Integrating Spatial & Non-spatial Data in Visualization

Helwig Hauser University of Bergen

HH/Bergen/...

Prof. in visualization @ UiB since 2007

- vis. @ UiB.no/ii: 1 of 6 res. groups in CS
- 2 profs.
 1 res. eng.
 2 profs.
 4 PhD studs.
 2 visiting res.
- 12 PhD students graduated so far

- PhD (in flow vis.) from TU Wien (1998)
- @ VRVis 2000–2007

Spatial Data (or so)

Data with a central relation to space

- spatial measurements
- numerical simulation wrt. space (& time)

- ..

Selected related tasks

- where (in space)is a particular feature?(feature location)
- what data is
 in a particular location?
 (local investigation)

Non-spatial Data (or so)

Other data (a possible relation to space is not central)

- tabular data (spreadsheets, ...)
- time series data
- ...

HITTI	BILITI	allini il	HITTH	SITTING	June	July
-						

1	2	3	4	5	6	7	8
OBS.	TOWN	TOWN#	LON	LAT	MEDV	RAD	CRIM
1	Nahant	0	-70.955	42.255	24	1	0.00632
2	Swampsco	1	-70.95	42.2875	21.6	2	0.02731
3	Swampsco	1	-70.936	42.283	34.7	2	0.02729
4	Marblehe	2	-70.928	42.293	33.4	3	0.03237
5	Marblehe	2	-70.922	42.298	36.2	3	0.06905
6	Marblehe	2	-70.9165	42.304	28.7	3	0.02985
7	Salem	3	-70.936	42.297	22.9	5	0.08829
8	Salem	3	-70.9375	42.31	27.1	5	0.14455
9	Salem	3	-70.933	42.312	16.5	5	0.21124
10	Salem	3	-70.929	42.316	18.9	5	0.17004
11	Salem	3	-70.935	42.316	15	5	0.22489
12	Salem	3	-70.944	42.317	18.9	5	0.11747
13	Salem	3	-70.951	42.306	21.7	5	0.09378
14	Lynn	4	-70.9645	42.292	20.4	4	0.62976
15	Lynn	4	-70.972	42.287	18.2	4	0.63796
16	Lynn	4	-70.9765	42.294	19.9	4	0.62739
17	Lynn	4	-70.987	42.2985	23.1	4	1.05393
18	Lynn	4	-70.978	42.285	17.5	4	0.7842
19	Lynn	4	-70.9925	42.2825	20.2	4	0.80271
20	Lynn	4	-70.988	42.2776	18.2	4	0.7258
21	Lynn	4	-70,9835	42.277	13.6	4	1.25179

Selected related tasks

- is the set of data items structured? (clusters? outliers? ...)
- what's the intrinsic dimensionality of the data? (lower-dimensional embedding? representative factors?)

Visualization (or so)

to: Chi E.H. A taxonomy of visualization techniques using the data state reference model. In Proc. IEEE Symp. on Information Visualization, 2000, pp. 69–75.

dos Santos S. and Brodlie K. Gaining understanding of multivariate and multidimensional data through visualization. Computer & Graphics, 28(3):311–325, 2004.

Visualization mapping critical

- mapping from data space into visualization space
- visualization: $rgb\alpha(nD)$ with n = 3 or 2 or geometry in nD ...

rgb: FTLE

Traditional Spatial Data Visualization

NU BRY ANS

 $\textbf{Ref.-space} \rightarrow \textbf{vis.-space}$

"SciVis"? or "FooVis"?

In 3D

 3D (or 2D) visualization, for ex., by volume rendering, etc.

In 2D

 2D (or 3D) visualization, for ex., in geospatial data visualization

Usual Non-spatial Data Visualization

Variables \rightarrow vis.-space

"InfoVis"?

Item-based

a visual element per data item,
 e.g., via a scatterplot

Frequency-based

 rgb represent a density estimate, for ex., via a KDE plot

Data vs. Visualization Approach

Data	"SciVis" [?]	"InfoVis" [?]
Spatial Data		?
Non- Spatial Data	Reina, Ertl (2004) Statistical Discovery From SAS.	

Non-spatial Spatial Data Visualization

Variables \rightarrow vis.-space "InfoSciVis"? flow visualization: $\int \frac{Var(nD)}{Vgb(2D)}$ medical visualization: $\int \frac{Var(nD)}{Vgb(2D)}$

Spatial vs. Non-spatial, SciVis vs. InfoVis?

Spatial data:spatiality centralNon-spatial data:spatiality not central

- numerical simulation data: many attributes per location
- sparse spatial sampling, for ex., weather stations

SciVis vs. InfoVis: more two communities ...

 lots of **InfoSciVis at VAST**, for ex.

Two Selected Challenges

From one to many

- spatial data from entire cohort studies
- exploiting ensemble simulation data

Ma et al.

Dynamic spatial data

- in one image
- very long sequences

Preim et al.

Visualizing Many Spatial Datasets

Mapping trade-off:

- how to use the visualization space?
 - show statistics per location
 - juxtaposition

abstract spatiality completely

- how much vis.-space
 - for the spatial aspects?
 - for the non-spatial aspects?

VRVis

Visualizing Many Spatial Datasets

Semi-abstract Spatial Data Visualization

Mapping the spatial aspects to a subset of the vis.-space, using the other subset to represent other data aspects

Partial Spatial Abstraction

Lower-dimensional embedding p(.) of the spatial aspects

- by projection
- by transformation
- by abstraction

Additional space for alternative data aspects, e.g., "b"

Mapping Compression Trade	e-off	NVERST PS		
Prize:	data:	(x, y, z, a, b, c,) ^T		
 – "lossy" p(.) – data's spatiality not 100% represented 	visualizat	ion: $(x, y, z, r, g, b,)^{T}$		

Potential benefit:

- comparative visualization of multiple phenomena
- single-picture summary of time-dependent data
 - devoting one vis.-space axis to time
- crossing SciVis with InfoVis
 - putting a function graph onto a spatial abstraction
 - visualizing statistics across a spatial abstraction

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

Marcel Proust (1871-1927)

Example: log-log plot

[«Body Size and Metabolic Rate» by M. Kleiber, Physiological Reviews, 1947]

Example: adjecency matrix visualization

Revealing insight into large graphs – here: GeneaQuilts

[«GeneaQuilts: A System for Exploring Large Genealogies» by A. Bezerianos, TVCG, 2010]

Three recent examples

VisGroup Bergen et al.

Straightening tubular flow example

Reforming a 3D flow field such that a reference curve straightens

Side-by-side visualization of tubular flow

[«Straightening Tubular Flow for Side-by-Side Visualization» by Paolo Angelelli & HH, TVCG 2011]

Side-by-side summary of time-dep. aortic blood flow

Semi-abstract straightened FlowVis

blood flow velocity graphs

Curve-centric volume reformation example

Reforming a data volume such that a reference curve straightens

Application context: bore hole data visualization

- lots of data from drilling, incl.
 - 3D seismic data
 - US borehole images
 - drilling process data

[«Curve-Centric Volume Reformation for Comparative Visualization» by Ove Daae Lampe *et al.*, TVCG 2009]

Curve-centric volume reformation example

[«Curve-Centric Volume Reformation for Comparative Visualization» by Ove Daae Lampe *et al.*, TVCG 2009]

Semi-abstract CCVR-based visualization

Semi-abstract CCVR-based visualization

Seismic VR & seismic reflectance & RadProj & UBI

Planar surface reformation example

Reforming time surfaces from 3D to 2D to enable comparative visualization

time surface in 3D

time surface in 2D (3*)

flattened time surfaces, stacked in 3D

statistical flow vis., with ref. to a flattened time surface in 3D

«Comparative Flow Visualization via Multiple Time Surfaces using a Planar Surface Reformation» by Andrea Brambilla *et al.*, about to be rejected 2014]

Semi-abstract unsteady FlowVis

Semi-abstract unsteady FlowVis

Time-dependent flow through an exhaust manifold

statistical visualization of strain along trajectories over time over last time surface

Modeling this Trade-off & Optimization

THE REPAIR

What's the optimal trade-off?

- what means optimal?

Model

- can we characterize/measure the relevance of spatiality?
- what to automize?

Optimzation

 semi-automatic optimization of a comparative visualization design

Choices

ensemble

Model

User, phenomenon, characteristics

- objects of interest; an ensemble
- (spatial) aspects of interest

vs. representation, measurements

- set of characteristics open parameters epresentation I phenomenon P СН parameters comparisso C٧ optimized Abstraction parameters Composition Final Visualization
- data (model) representation to work with, e.g., through imaging, num. sim., ...
- measures (representing relevant characteristics), computed from the data (mode)

Imaginary context:

ivy-loving grandmothers

focus: natural look

focus: branch lengthes,

Polymerization Example

Context:

- ensembles of possible polymers

New mappings can give new insight

– still interesting in visualization research! :–)

Scientific data is getting increasingly information-rich

- giving space to this additional data can pay off

How to combine spatial and non-spatial data vis. beyond

- juxtaposition and superposition
- explicit difference visualization

Acknowledgements

You!

Collaborators: Ove Daae Lampe, Paolo Angelelli, Andrea Brambilla, Ivan Kolesar, et al.