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ABSTRACT
Convolution-based techniques for volume rendering are among the fastest in the on-the-fly volumetric illumination
category. Such methods, however, are still considerably slower than conventional local illumination techniques.
In this paper we describe how to adapt two commonly used strategies for reducing aliasing artifacts, namely
pre-integration and supersampling, to such techniques. These strategies can help reduce the sampling rate of the
lighting information (thus the number of convolutions), bringing considerable performance benefits. We present a
comparative analysis of their effectiveness in offering performance improvements. We also analyze the (negligible)
differences they introduce when comparing their output to the reference method.
These strategies can be highly beneficial in setups where direct volume rendering of continuously streaming data is
desired and continuous recomputation of full lighting information is too expensive, or where memory constraints
make it preferable not to keep additional precomputed volumetric data in memory. In such situations these strate-
gies make single pass, convolution-based volumetric illumination models viable for a broader range of applications,
and this paper provides practical guidelines for using and tuning such strategies to specific use cases.
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1 INTRODUCTION

In recent years different medical imaging technologies,
such as computed tomography, ultrasonography and
microscopy [5], became capable of generating real-time
streams of volumetric data at high frame rates. To vi-
sualize such data, volume raycasting [2, 10], capable of
displaying surfaces from volumetric data without pre-
processing, is often used. This happens in particular in
situations where inspection of the acquired data is use-
ful already during the acquisition, such as in 4D Echog-
raphy where volume rendering of real-time data is em-
ployed even for guiding interventions. In these cases
conventional direct volume rendering techniques that
employ local illumination models are generally used,
as they are efficient enough to keep up with the incom-
ing data rate when executed on modern GPU hardware,
even when not high end. However, just like in polygo-
nal rendering, rendering volume data using an illumina-
tion model that approximates global illumination bet-
ter than simple local shading models is important for
numerous reasons, as recent user studies have demon-
strated [11, 17]. Researchers have therefore been very
active in the last years in proposing efficient and realis-
tic approximations of global illumination, comprehen-
sively covered in a recent survey by Jonsson et al. [7].
Despite the advances in this field, volumetric illumina-
tion methods that offer the best performance rely on ex-
pensive preprocessing steps to speed up the rendering

by reusing precomputed information. Such preprocess-
ing is not applicable in a number of situations, like, for
example, when the volume data to be rendered change
continuously, but also when memory constraints (e.g.,
in the case of portable devices or large datasets) make
it preferable not to store an additional precomputed il-
lumination volume.

There is, however, a category of techniques that ap-
proximate volumetric lighting (single and sometimes
multiple scattering) in the same pass used to gener-
ate the image, without the need for preprocessing or
storing the whole illumination volume. Nonetheless
even the fastest methods in this category are on av-
erage six to eight times slower [18, 13] than conven-
tional GPU-based direct volume rendering methods us-
ing ray-casting and local illumination models such as
Phong shading. This performance penalty can be a se-
rious issue where there are constraints on the compu-
tational capacity of the system, or when the rendering
pipeline includes additional computationally expensive
stages such as volume denoising.

In this paper we focus on convolution-based volumetric
illumination models [8, 9, 15, 16, 13], a subcategory of
single pass volumetric illumination methods built upon
slice-based rendering, that operate by iteratively diffus-
ing the lighting information slice after slice using con-
volutions. Since the geometry setup using ping-pong
buffers is a costly operation and, moreover, the convo-
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Figure 1: Volume rendering of the carp dataset. (a) Raycasting using Phong shading. (b) Instant convolution
shadows (ICS) with sampling distance of 0.33 voxels (reference). (c) ICS with sampling distance of 1 voxel.
(d) Supersampled convolution shadow (SCS) with a slice distance of 1.3 voxel and 4 tissue subsamples. (e)
SCS with a slice distance of 1.5 voxels and 5 subsamples (tissue sampling distance of 0.25voxel). (f) A closeup
highlighting how 1.5 voxels slice distance introduces aliasing artifact despite the dense tissue supersampling. The
SCS method, however, allows to increase the inter-slice distance considerably, with an almost linear performance
increase. Computation times from left to right: 43ms, 202ms, 88ms, 84ms, 79ms .

lution is performed for every pixel of the view-aligned
slices, the sampling distance (and thus the number of
slices used for the rendering) and the time necessary
for rendering every frame are linearly dependent.
In this paper we analyze the impact of the sampling dis-
tance on the performance of this approach in generating
aliasing-free images, and incorporate and evaluate the
effect of two commonly used strategies to lower this
distance: pre-integration [3] and supersampling. The
contribution of this paper is therefore twofold. First,
we introduce two methods to adapt pre-integration and
volume supersampling to convolution-based volumet-
ric illumination techniques, which allow decoupling the
sampling rates of the lighting information from the one
of the volume. Then we provide a quantitative eval-
uation of the effects that these strategies have on the
performance and practical guidelines for choosing al-
gorithm parameters in order to achieve the best perfor-
mance without compromising the image quality. We
demonstrate that using such strategies can lead to con-
siderable speedups (over 170% in the average case)
compared to the standard convolution-based illumina-
tion, and, in certain cases, can achieve performance
comparable to conventional local illumination methods
(see Figure 1 for an example). These performance gains
can be instrumental in bringing advanced illumination
to volume rendering of streaming data, especially on
computationally limited devices, or where the compute
unit is used for other computationally expensive steps
which are required for the rendering. These strategies
can also be beneficial in presence of static data but
when, for example, the amount of graphics memory is
limited, and precomputing volumetric light information
is not preferrable.

2 RELATED WORK
In the area of interactive volume rendering different
lighting models to approximate global illumination
have been proposed. A thorough overview of such
techniques has been provided by Jonsson et al. [7]. In

their survey, the authors classify the various techniques
in five categories: local-region-based, slice-based,
light-space-based, lattice-based and basis-function-
based. Each of these categories describe the underlying
paradigm used for calculating volumetric lighting
information. The authors also provide a comprehensive
analysis of the individual methods, their memory
requirements, and their computational costs. The
computational costs have been further subdivided
into the cost for rendering an image, and the cost for
updating the data, the transfer function or the light
direction.
For scenarios in which the data is continuously varying
we are mostly interested in whether the total time nec-
essary to render the data for the first time exceeds the
data rate or not. We therefore adopt a simpler classi-
fication here, depending on whether a method requires
substantial pre-computation or whether it can produce
the final image at interactive frame rates calculating the
illumination information on-the-fly. We refer to Jons-
son et al. with respect to methods that fit the first of
these two classes. In the second class we have splatting-
based methods, slice-based methods, and image-plane-
sweep-based methods. Splatting was extended to sup-
port volumetric lighting by Nulkar and Mueller with
the shadow splatting method [12]. This method require
an additional pass and the storage of the shadow vol-
ume, so it is not an on-the-fly method. However, Zhang
and Crawfis [19, 20] later extended the method relaxing
these constraints. Still, splatting remains more suitable
for sparse or unstructured grids than for dense cartesian
grids.
Most of the work in on-the-fly volume illumination can
be found in the slice-based category, since synchroniza-
tion is one of the main issues in calculating the light
propagation, and performing slice-based volume ren-
dering implicitly synchronizes the ray front, simplify-
ing the problem. The first method introducing volu-
metric lighting using this rendering paradigm was half-
angle slicing, presented by Kniss et al. [8, 9]. The key
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Figure 2: Illustration of our modified schemes for pre-integration (left) and supersampling (right). Correct pre-
integration should include in the lookup table also the entry and exit light value. We propose to approximate
it performing only tissue pre-integration and sampling the light at S1 position. We also propose to use linearly
interpolated light values from the two previous light buffers to calculate the illumination for supersampled tissue
samples.

concepts of this method were the implementation of a
backward-peaked phase function by iterative convolu-
tion and the selection of the slicing direction half-way
(hence the name) between viewing and light direction.
Schott et al. [15] later presented the directional occlu-
sion shading method, constrained to headlight setups
to use view-aligned slices, and the same technique to
implement the backward-peaked phase function via it-
erative convolution. However, unlike half-angle slicing,
directional occlusion shading does not need two render-
ing passes per slice. This method was later extended by
Šoltészová et al. [16], to allow variable light directions
while keeping view-aligned slices. The authors called it
multidirectional occlusion shading, and also illustrated
the advantages of using view-aligned slices in terms of
image quality as opposed to half-angle slicing. This
method was further improved by Patel et al. [13] with
their instant convolution shadows method, by using an
optimized convolution kernel and allowing the integra-
tion of polygonal geometry, making it suitable for vol-
umetric detail mapping to geometrical models.

In the last category, the first and currently only method
presented was by Sunden et al. [18], with the image
plane sweep volume illumination technique. In this
method ray-casting is chosen over slice-based render-
ing, and the rays are not traversed simultaneously, but
serialized in a sweep over the image plane. The sweep
direction is dependent on the light direction so that the
ray direction is orthogonal to the light and subsequent
rays can make use of light contributions from previous
rays. In their paper the authors show that the perfor-
mance of their method is similar to half-angle slicing.
In this work we focus on slice-based iterative convolu-
tion methods.

The last aspect to discuss is how to analyze the results
of volume rendering techniques. One of the goals that
we have in this work is to improve performance while
maintaining the generated images free of aliasing. We

identify the optimal parameter setting for the different
sampling distances (that is, the most efficient setting
that yield aliasing-free images) in a qualitative man-
ner. However, quantitative theoretical models to evalu-
ate the amount of error in volume rendering due to dis-
cretization also exist, like the one proposed by Etiene et
al. [4], or the method to determine proper sampling fre-
quency of function compositions proposed by Bergner
et al. [1]. Performance-wise it has been a common prac-
tice to compare different methods on the same viewport
size, sampling distance and transfer function, averag-
ing the rendering times over several frames from differ-
ent viewing direction [14, 18]. In this work we adopt
the same strategy. Timings are averaged over several
frames and the viewport size is always fixed to 512x512
pixels.

3 METHOD
To explain how to adapt supersampling and pre-
integration for a convolution-based volumetric
illumination model, we can use the Instant Convolution
Shadow (ICS) method [13] as the reference model.
The basic idea of ICS is that each volume sample
on a slice acts as light occluder but also as shadow
receiver. This means that every sample which, after
classification, maps to a non-fully transparent color,
will cast shadows onto the next slice. To compute the
amount of light that is transmitted from slice n to a
position on slice n+1, the incoming light on slice n is
first attenuated by the opacity of the samples on slice n,
and then this outgoing light is convolved with a kernel
k(x). This operation is iterated for every pixel on every
slice, and the iterative process propagates the lighting
information to the end of the scene.

3.1 Pre-integrated ICS
Pre-integration [3] works by assuming linear variation
between two consecutive volume samples. It is then
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Figure 3: Assessment of the largest sampling distance to produce aliasing-free images for one scene. The transi-
tions where noticeable aliasing appeared are shown in red. Using pre-integration produced identical images and,
as expected, allowed to significantly increase the sampling distance while still preventing aliasing.

possible to precompute the volume rendering integral
between all possible combination of data values, and
store it in a 2D lookup table. During rendering, a sim-
ple 2D texture lookup is used. In practice, this approach
enables to use of much higher sample distances with-
out noticeable artifacts [3]. However, the basic pre-
integration method does not consider illumination, as
the resulting increase in dimensionality of the lookup
table would make the approach impractical. Previous
work [6] showed how to combine local gradient shad-
ing with pre-integration by combining two 2D look-up
tables. In case of non-local volumetric lighting this is
not possible, as the light information depends on the
neighborhood of a fragment (see Figure 2).

For this reason we suggest to use standard pre-
integration and ignore lighting in the pre-computation.
This requires only the conventional 2D lookup table. In
this approximation the light propagation proceeds as in
the conventional ICS, but the opacity used to attenuate
the light comes from the pre-integrated value. We
analyze the effect that this approximation has on the
image quality, and to what extent it allows us to reduce
the inter-slice distance in Section 5.

3.2 Supersampled ICS
The second strategy to increase the distance between
slices (and hence, the number of convolutions per-
formed), while still sampling the volumetric function at
a sufficiently high rate is to acquire additional volume
samples between consecutive slices. The rationale
behind this approach is that the color and opacity
contributions between consecutive slices are still
taken into account, but the illumination propagation is
performed at a lower frequency. Such a strategy has
pros and cons as compared to pre-integration, where
the color is calculated using a finer integration step, but
on approximated scalar field values, varying linearly

between the front and the back sample. However,
these two strategies can also be combined. In order
to adapt supersampling to a slice-based renderer with
convolution-based lighting, it is necessary to define
what light contribution these additional samples col-
lected in between two subsequent slices should receive.
The correct solution is illustrated in In Figure 2 on the
right (blue convolution). Since this convolution is not
possible to calculate due to missing data, we propose
an approximation scheme for the light contribution
on the additional samples by using their position α

in between the slices (see Figure). We then linearly
interpolate the light contribution of the current and
previous light using this position as the weight.

4 TECHNICAL REALIZATION
Both of these strategies have been shown to be effec-
tive in reducing aliasing artifacts, indirectly allowing
larger sampling distances. In the specific case of volu-
metric lighting by convolution shadows, our proposed
adaptations blend in the algorithm and are compatible
with additional features such as variable light direction,
multiple light sources (which can greatly benefit from
lower sampling distances), non-white lights or chro-
matic shadows.

To quantify the benefits that pre-integration and super-
sampling can provide, we integrated them into a refer-
ence implementation of the ICS method. We chose this
method because it introduces a number of optimizations
over similar methods previously published [16, 15],
both from a performance and from an image quality
point of view, as discussed in Section 2. The ICS
method can be therefore considered one of the most
efficient convolution-based volumetric shadows tech-
niques available at the moment.

The necessary adaptations consists of two main ingre-
dients: a loop in the fragment shader to collect the ad-
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Figure 4: (a) Evaluation of the 2D parameter space for
supersampled ICS. On the x-axis the inter-slice distance
and on the y-axis the number of subsamples are shown.
Due to the integral number of possible subsamples, we
use x-increments of 0.2 voxels to keep the volume sam-
pling distance identical on the diagonal. Note how in-
creasing the number of substeps does not prevent alias-
ing anymore after exceeding a certain slice distance.
Note that the zoomed views have been desaturated and
auto-leveled to enhance the aliasing artifacts, making
them easier to see in print. (b) Rendering of the whole
dataset. (c) The transfer function used to geneate these
images (same as in Figure 3. (d) Absolute differences
between the bottom left and the bottom right view (mul-
tiplied by a factor of 10 for better visibility). Quantita-
tive measurements are given in Table 1.

ditional samples and an additional color attachment to
carry ahead the value of 2 light buffers. However, it
should be noted that, if we discard refraction effects that
change the color of the light when it propagates in the
media, the additional color attachment is not necessary
as the light attenuation, even for non-white light, could
be approximately described by a single scalar value.

5 RESULTS
5.1 Analysis setup
We carried out a thorough analysis of the different ICS
compositing strategies in order to obtain quantitative
performance results. To analyze the speedup that these
strategies have, we used the average frame rendering
time over 100 frames from different view points for dif-
ferent illumination techniques. We compared conven-

# Samples 0 1 2 3Distance
0.2 569ms 572ms 575ms 578ms
0.4 311ms 312ms 314ms 315ms
0.6 225ms 225ms 226ms 227ms
0.8 180ms 181ms 181ms 182ms
0.2 0.0 0.0033 0.0041 0.0045
0.4 0.0060 0.0030 0.0034 0.0035
0.6 0.0118 0.0065 0.0055 0.0054
0.8 0.0187 0.0102 0.0089 0.0083

Table 1: Performance and error analysis for Fig.4. The
first table illustrates the necessary time to generate a
frame. The second table shows the average pixel differ-
ence between the image in the bottom left corner and
every other. Pixels have normalized values in the [0,1]
interval.

tional ICS, ICS with supersampling only for the vol-
ume, which from now on will be referred to as Super-
sampled Convolution Shadows (SCS), pre-integrated
ICS and pre-integrated SCS. As a baseline, we also in-
cluded a conventional volume ray caster with and with-
out local illumination (Phong shading) in the compar-
ison. We conducted our experiments using five differ-
ent dataset/transfer function combinations. These were
a CT dataset of a carp (see Figure 1), a CT dataset of
a human head, used with two different transfer func-
tions, one to reveal the skin and one to reveal the skele-
ton, a CT dataset of a human abdomen revealing the
skeleton and the vessels due to contrast agent, and fi-
nally a cardiac ultrasound dataset. The dimensions of
these volumes are given in Figure 5. The goal of this
analysis was to evaluate the performance of each of
these techniques in producing artifact-free images. We
ran the tests on a workstation equipped with an Intel
Core2Quad 2.5GHz CPU, 12GB of RAM and an nVidia
Quadro K5000 GPU with 4GB of VRAM. The size of
the viewport was fixed to 512x512 pixels.

5.2 Parameter Space
We designed the analysis as a two-stage process. In
the first analysis stage we estabilished the largest sam-
pling distance for the intensity volume that would still
produce aliasing-free pictures using the raycaster, the
ICS renderer and the pre-integrated ICS renderer, and
used this parameter later on as reference in the perfor-
mance measurements. This distance was not always
the same for the raycasting technique and the ICS tech-
nique (slice-based), as these two methods exhibit dif-
ferent aliasing patterns. In particular, and as expected,
pre-integrated ICS could consistently tolerate a larger
inter-slice distance, which provide an advantage over
standard ICS in terms of performance (see Figure 5).
This distance was also dependent on the dataset and
the transfer function used, so we defined it separately
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Figure 5: Performance comparison between different rendering methods for five different scenes, depicted on top
of each group. On the bottom the size of the volumes in voxels.

for each scene. Figure 3 exemplifies this step for one
of the five analyzed scene, in which we qualitatively
assessed the larger inter-slice distance that would pro-
vide aliasing-free results (for methods to quantitatively
assess the amount of aliasing in a rendered image see
Section 2).

After the baseline inter-slice distance was identified, we
generated the reference images for each of the scenes.
In the second step of the analysis we explored the 2D
parameter space for the SCS method, in which one
dimension is the the inter-slice distance (or the volu-
metric illumination sampling distance), and the other
is the volume sampling distance. However, since our
method for integrating supersampling into convolution-
based techniques is not able to freely decouple these
two parameters (we can only use an integer number of
equidistant subsamples between two consecutive sam-
pling slices), we decided to use the number of subsam-
ples as the second parameter in this space. The volume
sampling distance can be determined using the formula
SampleDistance = SliceDistance

n.o.Subsamples+1 . Figure 4 shows the
result of this exploration for one particular scene using
non-preintegrated SCS. This stage was meant to iden-
tify the setting of these two parameters that would en-
able the generation of images identical to the reference
most efficiently. After this second stage, optimal pa-
rameters for the raycaster, ICS, SCS, pre-integrated ICS
and pre-integrated SCS were available, and the perfor-
mance measurement described in Section 5.1 were con-
ducted using the determined values.

5.3 Analysis results
Figure 5 illustrates the performance that each technique
is able to achieve in producing aliasing-free images.
When comparing to standard ICS, these results show

Figure 6: Chart of the performance impact with increas-
ing number of subsamples. In our experiments the slice
distance did not play a role, but using pre-integration
caused the performance to drop much faster, while reg-
ular supersampling comes almost for free for up to 3-4
subsamples.

an average performance increase of 137% for SCS. The
worst case scenario for the SCS method has been the
CT abdominal scene, where it could offer only a 90%
speed increase. In other scenes, in particular in pres-
ence of sharper transfer functions such as with the carp
dataset or the cardiac ultrasound dataset, the perfor-
mance increase exceeded 200%.

When using pre-integration, the performance increase
over standard ICS is slightly lower despite the usage
of same inter-slice distance as SCS in most cases, and
even the gathering of only one additional sample as
compared to standard ICS (versus the two or three of
the SCS method). This behavior can be explained
by the fact that sampling a 2D pre-integration table is
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Figure 7: Effect of supersampling a cardiac ultrasound dataset. (a,d) ICS with different slice distances. (b,e,c)
SCS with 1.34 , 2 and 3 voxel slice distances. (f) Phong shading for comparison. Note how shadow details on
the surfaces progressively disappear with increased sampling distances while shadows casted far away remain the
same.

more costly, as the plot in Figure 6, which graphs the
penalty for each additional sample for both SCS and
pre-integrated SCS, also shows.
Finally, when using both pre-integration and supersam-
pling we could increase the inter-slice distance further
without causing aliasing or getting noticeable artifacts
in the shading. This combination almost always pro-
vided the best performance, except for the cardiac ul-
trasound dataset, where the inter-slice distance for pre-
integration could not be increased as much as in the
other scenes. From this analysis we could conclude
that, in the average case, the volumetric lighting sam-
pling frequency can be at least halved, when compared
to tissue sampling frequency. This possibly due to the
lower frequency of the illumination function compared
to the post-classified volumetric data. Furthermore we
also noticed that the ratio of shadow sampling distance
/ tissue sampling distance can be further increased in
presence of sharper transfer functions.

6 DISCUSSION AND CONCLUSION
Convolution shadow methods and other single pass vol-
umetric illumination techniques can be the only vi-
able option to enable volumetric illumination in a num-
ber of application scenarios like real-time 4D echog-
raphy. Such methods are however constrained on the
volume sampling rate by the distance between consecu-
tive slices, requiring a high number of slices for transfer

functions containing high frequencies, which consumes
a large amount of off-chip GPU memory bandwidth,
impacting negatively on the performance. In this work
we showed that, by decoupling the sampling rate of the
volume from the one of the illumination, we can ex-
ploit the fact that illumination is typically less sensitive
to lower sampling rates.

We adapted and analyzed two techniques, pre-
integration and supersampling, to lower the inter-slice
distance and, with some constraints, decouple the two
sampling rates. We showed how decoupling these two
sampling rates allows less frequent costly convolu-
tion operations, bringing a substantial performance
increase.

We also discovered that the performance increase us-
ing this strategy grows with steeper transfer functions.
Both of the strategies analyzed in this paper proved ef-
fective, and the most interesting aspect is that, except
for one case, they work better when combined. We
also experienced that, in certain situations (see Figure
7 for an example), lowering the inter-slice distace be-
yond what produces images identical to the reference
does not immediately introduce aliasing, but the qual-
ity of the shading decreases and differences become no-
ticeable. This could however be an acceptable compro-
mise in some situations, in exchange of an additional
performance gain.
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