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Abstract
Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing
and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets
is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of
state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories
according to the visual representations they use and the tasks they support. We compare the categories to provide guidance
for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further
research and propose possible directions to address these challenges. Further resources on set visualization are available at
http://www.setviz.net.
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1. Introduction

A common step in data analysis is to group data items into sets
based on specific properties. For instance, Figure 1(a) shows how
members of a social network are grouped according to their in-
terests. Figure 1(b) shows how chemicals (dots) are contained
in blood samples of different whales. Several relations between
sets are possible, such as: containment, exclusion and intersection.
Analysing these relations is key to gain information about the be-
haviour of the entities they represent. Such information might in-
volve which set combinations are common (Figure 1c), and whether
certain data features are responsible for this. As illustrated in Sec-
tion 2.5, a variety of real-world concepts can be modelled using sets,
including: club memberships, product features and employee skill
sets. Example questions about such data are: whether certain clubs
are exclusive to each other, whether a certain product feature is al-
ways present in combination with another one and whether specific
skill combinations are highly paid.

Information visualization (InfoVis) offers many opportunities for
analysing sets and their relations. A key challenge in visualizing sets
is the potentially large number of possible relations between them
(Section 2.4). Besides Venn and Euler diagrams, several InfoVis
techniques were proposed to visualize sets using various represen-
tations. These techniques vary in their scalability limits and in the
set-related tasks they support. We survey state-of-the-art techniques
for visualizing sets.1 After discussing several characteristics of set-
typed data (Section 2) and tasks related to them (Section 3), we
provide an overview and a categorization of these techniques (Sec-
tion 4) based on the visual metaphors they use. In addition, we com-
pare these techniques by their advantages and limitations, and by the
tasks they support (Section 5). Finally, we identify challenges that
require future research, along with possible opportunities to tackle
them (Section 6).

1This paper extends a recent report on set visualization [AMA*14].

c© 2015 The Authors
Computer Graphics Forum c© 2015 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

234



B. Alsallakh et al. / The State-of-the-Art of Set Visualization 235

Figure 1: Different set visualizations: (a) a combined Euler and node-link diagram [SAA09], (b) OnSet [SMDS14], (c) UpSet [LGS*14].

2. Sets and Set-Typed Data

Sets have been traditionally studied by mathematicians and logi-
cians as a foundational concept. A set is defined as a collection of
unique objects, called the set elements. A key characteristic of this
collection is that it does not impose an ordering of the elements. A
family of sets, also called a set system, is a collection of subsets of a
given set of elements. Such sets potentially overlap, making several
relations between the sets possible such as containment, exclusion
and intersection. Cantor formalized set theory [Can95] in the 19th
century. This theory is concerned with various concepts related to
sets, such as set algebra and set operations.

In data analysis, sets have been mainly treated as a collection of
data points, such as a subset of rows in a data table. Such subsets
are usually used to define training and validation sets, or to store
the results of search and clustering algorithms. In addition, set-
theoretic operations such as intersection, union, difference, comple-
ment, Cartesian product and the power set are extensively used in
relational databases to query elements and join multiple data tables.

Despite the ubiquitous usage of sets in data analysis, sets have not
commonly been treated as their own data type in InfoVis literature,
unlike graphs and hierarchies. Set memberships are rather often
abstracted and treated as separate Boolean attributes, as noted by
Freiler et al. [FMH08]. Treating set families as an elementary data
type contributes to a better understanding of their characteristics
and the challenges associated with visualizing them. We refer to
data that involve element-set memberships as set-typed data or set-
based data. The data can also encompass additional attributes of the
elements or the sets. In the following, we give examples of how set-
typed data are represented and what special cases, specific features,
similarity measures and tasks are associated with them.

2.1. Data representation

There are several ways to represent a set family on the data level,
depending on the information available. One way is to explicitly rep-
resent the relations between the sets in the family. The data store the
absolute or relative size of the intersection of these sets (Figure 2a).
This representation is suited when no information about individ-
ual set elements is available. For example, when the sets represent
events, relative sizes can be used to describe joint probabilities for
these events.

When the number of elements in the set family is finite and their
set memberships are available, three data structures for graphs can
be used to represent these memberships. A multi-valued attribute
can specify the sets to which each element belongs (Figure 2b), re-
sembling adjacency lists. Alternatively, a table of element-set mem-
berships can be used (Figure 2c), resembling an edge list. Boolean
attributes representing the sets can also be used to specify which el-
ements belong to them (Figure 2d), resembling an adjacency matrix.
These representations illustrate a duality between the elements and
the sets: by transposing the matrix, each set S can be treated as an
element that belongs to the dual sets corresponding to the elements
of S. Similarly, instead of representing set memberships for each
element, adjacency lists can represent sets by extension, i.e. as lists
of their elements.

Besides set membership, further attributes of the data elements
might need to be involved in the analysis. For example, besides
membership of different clubs (sets), information about club mem-
bers (elements) might encompass their age and sex. Furthermore,
attributes can be associated with the set memberships themselves,
such as membership date for club members. Certain techniques
support visualizing such set-dependent attributes (Section 5.1).

2.2. Scope and special cases

In general, the sets in a set family overlap, i.e. they have one or
more intersection relations. When all sets are in an exclusion re-
lation, they exhibit no overlap and define groupings over the re-
spective elements. If such sets cover all the elements, they define
a partitioning of the elements into classes. In such cases, the set
memberships can be represented by one categorical attribute that
stores these classes. When the sets exhibit both exclusion and in-
clusion relations, but no intersections, they define a hierarchy over
their elements. We limit our survey to techniques for visualizing
overlapping sets. While many of these techniques can also be ap-
plied to hierarchies, dedicated techniques [Sch11] are better suited
for visualizing strict hierarchies.

A family of sets defined over a finite number of elements is
equivalent to a hypergraph whose hyperedges represent the sets. A
hypergraph is usually drawn either in subset standard (Section 4.2.1)
or in edge standard (Section 4.3) [Mäk90].

In some cases, there are constraints on possible intersection rela-
tions between the sets. One example is when an element can belong
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Figure 2: Various forms of set-typed data: (a) the cardinality of set relations, (b) a multi-valued attribute (in grey), (c) a membership list, (d)
Boolean attributes (in grey).

to a maximum of k < m sets from a family of m sets. Another
example is when a set can intersect with k other sets at most. It
is important to identify and exploit such special cases, as they can
simplify the visualization.

2.3. Similarity measures

Many tasks related to set-typed data are concerned with finding
which pairs of sets S1 and S2 exhibit higher similarity than other
pairs, with regard to the number of shared elements between them
|S1 ∩ S2|. Several similarity measures between finite sets have been
proposed in the literature. A symmetric measure was proposed by
Jaccard [HHH*89]:

Jaccard(S1, S2) = |S1 ∩ S2|/|S1 ∪ S2|.
It has been employed in set visualization both explicitly to reveal
set similarity as in Radial Sets (Figure 16) and implicitly for matrix
reordering (Section 4.4). Tversky [Tve77] proposed a generalized
index for set similarity that can replicate other measures by using
different parameterizations.

Tversky(S1, S2) = |S1 ∩ S2|
|S1 ∩ S2| + α · |S1 \ S2| + β · |S2 \ S1| .

Using different values for α and β, many similarity measures
can be replicated such as Dice’s [Dic45] and Tanimoto’s [Tan58]
coefficients. It is also possible to weigh shared elements differently
when computing the similarity. For example, elements in S1 ∩ S2

that only belong to S1 and S2 can be weighed higher than ones that
are also members of other sets. Also, set-exclusive elements can
be excluded when computing the denominator, especially in sparse

families of sets that exhibit little overlap. An important issue with
similarity measures is their sensitivity to the respective set sizes.
Larger sets have higher probability of overlap, causing a bias in the
above-mentioned measures. Applying the χ 2 statistic can eliminate
such bias [AAMH13].

The choice of an appropriate similarity measure depends on the
data and the information to be communicated by the visualization.
Depending on whether the chosen measure is symmetric or not, and
on the value range it takes (e.g. [0, 1] or [−1, 1]), different visual
variables are appropriate for encoding set similarity, such as size
[KSB*09], colour [AAMH13], position [LLS05] or order [KLS07].

2.4. Combinatorics of sets

In order to choose an effective visualization of set-typed data, it is
important to understand the combinatorics of sets. The exponential
growth of relevant pieces of information about the data imposes
severe limits on visualization techniques (Section 5). In the follow-
ing, we illustrate aspects of set combinatorics that are relevant for
visualization.

Given a family of n sets F = {S1 ⊆ E, ..., Sn ⊆ E} defined over
m elements E = {e1, ..., em}, the set membership degree of an ele-
ment e ∈ E can be defined as follows:

degree(e) = |S ∈ F : e ∈ S|. (1)

This degree denotes the number of sets in the family the element
belongs to. It corresponds to set cardinality in the dual representation
of sets and elements. A related concept is the exclusive membership
of certain sets or set intersections. For example, elements of degree
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1 in a specific set belong exclusively to this set. Also, elements of
degree 2 in an intersection between two sets belong exclusively to
these two sets. Many analysis tasks (Section 3) and visualization
designs (Section 4) are concerned with the element degrees and
with exclusive membership.

An element of degree k can belong to one of
(
n

k

)
possible combi-

nations of k sets taken from F . We assume that elements EC ⊆ E

in a combination of k sets C = {Si1 , ..., Sik } ⊆ F are all of degree
k, and hence do not belong to other sets in F . Therefore, assuming
{Si(k+1) , ..., Sin} = F \ C, the elements EC in combination C are:

EC = (Si1 ∩ ... ∩ Sik ) ∩ (S̄i(k+1) ∩ ... ∩ S̄in ), (2)

where S̄ = E \ S. These elements correspond to identical rows
in the matrix representation of the set family, that all have 1 for
Si1 , ..., Sik and 0 for Sj1 , ..., Sj(n−k) . Hence, set combinations of all
degrees define equivalence classes over the elements, as it is not pos-
sible to separate between elements in the same combination given
the set information only.

The number of non-empty set combinations of all degrees in a
family of sets is equal to the number of possible subsets of the set
family:

|P (F )| = |{X : X ⊆ F }| = 2n, (3)

where P (F ) is the power set of F .

This is equal to the number of all possible distinct rows in the
matrix representation of the set family, as each of the n bins in the
row can be either 0 or 1. This number is also equal to the number
of regions in a Venn diagram (Section 4.1), including the comple-
mentary region that surrounds all curves. Figure 14(f) illustrates
all possible 16 combinations of all degrees between four sets. The
number of combinations can be very large, even when the number
of sets is in the order of tens. In practice, the majority of combi-
nations are empty. Also, the number of non-empty combinations is
always ≤ m (the number of elements), as each element can belong
to exactly one combination. Nevertheless, the number of non-empty
combinations can still be overwhelming.

Since set combinations of all degrees correspond to equivalence
classes over the elements, they comprise the smallest units that can
be used to build set-based queries, as illustrated in Figure 14(f). A
set-based query returns certain elements based on their set mem-
berships, by defining which of these units should be included in
the result. The result comprises the union of all corresponding set
combinations. This corresponds to a disjunction of conjunctions,
as each set combinations defines a conjunction of the sets (Sec-
tion 2). As each unit can either be selected for inclusion in the
query result or not, the number of all possible set-based queries is
equal to

|P (P (F ))| = 2|P (F )| = 2|2n|, (4)

where |P (F )| is the number of set combinations of all degrees
(Equation 3). The number of all possible set-based queries can be
very large even with a very small number of sets. For example, with
n = 4 sets, the number is equal to 65 536.

Besides set-based queries, other queries are possible over the
elements E, such as queries based on additional element attributes
not related to their set memberships. The number of unique result
sets over m elements is equal to

|P (E)| = 2m,

where P (E) is the power set of the set of all elements E. Usually,
only a fraction of these query results can be captured using set-based
queries.

It is important to take the large number of possible combinations
into consideration when designing set visualizations. As explained
throughout the survey (Section 4), some of the existing techniques
aim to represent all of these combinations, while other techniques
depict only aggregated information about set overlaps. Interaction
plays a major role in reducing visual complexity, by enabling the
exploration of certain details on demand. It is also important to find
out if a given analysis problem restricts possible element-set mem-
berships and set relations. Such constraints often limit the number of
possible set combinations, allowing for simpler and more scalable
visualizations for the given problem.

Similarly, it is challenging to design a search interface that sup-
ports all possible set-based queries.

Interactive visual feedback plays an important role in supporting
the user with defining and refining set-based queries.

2.5. Modelling problems using sets—examples

The notion of sets, set relations and set operations is easy to under-
stand, yet powerful, making set-typed data applicable to a variety of
data analysis problems. The following list gives examples of how
sets can be used to model problems from various domains.

• Tags and multi-label classifications: labelling a collection
of items with tags is equal to defining multiple sets over
these items. This applies to many classification problems,
where an item can be classified into multiple classes at the
same time.

• Subscriptions: many news and service providers allow
users to receive new items and updates by subscribing to
multiple areas of interests (AOIs) (often by selecting check-
boxes). Each area of interest defines a set over the users who
subscribe to it.

• Voting: in many voting scenarios, a voter can select one
more candidates for a specific election. Each candidate de-
fines a set over the voters who selected him/her.

• Surveys: some multiple-choice survey questions can be an-
swered by selecting multiple answers (e.g. countries visited
in the past). Each answer defines a set over the survey sub-
jects who select this answer.

• Probabilistic events: sets are often used to reason about
probabilities [Che11]. Each probabilistic event can be mod-
elled as a subset of the sets of all possible outcomes.

• Fuzzy clustering: a cluster can be modelled as a set over
the data points. In fuzzy clustering, one point can belong to
multiple clusters, which results in set overlaps.

c© 2015 The Authors
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• Query results: items satisfying a query can be modelled as
a set over all data items. It is possible to compare multiple
query results by analysing the corresponding set relations.

• Meta search: performing the same query using different
search engines results in multiple result sets. Meta search
combines these results using set union, and allows exploring
which elements were retrieved by which engines [Spo04].

• Faceted search: this search paradigm allows defining
queries over data items based on a number of search facets
[Tun09]. Each facet can be modelled as a set of the data
item that satisfy its criterion [BKP12, AMR14, GLSS11].

• Formal Concept Analysis (FCA) [GWW99] makes use
of concepts and their relations to reason about problems.
These relations are analogous to set relations, when treating
concepts as sets [BKP12].

• Genomics: to analyse how genes belong to individuals,
each individual can be modelled as a set that contains spe-
cific genes. Several other genomics problems can be mod-
elled using sets [LG14].

After modelling a data analysis problem using sets, it is important
to think about tasks that need to be performed with these sets.
Examples for this are given in the next section.

3. Common Tasks with Set-Typed Data

When designing a visualization of set-typed data, it is important to
determine which tasks it needs to support. Here, we list general tasks
addressed by the surveyed techniques, classified into the following
categories.

3.1. Tasks related to elements

These tasks are concerned with the membership of the elements in
the sets:

(A1) Find/Select elements that belong to a specific set.
(A2) Find sets containing a specific element.
(A3) Find/Select elements based on their set memberships: e.g.

elements in A and in B but not in C.
(A4) Find/Select elements in a set with a specific set member-

ship degree: e.g. elements exclusive to the set or that also
belong to two other sets.

(A5) Filter out elements based on their set memberships.
(A6) Filter out elements based on their set membership degrees:

e.g. filtering out elements exclusive to their sets, to focus
on shared elements.

(A7) Create a new set that contains certain elements.

3.2. Tasks related to sets and set relations

These tasks are concerned with higher level reasoning about the
sets without taking individual elements into account. Example tasks
applied to sets A, B and C include:

(B1) Find out the number of sets in the set family.
(B2) Analyse inclusion relations: e.g. find out if a set A is fully

included in B, or in B ∩ C, or in B ∪ C.

(B3) Analyse inclusion hierarchies: e.g. find out if A is included
in B, and B in turn is included in C (and so on).

(B4) Analyse exclusion relations: e.g. find out if A does not
intersect B, or B ∩ C, or B ∪ C.

(B5) Analyse intersection relations: e.g. find out if a certain pair
of sets overlap, or if a certain group of sets overlap (i.e.
have a non-empty intersection).

(B6) Identify intersections between k sets.
(B7) Identify the sets that constitute a certain intersection.
(B8) Identify set intersections contained in a specific set.
(B9) Identify the set with the largest/smallest number of pair-

wise set intersections.
(B10) Analyse and compare set- and intersection cardinalities:

e.g. estimate |A| or |A ∩ B|, compare |A| with |B|, or
|B ∩ C|, or |B ∪ C| and identify the set or set intersection
with the largest or smallest cardinality.

(B11) Analyse and compare set similarities: e.g. find out which
pairs of sets exhibit high or low similarity according to
some similarity measure.

(B12) Analyse and compare set exclusiveness: e.g. find out if
A contains more exclusive elements than B, or more ele-
ments shared with 1, 2 or 3 other sets.

(B13) Highlight specific sets, subsets or set relations: e.g. to
emphasize them, and deemphasize the remaining data.

(B14) Create a new set using set-theoretic operations: e.g. create
the complement of A, or A \ B as a new set to compare
with other sets.

3.3. Tasks related to element attributes

Set-typed data can encompass additional attributes of the elements.
The following tasks are concerned with how the element member-
ships and attributes are interrelated:

(C1) Find out the attribute values of a certain element.
(C2) Find out the distribution of an attribute in a certain set or

subset: this aims to understand how the attribute correlates
with element membership of this set. Sometimes, the two
attributes have a spatial reference and the elements are
positioned accordingly as in maps or scatter plots (Sec-
tion 4.2). In this case, the task supports estimating the
spatial distribution of a set [DvKSW12].

(C3) Compare the attribute values between two sets or subsets:
e.g. the attribute distributions in two sets can be compared
against each other. Alternatively, summary values can be
compared such as the mean, the median or the dominant
category.

(C4) Analyse the set memberships for elements having certain
attribute values: e.g. find out if these elements appear more
frequently or less often in certain sets/subsets.

(C5) Create a new set out of elements that have certain attribute
values: this set represents a query on the elements based on
their attributes. Shneiderman emphasized the importance
of supporting such queries in his task taxonomy [Shn96]
and the role of set-theoretic operations to combine multiple
constraints on the attribute values.

In the next section, we survey state-of-the-art techniques that
address the generic tasks listed above. A number of other tasks are
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Figure 3: (a) A well-matched Euler diagram that is not well-formed
[RZF08], and (b) a not well-matched Euler diagram with shading
that is well-formed [SFRH12].

also concerned with set-typed data such as hierarchical clustering
of the sets or the elements, comparing multiple instances of a set
family, and analysing changes in the data over time. Such tasks
are often application-specific and require dedicated techniques, and
hence are not addressed explicitly in this survey.

4. A Survey of Set Visualization Techniques

This following section extends on our previous survey of set vi-
sualizations [AMA*14]. We classify set visualization techniques
into six categories listed in Sections 4.1–4.6 according to the main
visual representation they use for depicting set relations. The tech-
niques in each category exhibit similar scalability and readability
properties as well as design considerations. Also, certain tasks are
better supported by a certain category of techniques as we dis-
cuss in Section 5. The following subsections list the six visual
categories and describe the techniques in each of them. Certain tech-
niques, however, might belong to multiple categories as explained
in Section 5 and in Table 3. Available software implementations,
demos and videos about the surveyed techniques are available at
http://www.setviz.net.

4.1. Euler and Venn diagrams

Euler and Venn diagrams are among the oldest [Bar69] and most
popular set visualizations. Sets are represented by labelled closed
curves and set relations by the curve overlaps. Euler diagrams can
depict any set inclusion, exclusion and intersection, but a Venn
diagram must show all possible curve overlaps. The closed curves
clearly indicate set membership [War12], as the perceptual tendency
to organize space into regions is much stronger when indicated by
closed curves than by proximity or similarity [Pal92]. Set relations
are also easily visible, as the closed curves pop out preattentively,
particularly when smooth [TS85, Kof35].

An Euler diagram is well-matched to what it represents when
the spatial relationships of the curves precisely reflect the set re-
lations [Gur99]. An Euler diagram should ideally be well-formed
[RZP12], such that it has: (i) simple curves that meet at most at
one point where they cross; (ii) every set is represented by at
most one curve; (iii) every set relation is represented by at most
one region. It is not always possible for a diagram to be well-
matched and well-formed [SH14] (e.g. Figure 3), but a study indi-
cates that well-matchedness is more important than well-formedness
[CSR*14].

Euler diagrams with non-smooth curves or curves close to one
another impede understanding [BR07]. Those drawn with circles
are the most effective, followed by those with highly symmetric
curves and regions whose shape is highly distinguishable from the
curves [BSR*14]. The orientation of the diagrams does not impact
understanding [BSR*12].

As shown in Table 1 and the next sections, various techniques have
been devised to generate Euler diagrams with different properties
and for different data types (see also, surveys on Venn [RW97] and
Euler [Rod14] diagrams).

4.1.1. Techniques for any or for specific set relations

Techniques that draw well-matched diagrams for any set relation
(e.g. [SRHZ11, SAA09, RZF08]) often produce not well-formed
diagrams with non-smooth curves (e.g. Figure 3a). The smoothness,
shape and closeness of the curves of the diagrams can be improved
by other methods (e.g. [MR14c, FRM03]), but not well-formed
diagrams are likely to remain not well-formed. Multiple curves for
the same set can be used to draw well-matched Euler diagrams (e.g.
[SFRH12]).

Techniques that draw well-formed Euler diagrams for any set rela-
tions often produce diagrams with smooth, highly symmetric curves,
like circles. However, the diagrams might be not well-matched,
and the unwanted regions are shaded (e.g. [SFRH12, Ven80];
Figure 3b) or left empty while other regions are filled with glyphs
(e.g. [MDF12, Cla08]; Figure 5). Nonetheless, shading is less ef-
fective than well-matchedness with respect to human accuracy and
time [CSR*14].

Other techniques generate an Euler diagram only for set relations
for which a well-matched, well-formed diagram can be drawn (e.g.
[SZHR11, FH02]).

4.1.2. Techniques for area-proportional diagrams

Euler diagrams can be area-proportional, such that the area of each
region in the diagram is directly proportional to the cardinality
of the relevant set relation. Techniques that draw these diagrams
often use circles (e.g. [LM13, Wil12, CR05a]) to facilitate compre-
hension, but circles have limited degrees of freedom. An accurate
area-proportional Venn diagram can be drawn with circles for only
two-set data [Cho07]. Thus, misleading diagrams are often produced
with circles; e.g. in Figure 4(a), the region with 1 is larger than that
with 3.

Techniques using rectilinear [CR03], convex [RFSH10] or irreg-
ular [CR05b] polygons produce accurate diagrams for most data.
However, these diagrams are often difficult to comprehend, as they
are not well-formed and have non-smooth, non-symmetric curves
(e.g. Figure 4b). Techniques using regular polygons [KMK*08] pro-
duce symmetric curves, but have the same limitations as those using
circles.

eulerAPE [MR14b] uses ellipses to produce accurate diagrams
for most data with smooth curves (see eulerAPE’s evaluation for
three-set data; also Figures 4c and d). Methods to accurately and
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Table 1: Features of implemented automatic drawing techniques for Euler and Venn diagrams.

For any No. of Wellmatched Wellformed Smooth Curve Symmetric Region Area Cardinality Example
relation curves matched formed curves shape curves shading proportional glyphs techniques

√
any

√
polygon [SRHZ11, SAA09]√

any
√ √

circle
√

[SFRH12] (no shading)√
any

√ √
circle

√ √
[SFRH12] (shaded)

any
√ √

polygon [FH02]
3

√ √ √
circle

√ √
[LM13, CR05a]√

any
√

circle
√ √

[Wil12]
3

√ √ √
ellipse

√ √
[MR14b]√

any polygon
√ √

[KMK*08]
3

√
polygon

√
[RFSH10, CR03]√

any
√

polygon
√

[CR05b]√
1–3

√
circle polygon

√
[RHSF14]

3
√ √

circle
√ √

[Cla08]
3

√
ellipse

√ √
[MDF12]

Figure 4: Area-proportional Venn diagrams drawn with: (a) cir-
cles [LF06] using 3 Circle Venn [CR05a]; (b) polygons [BVT*13]
using Convex Venn-3 [RFSH10]; (c)–(d) ellipses using eulerAPE
[MR14b] for the data in (a) and (b), respectively.

instantaneously compute the region areas of multiple intersecting
ellipses are also available [MR14a].

4.1.3. Techniques for Euler diagrams with glyphs

Humans are biased to area judgement [CM84], so techniques are
available to depict the set relation cardinalities by the number of
glyphs in the regions and not the region areas. TwitterVenn [Cla08]
draws such diagrams to depict tweets containing any of two or
three user-selected words. eulerGlyphs [MDF12] draws similar di-
agrams with randomly or uniformly positioned glyphs and possibly
area-proportional curves for Bayesian problems (e.g. Figure 5a).

Differently sized and multi-attribute glyphs could be used to depict
different associated quantities [Bra12] (Figure 5b).

4.1.4. Other techniques

SketchSet [WPS*11] and SpiderSketch [SDRP11] draw Euler dia-
grams from hand drawn sketches, with possibility to add shading
or graph overlays. In SetFusion, users interact with a recommender
system using a Venn diagram [PBT14]. Other techniques draw 3D
Euler diagrams [FSR14] or Euler diagrams for reasoning [Sta05]
(e.g. spider diagrams [HST05]), specifying constraints [SD08],
defining ontologies [HSTC11, OHS*09] and proving theorems
[UJ14, UJ12, UJSF12].

4.1.5. Diagram design

Euler diagrams come in different designs, but very few empirical
studies have been conducted to assess these designs. A different
colour per curve is often used. Curve interiors are often coloured
with transparency to help identify the curves in which a region is lo-
cated. These colours perceptually fuse at overlaps, so the colours of
regions in the same curve often seem unrelated (Figure 4b) as when
unrelated colours are used for regions in the same curve (Figure 4a).
A weaving approach [LRS10] has been proposed to alleviate this
problem. eulerAPE (Section 4.1.2) avoids colour fusion by using
different visual feature channels such as colour, outline and texture
for the curves, as in Figures 4(c)–(d), allowing one to easily focus
on a specific curve [War12]. A recent study suggests that Euler di-
agrams whose curves have a coloured outline and no fill are easier
to comprehend than ones whose curves have a black outline or a
coloured fill with transparency [BSRH14].

4.1.6. Euler diagram variants

Several variations of Euler diagrams have been proposed for dif-
ferent purposes. Like Euler diagrams, these techniques use closed
regions to represent the sets or subsets thereof.
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Figure 5: Euler diagrams with glyphs: (a) eulerGlyphs [MDF12], (b) Brath’s [Bra12].

Missing Pieces [KSJ*06] use concentric rings for showing the re-
sults of three search engines (Figure 6a). The outer and middle rings
include the elements retrieved by one or two engines, respectively.
The inner ring includes elements retrieved by all three engines. The
search results are represented as glyphs inside the respective regions
and can be coloured to encode additional attributes. Fan diagrams
[KLS07] use a similar layout to visualize three sets (Figure 18b).
Instead of having a separate ring for pairwise overlaps, these over-
laps are placed between the respective parts in the outer ring. Both
techniques are limited to three sets.

Simonetto and Auber [SA08] proposed a method to handle cases
where well-matched Euler diagrams cannot be drawn, by splitting or
duplicating certain sets and subsets into disjoint parts, and connect-
ing these parts using edges (Figure 6b).

ComED and DupED adopted similar ideas to untangle Euler
diagrams and ensure their drawability. ComED splits a set into
multiple rectangular parts, depending on how it overlaps with
larger sets (Figure 6c). These parts are connected with hyperedges
that preserve the continuity of the set regions, as in Euler diagrams.
However, the hyperedges contain no elements and hence their mu-
tual crossings represent no shared elements between the respective
sets. The rectangular parts are arranged in a containment hierarchy
that reveals several set relations. For example, in Figure 6(c) it is ev-
ident that all elements shared between the blue and the pink sets also
belong to the green and purple sets. DupED creates separate rectan-
gular regions for the sets, and duplicates the elements that belong to
multiple sets. Multiple instances of the same element are linked with
hyperedges (Figure 6d). It outperforms ComED in counting the sets,
comparing their sizes and assessing their intersections. However,
ComED scales significantly better in terms of visual complexity.

Despite using powerful visual properties for depicting set rela-
tions, large Euler diagrams (>6 curves) with various curve overlaps
are hard to comprehend [ASHC14]. Interaction has been proposed
to aid navigation in such diagrams [DKCN14]. Alternatively, differ-
ent visual metaphors can be used for depicting sets and set relations,
as explained in the next sections.

4.2. Overlays

In many scenarios, the set memberships are a secondary informa-
tion in the data that needs to be analysed in the context of other data

features. For example, when the elements have a spatial reference,
they are often viewed on a map that provides context information
about their locations. Other examples include points in a scatter
plot or nodes in a graph. Several techniques have been proposed
to augment set memberships over the elements in an existing vi-
sualization. These techniques can be classified into four categories
according to the visual elements they use: regions (Section 4.2.1),
lines (Section 4.2.2), glyphs and icons (Section 4.2.3) and a combi-
nation thereof (Section 4.2.4).

4.2.1. Region-based overlay techniques

These techniques surround the elements of a set with a closed curve
that defines a region. One element can belong to multiple regions
if it belongs to multiple sets. Colour is usually used to distinguish
between the sets.

Bubble Sets [CPC09] constructs a contour (also named implicit
surface) for every set so that it includes all of its elements and ex-
cludes all other elements if possible (Figure 7a). For this purpose, it
computes an energy map over the pixels in the convex hull contain-
ing the set elements. In a second step, it applies the marching squares
algorithm to compute the implicit surface from the map. The sets
are assigned semi-transparent colours to reveal their overlaps and to
keep the context visualization visible. Unlike Euler diagrams, two
regions might overlap even if their sets share no elements. Such over-
laps should be understood as artefacts that encode no information.
An inverse distance-based potential field [VPF*14] was proposed
to alleviate these artefacts but might result in disconnected regions
(Figure 7b). KelpFusion (Section 4.2.4) also reduces these arte-
facts, without disconnected regions. Bubble sets were demonstrated
to overlay set memberships over tens of elements in a scatter plot, a
graph or a map. Depending on the extent of overlap, the technique
can usefully visualize between 4 and 20 sets and still retain enough
visibility of the context.

The GMap algorithm [GYK10] was used to visualize overlapping
sets [GHK10, p. 5]. As with Bubble Sets, the algorithm computes
the layout for each set separately by treating points not in the set
as obstacles and by connecting the set elements with edges to avoid
disconnected regions.

Texture splatting has been proposed to depict AOIs in software
architecture diagrams [BT06]. Splatting is applied to a skeleton
constructed from the diagram elements according to their size and
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Figure 6: Euler diagram variants: (a) Missing Pieces [KSJ*06], (b) Simonetto et al.’s [SA08], (c)–(d) ComED, DupED [HRD10].

Figure 7: Region-based overlay techniques: (a, b) Bubble Sets showing groups of items over a timeline [CPC09] and a map [VPF*14], (c)
texture splatting to depict areas of interest [BT06], (d) convex hulls to depict clusters in Vizster [HB05].

Figure 8: Line-based overlays: (a) LineSets [AHRRC11], (b) Parallel Tag Clouds [CVW09], (c) Kelp Diagrams [DvKSW12].

position. A post-processing step erases elements that incorrectly
fall within a specific AOI. Overlaps between multiple AOIs are
emphasized using subtractive colour blending which creates darker
overlapping regions (Figure 7c). Splatting creates smooth bound-
aries and is applied there only, as it is computationally expensive.

In some cases, the elements in the underlying visualization do not
need to be fixed at certain positions. For example, when visualizing
sets over graphs, it is possible to move the nodes so that nodes in the
same set lie closer together. IPSep-CoLa [DKM06] is an algorithm
to compute incremental constrained graph layouts. It can be used to

visualize sets over graphs, by defining grouping of the nodes into
sets as layout constraints. This results in a balanced layout between
the sets and the graph. The idea was used in ComEd (Section 4.1.6)
to create overlapping grouping over graphs interactively [HRD10].
eXamine [DEKB*14] generates and displays set-based annotations
as contours on top of a node-link diagram. It uses self-organizing
maps to lay out nodes, links and contours in a unified way. Vizster
[HB05] exploits the proximity of nodes in clusters computed by a
graph-based clustering of a social network. It visualizes a cluster
as a convex hull of the nodes and interpolates the hull boundaries
using a cardinal spline (Figure 7d).
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Figure 9: Glyph and icon overlays: (a) an icon list [Kin], (b) DiTop [OSR*14], (c–d) colour-coded bars and nodes [SOTM06, IMMS09], (e)
colour composition [HKvK*13].

Figure 10: Hybrid overlay techniques: (a) KelpFusion [MHRS*13] combines lines and regions, (b) region hatching as with colour-coded
glyphs [Wik10], (c) a variation of Kelp Diagrams [DvKSW12] that uses both lines and glyphs.

Figure 11: Node-link techniques: (a) Jigsaw [SGL08], (b) anchored maps [Mis06], (c) PivotPaths [DHRRD12].

The use of coloured regions to overlay sets facilitates perceiving
objects within one region as one group, following Gestalt laws of
closure. However, these regions might interfere with and compro-
mise the perception of the underlying visualization. This can impose
severe limits on the number of sets that can be overlaid before the vi-
sualization is cluttered. This limit depends on the complexity of both
the set relations and the underlying visualization. Other overlays
have been proposed to address these limitations, as explained next.

4.2.2. Line-based overlay techniques

To reduce the ink used in the overlay and the interference with
the base visualization, many techniques use lines to represent set
membership. Elements that belong to the same set are shown by
being present on one or more connected lines.

LineSets [AHRRC11] computes a line for each set that passes
through its elements (Figure 8a) using a travelling salesman
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heuristic that minimizes the line length. This in turn reduces self-
crossings and bends, making it easier to follow the line. The lines
are drawn as piecewise Bézier splines of different colours. As with
region-based methods, not all line crossings represent set overlaps.
Actual overlaps are marked with concentric rings around the el-
ements colour-coded according to the respective sets. Interaction
makes certain lines salient, while the other lines are drawn thin-
ner to reduce visual clutter. LineSets were shown to scale better
than region-based methods and can overlay up to tens of sets over
hundreds of elements. However, connecting set elements with a
simple line imposes an ordering on them. This might be an unde-
sirable artefact of the visualization if the elements have no inherent
order.

Kelp Diagrams [DvKSW12] connect the elements in a set using
a graph structure instead of a simple line. It surrounds each element
with a circle clipped to its Voronoi cell to avoid overlaps. Then it
computes a tangent visibility graph based on these clipped circles.
Each set is computed as a minimum cost graph that connects its
elements. This graph aims to capture the shape of a point set on a
map. The graph links are routed so that they do not cross elements
that do not belong to the respective set. Two design alternatives were
proposed to draw overlapping links. Nesting draws the links over
each other, with thinner links on top to ensure visibility (Figure 8c).
The second design uses alternating stripes to indicate overlapping
links (Figure 10c).

In some cases, the base visualization represents the elements of
each set separately, and hence creates multiple instances of the same
element. An example of this are the parallel tag clouds [CVW09]
that represent multiple sets of tags (Figure 8b). This technique con-
nects multiple instances of the same tag with a thick path line. To
avoid clutter, only the two ends of the edge connecting a tag in-
stance with its next occurrence are depicted. The full segment is
shown only for selected tags on demand. While it is hard to follow
the instances of an unselected tag, the depicted edge ends reveal if
such instances exist or not in parallel clouds. The context-preserving
visual links [SWS*11] are a generic technique that uses line overlays
to link multiple instances of the same element in multiple coordi-
nated views showing different visualizations. The layout algorithm
routes the lines, preferably within white space, using a density map
to minimize interference with the base visualizations.

Line-based overlays reduce the ink used to visualize the set in-
formation, at the cost of following the Gestalt law of closure. Also,
the use of simple lines as in LineSets results in an artificial ordering
of the elements, that might not be desirable. Finally, lines might
interfere with the base visualization if it already uses lines for a
different purpose, as in node-link diagrams. Glyphs and icons can
offer an alternative for such cases, as explained next.

4.2.3. Glyphs and icons

In many cases, it is enough to represent set membership for the
individual elements in the base visualization, without the need
to represent each of the sets as a connected object. In this case,
glyphs and icons can be used as simple overlays to represent the
set memberships. Colour-coding is commonly used for this pur-
pose: each set is assigned a colour from a qualitative (categorical)
colour scale. Membership of multiple sets can be indicated using

Figure 12: An affiliation network [BH11].

multiple icons (Figure 9a), colour-coded glyphs (Figures 9b–d),
hatching (Figures 10b and c) or colour composition (Figure 9e),
depending on how the base visualization represents individual
elements.

Pie-like glyphs are commonly used to compactly overlay set
memberships when the elements are represented as circles, such as
the nodes of a graph [IMMS09] (Figure 9d). BiblioViz [SOTM06]
represents papers as bars in a timeline, and overlays coloured seg-
ments over the bars to represent multiple co-authors (Figure 9c).
However, dividing circles or bars of different sizes into coloured
segments might causes a bias regarding the order, size and spatial
distribution of these segments. Hatching techniques can alleviate
these effects (Figures 10b–c). Alternatively, set memberships can
be indicated using separate colour-coded dots or icons within each
element when its display area allows for this, as in SchemaLine
[NXWW14] and DiTop [OSR*14] (Figure 9b).

Colour composition [HKvK*13] uses new colours (e.g. purple) to
indicate membership of multiple sets (e.g. both red and blue groups
as in Figure 9e). However, this is restricted to two or three sets, as
it is otherwise hard to memorize all possible colour compositions.

The use of colour the inference of the spatial distribution of the
sets. Instead of colour, icons can be used to indicate set memberships
(Figure 9a). This is appropriate when the sets represent real-world
concepts that have corresponding icons such as flags or common
signs. However, without interaction, a serial scan might be needed
to identify elements that belong to a certain set.

Other types of glyphs have also been devised for specific appli-
cations. Glyphs based on stacked bars [ZXQ15] or superimposed
area charts [XDC*13] were proposed to augment a node-link dia-
gram with set-based information about the nodes. Also, MetaCrystal
[Spo04] uses coloured polygonal glyphs to represent meta search re-
sults, where both colour and the number of sides encode how many
search engines retrieved a specific document. Finally, coloured pie-
like glyphs were proposed to visualize fuzzy membership of over-
lapping communities in networks [VRW13].

Glyphs and icons offer a lightweight alternative to overlay set
information on an underlying visualization in a minimal way. While
not suited to encode set relations, they can be designed to effectively
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Figure 13: A concept lattice [Epp06].

encode element membership of the sets and to reveal the locations
of all elements of a specific set in the underlying visualization.

4.2.4. Hybrid overlays

Lines, regions and glyphs have also been used in combination, to
make advantage of their properties. Three possible types of combi-
nations exist.

KelpFusion [MHRS*13] uses both lines and filled regions
(Figure 10a) to bridge Bubble Sets (Section 4.2.1) and Kelp
Diagrams (Section 4.2.2). It allows the graph connecting the points
in a set to vary from a minimum spanning tree to the convex hull of
a point set. Compared with Bubble Sets, KelpFusion uses less ink
and alleviates artefacts caused by empty overlapping regions. Com-
pared with line-based overlays, KelpFusion simplifies the visual
representation by filling regions of high point density.

When the elements are represented as regions (such as countries
on a map), hatching techniques can be used to indicate their set
memberships as with coloured glyphs. Figure 10(b) shows how
African countries are coloured according to their official languages.
Each region is filled with colours that represent its set memberships.

Kelp Diagrams [DvKSW12] offer a variation that uses both lines
and glyphs (Figure 10c). Colour-coded glyphs indicate element
memberships of multiple set. Also, hatching indicates line segments
shared between multiple sets.

Overlay techniques allow the analysis of how certain information
and relations between the elements correlate with their set member-
ships. Alternatively, these correlations can be augmented with other
visualizations that better emphasize the set information as in some
of the techniques in the next sections.

4.3. Node-link diagrams

Both element-centric and set-centric visualization have been pro-
posed based on node-link diagrams. Element-centric techniques
model the membership relations between elements and sets as edges
of a bipartite graph whose nodes represent the elements and the sets.

Several techniques have been proposed to visualize such bipartite
graphs.

A simple layout for bipartite graphs places the elements and the
sets in two lists parallel to each other. Jigsaw [SGL08] uses this
layout to show co-occurrence relations between different concepts
in documents (Figure 11a). The lists can be sorted, filtered and
coloured according to multiple criteria to show desired elements and
sets. Interaction allows exploring set relations on demand to avoid
visual clutter and to navigate into long lists. Schulz et al. [SJUS08]
demonstrated techniques to reduce the clutter caused by crossing
edges in such layouts using colour blending and a fisheye lens. Both
systems allow exploring additional attributes of the elements using
colour or additional columns.

Anchored maps [Mis06] use a circular layout to visualize bi-
partite graphs. The technique places the set nodes around a circle.
The element nodes are placed depending on their set memberships
(Figure 11b). Elements that belong exclusively to a set are placed as
a bundle of nodes outside the circle, originating from the respective
set node. Elements that are shared between multiple sets are placed
within the circle, depending on their set memberships.

PivotPaths [DHRRD12] is designed to support strolling in multi-
faceted information spaces. Its node-link layout can also be used
to depict element-set memberships, by placing the set nodes in the
middle line (Figure 11c). An element node is placed at a distance
from the middle line that is proportional to its set membership de-
gree. This allows the quick identification of elements that belong to
multiple sets. The horizontal position of an element is computed as
the mean of the set nodes it is connected to. The elements can be di-
vided into two groups and placed at different sides of the middle line.
Interaction allows inferring the set relations for a specific element or
vice versa. Eye diagrams [CGF*09] use a radial arrangement of the
elements to fit more elements in one screen. However, the number
of set nodes is limited as they are placed on a line segment encircled
by the elements.

Node-link diagrams can also be used to show the similarity be-
tween the sets as links of varying thicknesses. OnSet [SMDS14]
(explained in the next section) allows showing links between the
sets to encode their similarities (Figure 1b). Circos [KSB*09] uses
a circular layout for the nodes, and stripes to encode shared elements
between them.

Radial Sets [AAMH13] also uses links to show overlaps of a spe-
cific degree between multiple (Figure 16). To depict an overlap of
degree 3 or higher, a meta-node of proportional size is created, with
tapered links connecting this node to the respective sets. This resem-
bles a hypergraph over the sets, drawn in edge standard [Mäk90].
As mentioned in Section 2.2, hypergraphs can also represent
element-set relations, where each element defines a hyperedge
over the sets it belongs to or vice versa. The Graph Drawing
community proposed several methods for drawing hypergraphs
[BCPS12, BVKM*10, KvKS09]. Drawing hypergraphs in set stan-
dard [Mäk90], results in Euler-like diagrams (Section 4.1). Draw-
ing hypergraphs in edge standard [Mäk90] results in a two-mode
network (Figure 12), where a dummy node is created for each hy-
peredge and connected with the graph nodes involved in this hyper-
edges. In the latter case, it is helpful to colour element nodes and
set nodes differently as in affiliation networks [BH11].
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Figure 14: Matrix-based techniques: (a) ConSet [KLS07], (b) OnSet [SMDS14], (c) UpSet [LGS*14], (d) frequency grid [MDF12], (e)
similarity matrix [AAMH13], (f) the KMVQL layout [Huo08].

Node-link diagrams are commonly used to facilitate reason-
ing about Formal Concept Analysis (Section 2.5). Dedicated lay-
out algorithms were devised to visualize concept lattices [CDE06,
EDB04, Wil07] (Figure 13). The layout is usually composed of
multiple rows, each containing elements that belong to a specific
number of concepts. Concept lattices have been applied to analyse
frequent itemsets [BSH13]. Facettice [BKP12] allows interactive
definition of concept lattices for faceted search. It uses glyphs to vi-
sualizes combinations of search facets, along with further attributes
of the elements that satisfy these combinations.

Node-link diagrams are generally easy to understand. The use of
nodes as visual objects allow encoding further information about the
respective element or set, as in Jigsaw (Figure 11a) and Facettice
[BKP12]. Also, besides showing set similarities as links between
nodes, both OnSet (Section 4.4) and Radial Sets (Section 4.5) show
information about individual or aggregated elements in these sets
in their nodes. However, due to edge-crossing, node-link diagrams
suffer from increasing clutter as the number of links increases. While
layout and order algorithms can reduce this clutter, the diagram is
often limited to tens of nodes having about one hundred of links.

4.4. Matrix-based techniques

Different methods have been proposed to visualize set member-
ships using matrices. These approaches are either element-centric or
set-centric, and take advantage of the clear and flexible metaphor of
matrices.

ConSet [KLS07] maps sets and elements to rows and columns,
respectively. The cells encode set memberships (Figure 14a). The
rows and columns are reorderable, as set and element names have
no pre-defined order. The reordering can both simplify the matrix
and reveal patterns in it, such as clusters of elements that exhibit
similar set memberships. Several interactions and visual aids are
possible with the matrix representation, such as the aggregation of
elements or sets. Aggregated elements can be indicated visually
using darker cells or additional bars. To facilitate inferring to which
sets an element belongs, the cells can be coloured by unique set

colours. Also, to facilitate inferring the elements that belong to a
set, the respective cells can be connected with a line, instead of
showing grid lines [ZKBS02].

OnSet [SMDS14] represents each set as a separate nearly square
matrix whose cells encode which elements belong to the set
(Figure 14b). Each element is represented by a unique cell po-
sition across all matrices. Hovering the mouse over an element
highlights the respective pixels in the sets it belongs to. Drag and
drop interactions allow aggregating multiple sets into one matrix
using union or intersection (Figure 14b). Links of varying thick-
nesses can be displayed between matrices to represent their shared
elements, with link thickness proportional to a similarity measure
based on these overlaps. Hovering a link highlights these elements
(Figure 1b). Representing sets as nearly square matrices facilitates
perceiving them as containers of the elements, following Gestalt’s
law of closure [Wer38]. Moreover, the matrix can be divided into
tiles to represent a hierarchy over the elements.

Frequency grids [MDF12] represent the elements as cells in a
matrix, and places a glyph in each cell to encode the respective set
memberships (Figure 14c). They facilitate element counting. How-
ever, they are limited to only a few overlap combinations between a
small number of sets.

Set-centric techniques visualize relations between the sets. A ma-
trix can alternatively depict how the sets overlap with each other, by
representing the sets both as rows and as columns: Each cell con-
tains a similarity measure between the respective sets (Section 2),
encoded in colour as in a heatmap (Figure 14e). Each pair of sets
corresponds to two cells in the matrix. Therefore, the matrix can fit
two symmetric measures, or one asymmetric measure. The matrix
can be reordered to reveal clusters of sets that exhibit high over-
lap with each other. Overlaps of higher degree can be represented
by further dividing the rows or columns. This however results in a
complex matrix that contains several redundancies.

KMVQL [Huo08] is a system to support formulating queries over
a collection of items, by defining Boolean combinations of different
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Figure 15: Aggregation-based techniques: (a) an interactive bar chart [AAMH13], (b) SEEM [GSG*14], (c) Set’o’gram [FMH08], (d) a
linear diagram [CSR*14, G*14], (e) Double-Decker plot [HSW00], (f) Mosaic displays [Hof00], (g) a binary tree along with quantitative
values [Kos07], (h) Parallel Sets [KBH06],

Figure 16: Radial Sets [AAMH13] showing a breakdown of set
elements by their degrees using grey histograms. The links show
overlaps between pairs (a) or triples (b) of sets.

search criteria. It encodes all possible 2n combination of n sets in
a matrix (Figure 14f). The user can click on a cell to include the
elements it represents in the query result. Also, the cells can encode
the frequency of elements in the respective set combination via
colour.

UpSet [LGS*14] represents sets as matrix columns, with rows
representing different set intersections. Dots are placed in cells that
correspond to the sets involved in each intersection, and are con-
nected with a straight line (Figure 14c). The matrix can also rep-
resent aggregates of set combinations as expandable rows whose
dots encode the sets involved in each aggregate. UpSet also uses
bars to represent the elements in each combination along with other
information about them, as explained in the next section.

Matrices offer a clutter-free visual metaphor that can represent
different aspects of set-typed data, and can generally scale better
than node-link diagrams. However, these techniques are sensitive
to the ordering of the rows and columns, which has major im-
pact on the insights they can reveal. As we note in Section 6.2, this
metaphor is not fully exploited for set visualization, which gives op-

portunities for developing new set visualization techniques based on
matrices.

4.5. Aggregation-based techniques

When the number of elements is large, it becomes less feasible
to depict and investigate how single elements belong to the sets.
Following Shneiderman’s visual information-seeking mantra
[Shn96], many techniques provide an overview of such data first,
and allow exploring details about certain elements on demand.
These techniques employ frequency representations of set-typed
data to show the number of elements in different sets and subsets.
They aggregate multiple data elements into a single visual element
that encodes this frequency.

Interactive bar charts have been used to depict the sizes of the
sets and reveal the set overlaps as the bars are brushed [AAMH13].
Unlike traditional bar charts, an element can be aggregated in mul-
tiple bars, as it might belong to multiple sets. Clicking on one bar
selects the elements in the respective set, and highlights the fraction
that these elements represent in the other bars, revealing how cer-
tain pairs of sets overlap (Figure 15a). The selection can be refined
further using set operations between new selection and previously
selected elements, to investigate the overlaps between multiple sets.
However, this chart does not readily reveal how the sets overlap and
can only depict certain overlaps on demand.

SEEM [GSG*14] visualizes the relation of one focus set A with
the other sets in the set system (Figure 15c). Each column in the
visualization corresponds to one of these sets Si and resembles a
two-set Euler diagram showing A \ Si , A ∩ Si and Si \ A as stacked
bars of corresponding sizes. The columns can be sorted by any of
these quantities.

Set’o’gram [FMH08] is an extension to the interactive bar chart,
designed for set-typed data. Instead of directly visualizing the
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Figure 17: Example grouping options in UpSet [LGS*14]: (a)
grouping by element degree, (b) grouping by sets.

Figure 18: (a) A pie chart of set sizes distorts their relation to the
whole. (b) A Fan diagram [KLS07] showing set overlaps.

Figure 19: Equal bar histograms to show set sizes: (a) parallel bars
as special motives [WMLP12], (b) an additional bar to indicate the
total number of elements [BCH*13].

overlaps between the sets, a set’o’gram indicates how many ele-
ments in each set are shared with how many sets. For this purpose,
it divides the bars representing the sets into sections that corre-
spond to elements of different set membership degrees (Figure 15b).
Starting from the bottom, the ith section in a bar represents elements
in the respective set that are shared with i − 1 other sets. The height
of a section is proportional to the number of elements aggregated
in it. Starting from the top, the sections are assigned increasing
widths and are shaded along their diagonals to distinguish between
successive sections and to reveal empty sections that have zero
height. The sections can be selected and highlighted individually to
reveal the sets involved in them.

The Double-Decker plot [HSW00] shows how multiple Boolean
variables correlate. The upper part of this plot encodes the number of
elements in each possible set combination by means of equal-height
histograms (Figure 15e). This allows easy comparison between se-
lected portions in different overlaps, as the respective bars in the
upper part are of the same height. The histogram bars are arranged
according to a hierarchy of set memberships which is depicted in
the lower part by means of multiple rows. Starting from the bot-
tom, row i is divided into 2i parts that correspond to the different

membership combinations of the sets S1..Si . This gives an overview
of how the sets overlap, however, from the perspective of the set
that defines the first partitioning level. The set co-occurrence view
[Wit10] uses a similar plot to support set-typed data in the bargrams
interface. This interface uses additional rows to show the possible
values of other attributes and the frequencies of these values. Lin-
ear diagrams [CSR*14, G*14] allow for more generic divisions of
the rows (Figure 15d). A circular version of these diagrams were
proposed [ZXQ15] which plots set overlaps in a ring, in order to
plot detailed information about selected elements in the inner area
inside the ring.

Kosara [Kos07] proposed a redesign of Venn diagrams composed
of two parts, as with Double-Decker plots. The lower part consists
of a binary tree whose branches represent different set combinations
(Figure 15g). The upper part is a bar chart that encodes quantitative
information about the respective overlaps.

Mosaic displays [Hof00] is a space-filling technique that re-
cursively partitions the space along the categories of multiple
categorical variables (Figure 15f). To visualize set-typed data,
set memberships can be treated as binary categorical variables
[FMH08]. However, using both horizontal and vertical subdivisions
makes it hard to relate display tiles that belong to the same set.

Parallel Sets [KBH06] can be applied to visualize set-typed data
by treating set memberships as binary categorical variables. Each
set is represented on a separate horizontal axis using two boxes of
proportional size to represent both the elements that belong to the set
and the remaining elements (Figure 15h). Up to four stripes connect
the boxes between the two topmost axes to represent elements that
fall in the respective set membership combinations. In the standard
mode, the stripes are split further as they pass through the remain-
ing axes, representing all possible set combinations. Unlike mosaic
displays, Parallel Sets represent the elements of a set in one box
only instead of several tiles. However, splitting the stripes increases
them by a factor of 2, as with the mosaic tiles. Moreover, the stripes
overlap, causing clutter with more than four sets. A bundled mode
of the stripes reduces this clutter but causes stripe discontinuity.

Radial Sets [AAMH13] provide a more detailed overview of
set-typed data than the above-mentioned techniques. The sets are
depicted as non-overlapping regions with a radial arrangement. The
elements are represented as histogram bars inside these regions,
grouped by their degrees (Figure 16a). Overlaps between pairs of
sets are represented as links of proportional thicknesses. Overlaps
between triples of sets are represented by hyperedges between the
respective regions (Figure 16b). A variety of interactions allow se-
lecting elements based on their set memberships and attributes. Such
queries can be defined iteratively, by combining multiple selections
using set operations. Radial Sets use colour to indicate selected ele-
ments. When no elements are selected, colour can be used to encode
aggregated attribute values of the elements aggregated in the his-
togram bars. This enables correlating element attributes with their
set memberships.

InfoCrystal [Spo93] uses glyphs to represent all possible set over-
laps. The set labels are placed on a circle and act as magnets on the
glyphs to determine their placement. A follow-up work [Spo04]
demonstrates the use of glyph sizes to encode overlap sizes, and the
use of colour to encode the sets involved in the overlap.
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Though the Double-Decker plot, Mosaic Displays, Parallel Sets,
and InfoCrystal, represent all possible set overlaps, they are very
limited in scalability and visual accuracy. The overlap analysis view
[AAMH13] provided in the Radial Sets interface allows exploring
all possible set overlaps using tabular lists. To allow for meaningful
comparison, each list contains overlaps between a specific number
of sets. The lists provide information about the overlaps such as size
and disproportionality either graphically or in text.

UpSet [LGS*14] uses a bar chart to represent all possible set inter-
sections (Figure 17). As explained in Section 4.4, the sets involved
in each intersection are encoded via a row in a matrix. The length
of the corresponding bar encodes the number of elements in the in-
tersection. Other information can be depicted about these elements
in additional columns (Figure 1c). One example is the dispropor-
tionality represented by each aggregate, computed by comparing
actual and expected sizes of the respective set intersections. An-
other example are boxplots that show attribute distributions, which
enable the analysis of element-set memberships in relation to ele-
ment attributes. Three key features of UpSet are sorting, grouping
and querying by various set-based and attribute-based criteria. For
example, the rows can be sorted and grouped according to element
degree so that an equal number of sets is involved in the bars of
each group (Figure 17a). The groups are indicated by creating col-
lapsible rows showing aggregated information about the union of
its elements, in the same fashion as with any other row. Set-based
queries can be defined also by adding a new row and specifying
set membership criteria using the matrix dots. The query results are
represented as an expandable group containing all set intersections
that match the specified criteria, in the same fashion as with other
groups. Certain grouping modes and set-based queries might result
in duplicate rows. For example, grouping by set causes each in-
tersection between multiple sets to be duplicated in the respective
groups (Figure 17b).

In some cases, there is a need to provide a compact overview
of set sizes as part of an information-dense interface. A common
mistake is to show the set sizes via a pie chart, as the chart cat-
egories are not mutually exclusive and do not sum up as parts of
a complete whole (Figure 18a). Fan diagrams (Section 4.1.6) ad-
dress this issue by explicitly visualizing the overlaps between three
categories (Figure 18b). To handle more sets, stacked bars with spe-
cial motifs indicating possible overlaps [WMLP12] were proposed
(Figure 19a). Showing the total number of elements helps quantify-
ing the degree of overlap [BCH*13] (Figure 19b).

Aggregation-based techniques are highly scalable with the num-
ber of elements, but vary in their scalability with the number of sets.
Except for mosaic displays (Figure 15c), these techniques might
aggregate the same element in multiple visual elements, depending
on the sets it belongs to. Some visualizations indicate this ele-
ment redundancy explicitly, as with the links in Radial Sets and the
collocated bars in Double-Decker plots. Interaction is needed to in-
vestigate which elements are present in multiple sets, and to obtain
detailed information about selected elements.

4.6. Scatter plots and other techniques

Other techniques to visualize set-based information were proposed,
that do not naturally fall under the five visual categories listed in
Sections 4.1–4.5.

Scatter plots have been proposed to visualize similarity between
sets, by representing sets as points in a 2D plane. A scatter view
[LLS05] visualizes the similarity between a specific set, and the
rest of the sets. It depicts two asymmetric similarity measures
against each other to find which set is closer to the reference set
both in overlap intensity and completeness. A cluster view [LLS05]
was proposed to reveal clusters of similar sets by placing them
closer together, similar to how multi-dimensional scaling operates
(Figure 20a). Correspondence analysis (CA) [Gre84] has been used
to visualize two-mode social networks by treating them as binary
contingency tables [BH11]. Figure 20(c) depicts the CA plot for the
southern women data set (Figure 2c). The plot contains points both
for sets and elements. Edges can be optionally overlaid between the
sets and elements. Close element points usually correspond to sim-
ilar set memberships. Close set points usually correspond to high
overlap.

All three scatter plot–based techniques described above suffer
from two problems that limit their applicability to set-typed data.
First, using dots to represent sets does not emphasize them as con-
tainers of elements. Secondly, set similarity measures do not define
a distance function, which make the above-described 2D projections
problematic: close points could be produced for two disjoint sets, if
both of them are similar to a third set.

Bicentric Diagrams [PB15] were developed for bifocal network
analysis. The visualization uses concentric circles to shows the
neighbourhood of two focal nodes A and B (Figure 20b). Each
inner circle represents immediate neighbours of the respective fo-
cal node. Each outer circle represents indirect neighbours at graph
distance of 2 of the respective focal node. The intersections be-
tween the above four circles represent shared nodes between the
respective neighbourhoods. Except for inner circles, each pair of
circles intersect in two points, making it possible to split the shared
nodes into two groups (e.g. based on their connectivity). PivotPaths
(Figure 11c) also provide a similar bifocal mode for exploring
faceted data [DHRRD12].

Further set visualization techniques would be possible, employing
different visual metaphors than the ones presented so far. Combined
and hybrid techniques can also be devised. Such techniques might
be suited for specific problems (such as bifocal network analysis),
or special forms of set-typed data (Section 6.2).

5. Comparison and Findings

To provide guidance on applying the surveyed set visualization
techniques to a given problem, we compare the techniques according
to the following three aspects.

5.1. Comparison by what is represented

Set-typed data can encompass information about sets and their re-
lations, elements and their set memberships and other element at-
tributes. The surveyed techniques differ by the type of information
they represent:

• Representing set information only: These techniques pro-
vide no information about the individual elements. This
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Figure 20: Scatter plots and other techniques: (a) Cluster view [LLS05], (b) Bicentric Diagrams [PB15], (c) correspondence analysis view
of the southern women data set [BH11].

Table 2: Selected strengths and weaknesses of the visual categories (Section 4).

Category Strengths Weaknesses

Euler-based diagrams Intuitive when well-matched (little training is required).
Represent all standard set relations compactly.

Limited to few sets due to clutter and drawability issues.
Desired properties not always possible (e.g.
convexity).

Overlays Emphasize element and set distributions according to
other data features (e.g. map locations).

Often limited in the number of elements and sets.
Undesired layout artefacts (overlaps, crossing,
shapes, etc.).

Node-link diagrams Visually emphasize the elements as individual objects.
Show clusters of elements having similar set
memberships.

Limited scalability due to edge crossings. No
representation of set relations in element-set
diagrams.

Matrix-based techniques Fairly scalable both in the number of elements and sets.
Do not suffer from edge crossings or topological
constraints.

Limited in the set relations they can represent. Revealed
membership patterns are sensitive to ordering.

Aggregation-based Highly scalable in the number of elements. Some
techniques can show how attributes correlate with set
membership.

Usually, do not emphasize sets and elements as objects.
Limited in the set relations they can represent.

Scatter plots Show clusters of sets according to mutual similarity.
Clutter free and scalable when showing sets only.

Do not represent standard set relations. Dots are often
perceived as elements not as sets.

includes standard Euler diagrams that represent set rela-
tions, as well as matrices, node-link diagrams and scatter
plots that represent set similarities.

• Representing individual elements explicitly: Examples
are Euler diagrams with glyphs, overlays, element-set node-
link diagrams, membership matrices and frequency grids.
Further element attributes can often be represented using
additional visual features or additional columns.

• Representing element aggregates: As discussed in
Section 4.5, such techniques depict groups of elements,
possibly along with relations between these groups. Some
techniques (e.g. Double-Decker, UpSet and Radial Sets)
can depict aggregated attribute values for group elements.

The techniques vary also in the set relations they represent explic-
itly. Euler diagrams show inclusion, exclusion and intersection re-
lations. Scatter plot–based and some aggregation-based techniques
(e.g. Set’o’grams) do not represent these relations explicitly. Other

aggregation-based, node-link and matrix-based techniques represent
certain set relations only (usually set intersections).

Finally, certain techniques show multiple instances of the same
element according to the sets it belongs to. Examples for this in-
clude the DupED version of untangled Euler diagrams (Figure 6d)
and parallel tag clouds (Figure 8b). Also, membership matrices fill
multiple cells for the same element (Figure 14a). Visual duplicates
allow set-dependent attributes (Section 2.1) to be shown, e.g. dif-
ferent tag frequencies or ranks in multiple clouds.

5.2. Comparison of general strengths and weaknesses

Each of the techniques categories listed in Section 2 has advantages
and limitations associated with the visual representation it employs.
Table 2 summarizes the major ones that generally apply to the tech-
niques in the respective category. However, it should be noted that
individual techniques have their own advantages and limitations,
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Table 3: Visual categories of selected techniques from Section 4.

Technique Euler-based Overlay Node-link Matrix Aggregation Other

Euler diagrams •
ComED • •
DupED • •
BubbleSets • •
LineSets •
Kelp diagrams • •
KelpFusion • •
Icon lists •
Linked lists •
Anchored maps •
PivotPaths •
ConSet •
OnSet • •
Frequency grids •
Similarity matrix •
KMVQL • •
Mosaic displays •
Double-Decker plot •
Sets’o’grams •
Radial Sets • •
Parallel Sets •
Linear diagram •
UpSet • •
MetaCrystal • •
Scatter view •
Bicentric Diagrams • •

and might belong to multiple categories (Table 3). For more details,
refer to Section 4 and to the respective articles.

5.3. Comparison by supported tasks and scalability

The surveyed techniques differ in the tasks (Section 3) they support.
Table 4 provides an overview of the tasks supported by a represen-
tative subset of techniques from all surveyed categories. The task
support was either indicated by the authors or judged by us based
on published work. We indicate whether the task is supported fully,
partially or through interaction only. Partial support means that the
technique is not always effective for the respective task, or support
the tasks to a limited extent (e.g. with few sets only). In addition,
we give a rough estimate of the scalability of the techniques, both in
the number of sets and in the number of elements, when applicable.
Actual scalability limits depend on the complexity of the specific
data set, such as overlap strength and skewness in the set sizes.

The comparison matrix in Table 4 reveals how the techniques in
the same category tend to have similar task support characteristics.
As expected, this demonstrates the decisive influence of the visual
encoding used by a technique on the types of tasks it supports.
Note that certain techniques belong to multiple categories (Table 3).
The matrix also reveals that certain techniques depend heavily on
interaction in supporting their tasks.

Clearly, there is no single technique that supports all tasks. The
choice of the technique to use for a specific problem requires ex-

tensive analysis of the problem domain and its data characteristics.
This is important to determine the tasks that need to be supported
and the actual scalability requirements.

6. Future Challenges and Opportunities

The techniques surveyed in Section 4 demonstrate the significant
advances made in the past decade in visualizing sets and set-typed
data. Nevertheless, research in this area is still in early stages, with
many open problems and challenges that need to be addressed in
the future. In the following, we give some of these problems and
provide a list of unexplored research directions that could help in
addressing them.

6.1. Open problems

The following problems need further research to improve on state-
of-the-art techniques. Some of the issues we list are specific to
certain techniques, while others are more generic in set visualization.
In addition, some problems are concerned with complicated forms
of set-typed data.

Generating Euler diagrams with specific properties: There are
no generic tools that indicate, for a given input, whether it is
possible or not to generate diagrams that are well-matched, well-
formed, area-proportional, and/or use certain shapes (e.g. circles or
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convex polygons). Rodgers [Rod14] elaborated on related open re-
search questions in generating Euler diagrams. Tools that determine
whether a diagram can be drawn with desired properties and pro-
pose alternative solutions to non-drawable cases (e.g. using shading
or approximate areas) would improve the quality of the generated
Euler diagrams and their applicability in various domains. In this
regard, a high-level algorithm has been proposed to determine the
drawability of a well-formed diagram and generates the diagram in
that case [FFH08], but no implementation is available yet.

Scalability: As Table 4 shows, it is not always possible to support
tasks if they have particular scalability requirements. Moreover, the
scalability of certain techniques is severely limited, such as overlays.
Improving upon these limits is necessary to address various real-
world problems that involve a large number of sets and/or elements.

The role of ordering: By definition, set-typed data impose no
inherent ordering neither on the elements nor the sets. However,
the order in which sets and elements are depicted has a significant
impact on the patterns and relations revealed by the visualization.
Though reordering problems are usually NP-complete, a lot of work
has been done for reordering generic matrices and node-link dia-
grams to reveal clusters and/or reduce clutter. This work needs to be
revisited from a sets perspective, e.g. by incorporating set-related
data features such as element degrees. Also, more work is needed
on the role of ordering in aggregation-based techniques.

Evaluation: There is a clear lack of empirical user studies that
assess the effectiveness of different techniques in performing differ-
ent tasks. Some comparative studies focus on techniques from the
same category, such as Euler diagrams [BSRH14] or overlays over
a specific visualization [AHRRC11, MHRS*13]. Few studies com-
pare techniques from different categories. A recent study [CSR*14]
assessed Venn diagrams with shading, well-formed Euler diagrams
with shading, not well-formed but well-matched Euler diagrams
and linear diagrams (Section 4.5). Tasks involved set intersection,
inclusion and exclusion. The linear diagram outperformed all the
three Euler diagrams variants with respect to accuracy and time.

More evaluation work is needed to determine which techniques
work well for which data characteristics and tasks, and to steer
future research towards promising directions.

Visualizing sets in the context of other data types: Overlay tech-
niques reveal set memberships of elements placed according to other
data features. However, they offer limited possibilities as the layout
of the overlays cannot influence the element placement. Designing
set-aware visualizations can improve on this. For example, a set-
aware graph layout would compute a node placement that reduces
edge crossing and produces convex-shaped overlays at the same
time x. Further work is needed to visualize sets over elements in a
timeline, a tree or a multi-variate visualization.

Comparing multiple set families: In many scenarios, multiple
instances of a set family are compared (e.g. how skill overlaps
change across different companies). With few sets, small multiples
of Euler diagrams help in comparing the set relations between the
respective set families (Figure 21). For example, the comparison

Figure 21: Multiple set families [NSL*12].

might involve finding which set relations or attribute values change
most/least across the different families. Dedicated techniques are
needed to support such comparison tasks in a scalable way in the
number of sets and families. The linear layout of UpSet [LGS*14]
(Section 4.5) provides a good starting point for this, as multiple
columns can be created for multiple sets families.

Time-varying set-typed data: As with many types of data, set-
typed data can vary over time. For example, in evolutionary set
theory [TAON09] set memberships might change over time, lead-
ing to changes in set relations. Analysing these changes is a powerful
tool to study the dynamics of set structured populations [TAON09].
Also, the attribute values of the elements might change over time
even with static set memberships. Visualizing changes in set-typed
data is challenging, as the data are already complex. Bubble Sets
[CPC09] allow smooth recomputation of set overlays, making them
suited to track the spatial distribution of set elements e.g. in an
animated scatter plot. A technique similar to Parallel Sets was pro-
posed to visualize object-group changes over multiple time steps
[vLBA*12], however, allowing an element to belong to one set at a
time.

Visualizing fuzzy and uncertain set memberships: Real-world
data typically involve uncertainty that result in fuzzy set member-
ships. disk diagram [PP10] is a technique for analysing fuzzy data
using interactive visualization of fuzzy set operations. More work
on both analytical and visual methods is needed to communicate
the fuzziness in the data and study its effect on various set-related
tasks.

6.2. Possible opportunities

Next, we list ideas and research directions that could improve on
existing set visualization techniques.

Interaction: Many of the techniques we surveyed make limited or
no use of interaction to support the analysis tasks. Interaction opens
new possibilities for addressing various challenges with analysing
and visualizing set-typed data. For example, when generating Euler
diagrams, the user could specify certain constraints and properties
or choose where to take a compromise when they are not satisfiable.
Interactivity makes simplifying complex visualizations possible by
showing certain information on demand and selecting certain parts
to explore in more detail. It also facilitates various comparisons
within one set family or across multiple families. Interaction allows
influencing matrix reordering, e.g. to restrict changes to certain rows
or columns. Likewise, it helps in exploring large set-typed data at
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multiple levels of detail and in applying appropriate data reduction
methods. Finally, intuitive interactions allow sets to be defined and
combined using Boolean operations and enables performing multi-
faceted search over a set of elements.

Coordinated multiple views: can reduce the complexity of the
data by showing information at multiple levels of detail. This can
also provide complementary perspectives on the data (e.g. overlap
matrix + spatial set distribution) to enrich the analysis.

Small multiples: could provide solutions to visualizations that are
severely limited in the number of sets, such as Euler diagrams,
Mosaic Displays or Double-Decker plots. They can also be used to
compare, for instance, data with certain attribute values to determine
if they correlate with certain set relations or membership patterns.

Hybrid representations: might be useful in certain cases, espe-
cially when the sets can be semantically divided in two groups. An
example, in a 3 × 3 matrix of three sets, each cell can additionally
depict how its elements belong to another group of sets by using a
different visualization such as an Euler diagram. Another example is
combining glyphs with frequency-based representations to visualize
both the sets involved in an overlap and the overlap size.

Matrix-based representations: are not fully exploited for visual-
izing set-typed data. They are relatively simple and clutter-free, and
fairly scalable in the number of rows and columns. Moreover, there
are several possibilities to encode multiple values in a matrix cell
[ABHR*13]. This can be employed to show aggregated informa-
tion on the elements and their attributes, as with aggregation-based
techniques.

Analytical methods can transform large set-typed data into vol-
umes suited for visualization and still preserving the most important
information. In particular, several aggregations of the elements are
possible based on their set-memberships, degrees and attribute val-
ues. Similarly, intuitive set-operations can be used, e.g. to aggregate
multiple sets, or to replace a large family of sets with a smaller
family over the same elements.

Identifying special cases and forms of set-typed data: For exam-
ple, when the sets exhibit no intersection relations, treemaps would
be a natural choice to visualize their containment hierarchy. An-
other example that arise in voting analysis, is when each element
belongs to a constant number of sets, e.g. exactly to three sets out
of 10. Such set memberships can be represented using three cate-
gorical variables which result in

(10
3

) = 120 non-redundant overlap
combinations (many of them potentially empty). This is signifi-
cantly lower than 210 = 1024 possible overlaps in the general case,
and can be handled by categorical visualization techniques such as
Parallel Sets.

Many other special cases can be identified in practical applica-
tions such as very sparse membership matrix, skewed or two-mode
distribution of membership degrees, etc. The characteristics of these
cases need to be studied extensively, e.g. to identify if they satisfy
certain Euler diagram drawability properties, can simplify existing

visualization techniques, allow for new forms of visual representa-
tions or overlays, or lend themselves to new ways of aggregation.

7. Conclusion

The powerful and generic concepts of set theory make sets and
set relations essential data models in many data analysis scenarios.
Unlike common data types in InfoVis such as graphs and trees, sets
have been largely treated as data containers to group related elements
or to illustrate overlaps between two or three groups. Nevertheless,
a number of techniques have been devised to visualize sets and data
related to them in the past decade. By emphasizing the notion of
set-typed data, we have identified their specific characteristics as
well as several measures and tasks commonly associated with this
data type in visualization.

We have surveyed relevant literature on visualization techniques
that can be applied to address these characteristics and tasks re-
lated to set-typed data, and have classified these techniques into
six categories, according to the main visual representation they use
for depicting set relations. For each technique, we have analysed
which tasks it supports and its scalability with respect to the number
of sets and elements. We have also outlined the general advan-
tages and disadvantages of each representation, and which infor-
mation they can represent from the data. This provides guidance
for designers of set visualizations in choosing appropriate tech-
niques for their data and tasks. Finally, we have examined major
open problems in the area, and discussed various ideas that are
worth investigating as opportunities to address open problems or
to improve on state-of-the-art techniques. A visual browser of the
surveyed techniques along with additional resources are available
at http://www.setviz.net.
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