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The real voyage of discovery
consists not in seeking new landscapes, 
but in having new eyes.

Marcel Proust (1871—1927)



Example:  log-log plot

Grand visualization in relation to power laws

[«Body Size and Metabolic Rate» by M. Kleiber, Physiological Reviews, 1947]

Example:  adjecency matrix visualization

Revealing insight into large graphs – here: GeneaQuilts
[«GeneaQuilts: A System for Exploring Large Genealogies» by A. Bezerianos, TVCG, 2010]

(genealogy of Greek Gods)

(character interaction in Les Misérables)



Starting point:  classical SciVis …

Central to visualization: 
– visualization mapping:  

phenomenon of interest into visualization space
– visualization space: 

usually 3D (or 2D) Cartesian space

Typical in SciVis:
– mapping the spatial aspects of the phenomenon of interest

onto the 3 (or 2) axes of the visualization space

[«Two-level Volume Rendering»
by HH et al., TVCG 2001]

[«Visual Analysis and Exploration of Fluid Flow 
in a Cooling Jacket» by R. Laramee et al., Vis 2005]

… vs.:  abstract (sci.) data visualization

InfoSciVis:
– mapping other aspects of the phenomenon of interest

onto the 3 (or 2) axes of the visualization space

[«Outlier-preserving Focus+Context Visualization in 
Parallel Coordinates» by M. Novotný et HH, TVCG 2006]

[«Visual Exploration and Analysis 
of Perfusion Data» by St. Oeltze, 2010]



Or:  semi-abstract visualization

Mapping the spatial aspects to a subset of the vis.-space,
using the other subset to represent other data aspects
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Semi-abstract visualization

Lower-dimensional embedding p(.) of the spatial aspects
– by projection
– by transformation
– by abstraction

Additional space for alternative data aspects, e.g., “b”

data: (x, y, z, a, b, c, …)T

visualization: (x, y, z, r, g, b, …)T



Trade-off

Prize: 
– “lossy” p(.) – data’s spatiality not 100% represented

Potential benefit: 
– comparative visualization of multiple phenomena
– single-picture summary of time-dependent data
• devoting one vis.-space axis to time

– crossing SciVis with InfoVis
• putting a function graph onto a spatial abstraction
• visualizing statistics across a spatial abstraction

Tufte, 1997

“Spatial parallelism 
takes advantage 
of our notable capacity 
to compare and reason 
about multiple images 
that appear simultaneously 
within our eyespan”

[«Visual Explanations: 
Images and Quantities, Evidence 
and Narrative» by E. R. Tufte, 
Graphics Press 1997]



Three recent examples

VisGroup Bergen et al.

Curve-centric volume reformation example

Reforming a data volume
such that a reference curve straightens 

Application context: bore hole data visualization
– lots of data from drilling, incl.
• 3D seismic data
• US borehole images
• drilling process data

[«Curve-Centric Volume Reformation for Comparative Visualization» 
by Ove Daae Lampe et al., TVCG 2009]



Semi-abstract CCVR-based visualization

Radial projection + volume rendering + density graph

Semi-abstract CCVR-based visualization

Seismic VR & seismic reflectance & RadProj & UBI

Seismic
volume 
rendering

Seismic
reflectance

Radial 
projection

Ultrasound
borehole
image



Straightening tubular flow example

Reforming a 3D flow field 
such that a reference curve straightens

[«Straightening Tubular Flow for Side-by-Side Visualization» 
by Paolo Angelelli & HH, TVCG 2011]

Semi-abstract straightened FlowVis

Side-by-side summary of time-dep. aortic blood flow



Semi-abstract straightened FlowVis

Xxx

blood flow velocity graphs

Planar surface reformation example

Reforming time surfaces from 3D to 2D
to enable comparative visualization

[unpublished, 2014]

time surface
in 3D

time surface
in 2D (3*)

flattened time surfaces, 
stacked in 3D

statistical flow vis., 
with ref. to a flattened

time surface in 3D



Conclusions

New mappings can give new insight
– many historic examples exist

New mappings are not immediately intuitive
– some learning curve may be required
– literacy may possibly follow

Scientific data is getting information-rich
– giving more space to all this data may pay off
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