cdot IQR$
- strong outliers: $< q_1 3 \cdot IQR$, $> q_3 + 3 \cdot IQR$
- data outside [-2,2] after *z*-standardization: $z=(x_i-\mu)/\sigma$
- ...
- Computing multi-variate (statistics) data (per s×t) from multi-dimensional (raw) data

Visualizing / analyzing lots of statistics

- Through statistical aggregation:
 - multiple statistics per spatiotemporal location
 - from $d(\mathbf{s},t,\mathbf{p})$ to $\mu(\mathbf{s},t)$, $\sigma(\mathbf{s},t)$, etc.

Useful views allow the interactive visual analysis

- quantile-plot q(p) vs. p, here for numerous (s,t)
- detrending (e.g., -q₂), normalization (e.g., z)

Linking ensemble data and aggregates

- Climate sim. data (temp.)
- Independent dimensions:
 - 3* 2D slices (lat.×depth)
 - **500 years**
 - 2 params. (10×10)
- a. All runs along 3rd dimension
- b. Glyphs show temp.-stats.

Relating aggregates and raw data

- a. %outliers vs. upper–lower outliers (≥10%outliers brushed)
- b. linked glyphs locate brushed locations

c. linked raw data vis shows responsible outlier runs

Discussion, conclusions, questions

- Multi-field can be multi-variate or multi-dimensional
- Multi-dimensional scientific data challenging, integrated statistical aggregation can help
- Visualization on at least two (linked) levels
 - aggregates (transforming dims. into variates)
 - original (multi-dim.) data
- IVA reveals trends, but also outliers, helps to understand distributions
- Understanding data features from statistical aggregates is challenging
- Up to now according to an Eulerian perspective Lagrangian, feature-based perspective?
- Other forms of multi-dimensional scientific data?

Acknowledgements

- Johannes Kehrer (), Peter Filzmoser), et al.
- PIK (Potsdam),
 SimVis (Vienna)

- You! :-)
- Brushing Moments in Interactive Visual Analysis by J. Kehrer et al.; CGF 29(3):813–822, 2010
- Interactive Visual Analysis of Heterogeneous Scientific Data across an Interface by J. Kehrer et al.; TVCG 17(7):934–946, 2011