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Abstract

In volume visualization, huge amounts of data have to
be processed. While modern hardware is quite capable
of this task in terms of processing power, the gap be-
tween CPU performance and memory bandwidth further
increases with every new generation of CPUs. It is there-
fore essential to efficiently use the limited memory band-
width. In this paper, we present novel approaches to op-
timize CPU-based volume raycasting of large datasets on
commodity hardware. A new addressing scheme is intro-
duced, which permits the use of a bricked volume lay-
out with minimal overhead. We further present an ex-
tended parallelization strategy for Simultaneous Multi-
threading. Finally, we introduce memory efficient acceler-
ation data structures which enable us to render large medi-
cal datasets, such as the Visible Male (587× 341× 1878),
at up to 2.5 frames/second on a commodity notebook.
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1 Introduction

Direct volume rendering (DVR) is a powerful technique
to visualize complex structures within volumetric data. Its
main advantage, compared to standard surface rendering,
is the ability to concurrently display information about the
surface and the interior of objects. This aids the user in
conveying spatial relationships of different structures (see
Figure 1).

In medicine, visualization of volumetric datasets ac-
quired by computed tomography (CT), magnetic reso-
nance imaging (MRI), or ultrasound imaging helps to un-
derstand the patient’s pathological conditions, improves
surgical planning, and has an important role in education.
However, a typical data size of today’s clinical routine is
about512× 512× 1024 (16 bit CT data) and will increase
in the near future due to technological advances of acqui-
sition devices. Conventional slicing is of limited use for
such large datasets due to the enormous amount of slices.
However, providing interactive three-dimensional volume
visualization of such large datasets is a challenging task.

In this paper, we will present several techniques devel-
oped to perform high-quality volume visualization of large
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Figure 1: Direct volume rendering of a computed tomog-
raphy angiography (CTA) dataset - enhanced display of
blood vessels

datasets (> 512× 512× 512) using commodity hardware.
Section 2 is devoted to the extensive research that has been
performed in this area. In Section 3, we deal with the
fundamental issue of efficient memory management. We
present methods to exploit parallelization techniques avail-
able on consumer hardware in Section 4. In Section 5,
we introduce acceleration data structures that do not suffer
from the drawback of large memory consumption. Finally,
our results are presented and discussed in Section 6 and the
paper is concluded in Section 7.

2 Related Work

Within the domain of volume visualization three basic di-
rections of research have emerged: Firstly, in the recent
years methods have been presented which utilize the latest
features of consumer graphics hardware. Secondly, several
dedicated hardware solutions have been developed. The
third category is CPU-based volume rendering using algo-
rithmic optimizations.

Graphics hardware based solutions provide real-time
performance and high quality [1, 13, 14]. These meth-
ods rely on advanced graphics hardware features, which



limits their use on general purpose PCs. Guthe et al. [3]
utilize wavelet compression to handle large datasets. They
gain performance by using a level of detail approach based
on the viewer position. One problem of approaches us-
ing graphics hardware is that they are limited in their
functionalities: Basic rendering capabilities are supported
by hardware volume rendering solutions. However, ad-
vanced visualization systems provide preprocessing fea-
tures such as filtering, segmentation, morphological oper-
ations, etc. If such operations are not supported by the
hardware, they have to be performed on the CPU and data
must be transferred back to the hardware. This transfer
is very time consuming, thus, no interactive feed-back is
possible. Dedicated hardware solutions [12, 8] provide
support for many advanced visualization techniques. They
feature high-quality and impressive performance. For ex-
ample, the VolumePro board [12] is capable of rendering
a 512 × 512 × 512 dataset at 30 frames/second. The
disadvantage of these approaches is their high cost. In
CPU-based solutions memory and processing bandwidth
are limited. Their strength is the high flexibility and in-
dependence of special hardware capabilities. These ap-
proaches rely on specialized algorithms to provide inter-
activity. Many high-level algorithmic optimization tech-
niques have been developed to achieve high performance.
Most of these techniques have the assumption in common
that only parts of the data have to be visualized. This as-
sumption is still valid, but the resolution delivered by ac-
quisition devices constantly increases. A main issue there-
fore is to handle these large amounts of data. Approaches
by Knittel [4] and Mora et al. [10] achieve high perfor-
mance by using a spread memory layout. The main draw-
back of this approach is the enormous memory usage. In
both systems, the usage is approximately four times the
data size. This memory consumption is quite a limita-
tion, considering that the maximum virtual address space
is about 3 GB on current commodity computer systems.

One focus of our research was to address this issue in
order to present a new approach using significantly less
memory. In contrast to other methods, we try to reduce
the influence of the memory bottleneck by performing
many computations (gradient estimation, shading) on-the-
fly rather than to rely on precomputation.

3 Memory Management for
Large Datasets

The discrepancy between processor and memory perfor-
mance is rapidly increasing, making memory access a po-
tential bottleneck for applications which have to process
large amounts of data. Raycasting is prone to cause prob-
lems, as it generally leads to irregular memory access pat-
terns. This section discusses practical methods to improve
performance by taking advantage of the cache hierarchy.

3.1 Bricking

The most common way of storing volumetric data is a lin-
ear volume layout. Volumes are typically thought of as a
number of two-dimensional images (slices) which are kept
in an array. While this three-dimensional array has the ad-
vantage of simple address calculation, it has disadvantages
when used in raycasting, due to its view-dependent mem-
ory access patterns.

The concept of bricking supposes the decomposition of
data into small fixed-size data blocks. Each block is stored
in linear order. The basic idea is to choose the block size
according to the cache size of the architecture so that an
entire block fits in a fast cache of the system. It has been
shown that bricking is one way to achieve high cache co-
herency, without increasing memory usage. However, ac-
cessing data in a bricked volume layout is very costly. In
contrast to the proposed two-level subdivision hierarchy of
Parker et al. [11], we choose one-level subdivision of the
volume data. This is due to the fact that every additional
level introduces costs for addressing the data.

3.2 Addressing

The addressing of data in a bricked volume layout is more
costly than in a linear volume layout. To address one data
element, one has to address the block itself and the element
within the block. In contrast to this addressing scheme, a
linear volume can be seen as one large block. To address
a sample it is enough to compute just one offset. In al-
gorithms like volume raycasting, which need to access a
certain neighborhood of data in each processing step, the
computation of two offsets instead of one generally can-
not be neglected. In a linear volume layout, the offsets
to neighboring samples are constant. Using bricking, the
whole address computation would have to be performed
for each neighboring sample that has to be accessed. To
avoid this performance penalty, one can construct an if-
else statement. The if-clause consists of checking if the
needed data elements can be addressed within one block.
If the outcome is true, the data elements can be addressed
as fast as in a linear volume. If the outcome is false, the
costly address calculations have to be done. This simpli-
fies address calculation, but the involved if-else statement
incurs pipeline flushes.

We therefore apply a different approach [2]. We differ-
entiate the possible sample positions by the locations of
the needed neighboring samples. The first sample location
(i, j, k) is defined by the integer parts of the current re-
sample position. A block can be subdivided into subsets.
For each subset, we can determine the blocks in which the
neighboring samples lie. Therefore, it is possible to store
these offsets in a lookup table. This is illustrated in Fig-
ure 2 (a). We see that there are four basic cases, which
can be derived from the current sample location. This can
be mapped straightforwardly to 3D, which gives eight dis-
tinct cases. The lookup table contains8 · 7 = 56 offsets.
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Figure 2: Different cases that have to be distinguished for
lookup table generation for a (a) 8-neighborhood and (b)
26-neighborhood

We have eight cases, and for each sample(i, j, k) we need
the offsets to its seven adjacent samples. The seven neigh-
bors are accessed relative to the sample(i, j, k). Since
each offset consists of four bytes, the table size is 224
bytes. The basic idea is to extract the eight cases from
the current resample position and create an index into a
lookup table, which contains the offsets to the neighbor-
ing samples. The input parameters of the lookup table ad-
dressing function are the sample position(i, j, k) and the
block dimensionsBx, By, andBz. We assume that the
block dimensions are a power of two, i.e.,Bx = 2Nx ,
By = 2Ny , andBz = 2Nz . As a first step, the block offset
part from i, j, andk is extracted by ANDing the corre-
spondingB{x,y,z} − 1. The next step is to increase all by
one to move the maximum possible value ofB{x,y,z} − 1
to B{x,y,z}. All the other possible values stay within the
range[1, B{x,y,z}−1]. Then a conjunction of the resulting
value and the complement ofB{x,y,z} − 1 is performed,
which maps the input values to[0, B{x,y,z}]. The last step
is to add the three values and divide the result by the min-
imum of the block dimensions, which maps the result to
[0,7]. This last division can be exchanged by a shift op-
eration. In summary, the lookup table index for a position
(i, j, k) is given by:

i′ = ((i & (Bx − 1)) + 1) & ∼ (Bx − 1)
j′ = ((j & (By − 1)) + 1) & ∼ (By − 1)
k′ = ((k & (Bz − 1)) + 1) & ∼ (Bz − 1)

index = (i′ + j′ + k′) À min(Nx, Ny, Nz)

(1)

We use& to denote abitwise andoperation,| to denote
abitwise oroperation,À to denote aright shift operation,
and∼ denotes abitwise negation.

A similar approach can be done for the gradient compu-
tation. We present a general solution for a 26-connected
neighborhood. Here we can, analogous to the resample
case, distinguish 27 cases. For 2D, this is illustrated in
Figure 2 (b). Depending on the position of sample(i, j, k)
a block is subdivided into 27 subsets. The first step is to
extract the block offset, by ANDingB{x,y,z}−1. Then we
subtract one, and conjunct with2 · B{x,y,z} − 1, to sepa-
rate the case if one or more components are zero. In other

words, zero is mapped to2 · B{x,y,z} − 1. All the other
values stay within the range[0, B{x,y,z} − 2]. To separate
the case of one or more components beingB{x,y,z} − 1,
we add 1, after the previous subtraction is undone by a dis-
junction with 1, without loosing the separation of the zero
case. Now all the cases are mapped to{0, 1, 2} to obtain a
ternary system. This is done by dividing the components
by the corresponding block dimensions. These divisions
can be replaced by faster shift operations. Then the three
ternary variables are mapped to an index in the range of
[0, 26]. In summary, the lookup table index computation
for a position(i, j, k) is:

i′ = ((((i & (Bx − 1))− 1) & (2Bx − 1)) | 1) + 1
j′ = ((((j & (By − 1))− 1) & (2By − 1)) | 1) + 1
k′ = ((((k & (Bz − 1))− 1) & (2Bz − 1)) | 1) + 1

index = 9(i′ À Nx) + 3(j′ À Ny) + (k′ À Nz)
(2)

The presented index computations can be performed
reasonably fast on current CPUs, since they only con-
sist of simple bit manipulations. The lookup tables can
be used in raycasting on a bricked volume layout for ef-
ficient access to neighboring samples. Another possible
option to simplify the addressing is to inflate each block
by an additional border of samples from the neighboring
blocks [3]. However, such a solution increases the over-
all memory usage considerably. For example, for a block
size of32× 32× 32 the total memory is increased by ap-
proximately 20%. This is an inefficient usage of memory
resources and the storage redundancy reduces the effective
memory bandwidth. Our approach practically requires no
additional memory, as all blocks share one global address
lookup table.

3.3 Traversal

It is most important to ensure that data once replaced in the
cache will not be required again to avoiding trashing. Law
and Yagel have presented a trashless distribution scheme
for parallel raycasting [6]. Their scheme relies on an ob-
ject space subdivision of the volume. While their method
was essentially developed in the context of parallelization,
to avoid redundant distribution of data blocks over a net-
work, it is also useful for a single-processor approach. The
volume is subdivided into blocks, as described in Sec-
tion 3.1. These blocks are then sorted in front-to-back
order depending on current viewing direction. The or-
dered blocks are placed in a set of block lists in such a
way that no ray that intersects a block contained in a block
list can intersect another block from the same block list.
Each block holds a list of rays whose current resample po-
sition lies within the brick. The rays are initially added to
the list of the block which they first intersect. The blocks
are then traversed in front-to-back order by sequentially
processing the block lists. The blocks within one block
list can be processed in any order, e.g. in parallel. For
each block, all rays contained in its ray list are processed.
As soon as a ray leaves a block, it is removed from its ray



list and added to the new block’s list. When the ray list
of a block is empty, processing is continued with the next
block. Due to the subdivision of the volume, it is very
likely that a block entirely remains in a fast cache while its
rays are being processed, provided the brick size is chosen
appropriately. The generation of the block lists does not
have to be performed for each frame. For parallel projec-
tion there are eight distinct cases where the order of blocks
which have to be processed remains the same. Thus, the
lists can be precomputed for these eight cases.

4 Parallelization Strategies for
Commodity Hardware

Raycasting has always posed a challenge on hardware re-
sources. Thus, numerous approaches for parallelization
have been presented. As our target platform is consumer
hardware, we have focused on two parallelization schemes
available in current stand-alone PCs: Symmetric Multipro-
cessing (SMP) and Simultaneous Multithreading (SMT).

4.1 Symmetric Multiprocessing

Architectures using multiple similar processors connected
via a high-bandwidth link and managed by one operat-
ing system are referred to as Symmetric Multiprocessing
systems. Each processor has equal access to I/O devices.
As Law and Yagel’s traversal scheme was originally de-
veloped for parallelization, it is straight-forward to apply
to SMP architectures. The blocks in each of the block
lists described in Section 3.3 can be processed simulta-
neously. Each list is partitioned among thecountphysical

CPUs available. A possible problem occurs when rays
from two simultaneously processed blocks have the same
subsequent block. One way of handling these cases would
be to use a synchronization primitives, such as mutexes
or critical sections, to ensure that only one thread can as-
sign rays at a time. However, the required overhead can
decrease the performance drastically. Therefore, to avoid
the race conditions when two threads try to add rays to the
ray list of a block, each block has a list for every phys-
ical CPU. When a block is being processed, the rays of
all these lists are cast. When a ray leaves the block, it is
added to the new block’s ray list corresponding to the CPU
currently processing the ray.

4.2 Simultaneous Multithreading

Simultaneous Multithreading is a concept well-known in
workstation and mainframe hardware. It is based on the
observation that the execution resources of a processor are
rarely fully utilized.

SMT uses the concept of multiple logical processors
which share the resources of just one physical processor.
Executing two threads simultaneously on one processor
has the advantage of more independent instructions being

available, thus increasing CPU utilizations. This can be
achieved by duplicating state registers, which only leads
to little increases in manufacturing costs. Intel’s SMT im-
plementation is called Hyper-Threading [7] and was first
available on the Pentium 4 CPU. Currently, two logical
CPUs per physical CPU are supported. Exploiting SMT,
however, is not as straight-forward as it may seem at first
glance. Since the logical processors share caches, it is es-
sential that the threads operate on neighboring data items.
Therefore, treating the logical CPUs in the same way as
physical CPUs leads to little or no performance increase.
Instead, it might even lead to a decrease in performance,
due to cache trashing. Thus, the processing scheme has to
be extended in order to allow multiple threads to operate
within the same block. The blocks are distributed among
physical processors as described in the previous section.
Within a block, multiple threads, each executing on a logi-
cal CPU, simultaneously process the rays of the block. Us-
ing several threads to process the ray list of a block would
lead to race conditions and would therefore require expen-
sive synchronization. Thus, instead of each block having
just one ray list for every physical CPU, we now have
countlogical lists per physical CPU, wherecountlogical is
the number of threads that will simultaneously process the
block, i.e., the number of logical CPUs per physical CPU.
Thus, each block hascountphysical · countlogical ray lists.

Figure 3 depicts the operation of the algorithm for a
system with two physical CPUs which each allow two
threads to execute simultaneously, i.e.,countphysical = 2
and countlogical = 2. In the beginning seven threads,
T0, ..., T6, are started.T0 is responsible for all the pre-
processing. In particular, it has to assign the rays to those
blocks through which the rays enter the volume first. Then
it has to choose the lists of blocks which can be processed
simultaneously, with respect to the eight principal view-
ing directions. Each list is partitioned byT0 and sent toT1

andT2. After a list is sent,T0 sleeps until its slaves are fin-
ished. Then the algorithm continues with the next pass.T1

sends one block after the other toT3 andT4. T2 sends one
block after the other toT5 andT6. After a block is sent,
they sleep until their slaves are finished. Then they send
the next block to process, and so on.T3, T4, T5, andT6

perform the actual raycasting. Thereby,T3 andT4 simulta-
neously process one block, andT5 andT6 simultaneously
process one block.

5 Memory Efficient Acceleration
Data Structures

Even with efficient memory access and parallelization
present, raycasting still causes a huge workload for the
CPU. In this section, we present algorithmic optimiza-
tions to reduce this workload. We present three techniques
which each can achieve a significant reduction of render-
ing times. Our focus lies in minimizing the additional



blocks which

logical CPU 2

T6

T3T1

T4

T2

T0

logical CPU 3

T5

physical CPU 0 and physical CPU 1

physical CPU 0 

physical CPU 1

logical CPU 0

logical CPU 1

image plane

thread

simultaneously
can be processed

advancing
rayfront

Figure 3: Workflow of our algorithm on a system support-
ing SMP and SMT

memory requirements of newly introduced data structures.

5.1 Gradient Cache

It has been argued that the quality of the final image is
heavily influenced by the gradients used in shading [9].
High-quality gradient estimation methods have been de-
veloped, which are generally more expensive due to the
large neighborhood they use. Many approaches therefore
use expensive gradient estimation techniques to precom-
pute gradients at the grid positions and store them together
with the original samples. The additional memory require-
ments, however, limit the application of this approach to
large datasets. For example, using 2 bytes for each com-
ponent of the gradient increases the size of the dataset by
a factor of four (assuming 2 bytes are used for the original
samples). In addition to the increased memory demands
of precomputed gradients, this approach also reduces the
effective memory bandwidth. We therefore choose to per-
form gradient estimation on-the-fly. Consequently, when
using an expensive gradient estimation method, caching of
intermediate results is inevitable if high performance has
to be achieved. An obvious optimization is to perform gra-
dient estimation only once for each cell. When a ray enters
a new cell, the gradients are computed at all eight corners
of the cell. The benefit of this method is dependent on
the number of resample locations per cell, i.e., the object
sample distance. However, the computed gradients are not
reused for other cells.

We perform gradient caching on a block basis. The
cache is able to store one gradient entry for every grid po-
sition contained in a cell of the current block. Thus, the re-
quired cache size is(Bx +1)×(By +1)×(Bz +1) where
Bx, By, Bz are the block dimensions. The block dimen-
sions have to be increased by one to enable interpolation
across block boundaries. Each entry of the cache stores
the three components of a gradient, using a 4 byte sin-
gle precision floating-point number for each component.

Additionally, a bit array has to be stored that encodes the
presence of an entry in the cache for each grid position in a
cell of the current block. When a ray enters a new cell, for
each of the eight corners of the cell the bit set is queried.
If the result of a query is zero, the gradient is computed
and written into the cache. The corresponding value of the
bit set is set to one. If the result of the query is one, the
gradient is already present in the cache and is retrieved.

The disadvantage of this approach is that gradients at
block borders have to be computed multiple times. How-
ever, this caching scheme still greatly reduces the perfor-
mance impact of gradient computation and requires only
a modest amount of memory. Furthermore, the required
memory is independent of the volume size, which makes
this approach applicable to large datasets.

5.2 Entry Point Buffer

One of the major performance gains in volume rendering
can be achieved by quickly skipping data which is classi-
fied as transparent. In particular, it is important to begin
sampling at positions close to the data of interest, i.e., the
non-transparent data. This is particularly true for medical
datasets, as the data of interest is usually surrounded by
large amounts of empty space (air). The idea is to find, for
every ray, a position close to its intersection point with the
visible volume, thus, we refer to this search as entry point
determination. The advantage of entry point determina-
tion is that it does not require additional overhead during
the actual raycasting process, but still allows to skip a high
percentage of empty space. The entry points are deter-
mined in the ray setup phase and the rays are initialized to
start processing at the calculated entry position. The basic
goal of entry point determination is to establish a buffer,
the entry point buffer, which stores the position of the first
intersection with the visible volume for each ray.

As blocks are the basic processing units of our algo-
rithm, the first step is to find all blocks which do not con-
tribute to the visible volume using the current classifica-
tion, i.e., all blocks that only contain data values which
are classified as transparent. It is important that the clas-
sification of a whole block can be calculated quickly to
allow interactive transfer function modification. We store
the minimum and maximum value of the samples con-
tained in a block and use a summed area table of the
opacity transfer function to determine the visibility of the
block [5]. We then perform a projection of each non-
transparent block onto the image plane with hidden surface
removal to find the first intersection point of each ray with
the visible volume. The goal is to establish an entry point
buffer of the same size as the image plane, which con-
tains the depth value for each ray’s intersection point with
the visible volume. For parallel projection, this step can
be simplified. As all blocks have exactly the same shape,
it is sufficient to generate one template by rasterizing the
block under the current viewing transformation. Projec-
tion is performed by translating the template by a vector



t = (tx, ty, tz)T which corresponds to the block’s position
in three-dimensional space in viewing coordinates. Thus,
tx and ty specify the position of the block on the image
plane (and therefore the location where the template has
to be written into the entry point buffer) andtz is added to
the depth values of the template. The Z-buffer algorithm
is used to ensure correct visibility. In ray setup, the depth
values stored in the entry point buffer are used to initialize
the ray positions.

The disadvantage of this approach is that it requires an
addition and a depth test at every pixel of the template for
each block. This can be greatly reduced by choosing an al-
ternative method.The blocks are projected in back-to-front
order. The back-to-front order can be easily established by
traversing the generated block lists (see Section 3.3) in re-
verse order. For each block the Z-value of the generic tem-
plate is written into the entry point buffer together with a
unique index of the block. After the projection has been
performed, the entry point buffer contains the indices and
relative depth values of the entry points for each ray. In
ray setup, the block index is used to find the translation
vectort for the block andtz is added to the relative depth
value stored in the buffer to find the entry point of the ray.
The addition only has to be performed for every ray that
actually intersects the visible volume. We further extend
this approach to determine the entry points in a finer res-
olution than block granularity. We replace the minimum
and maximum values stored for every block by a min-max
octree. Its root node stores the minimum and maximum
values of all samples contained in the block. Each addi-
tional level contains the minimum and maximum value for
smaller regions, resulting in a more detailed description of
parameter variations inside the block. Every time the clas-
sification changes, the summed area table is recursively
evaluated for each octree node and the classification in-
formation is stored as linearized octree bit encoding using
hierarchy compression.

The projection algorithm is modified as follows. Instead
of one block template there is now a template for every
octree level. The projection of one block is performed by
recursively traversing the hierarchical classification infor-
mation in back-to-front order and projecting the appropri-
ate templates for each level, if the corresponding octree
node is non-transparent. In addition to the block index,
the entry point buffer now also stores an index for the cor-
responding octree node. In ray setup, the depth value in
the entry point buffer is translated by the thetz compo-
nent of the translation vector plus the sum of the relative
offsets of the node in the octree.

The node index encodes the position of a node’s origin
within the octree. It can be calculated in the following
way:

index(node) =

N−1∑
i=0

octanti(node) · 8N−i−1 (3)

whereN is the depth of the octree,octanti is the octant

of level i where the node is located. For an octree of depth
N there are8N different indices. The relative translational
offsets for the octree nodes can be precomputed and stored
in a lookup table of8N entries indexed by the node index.

5.3 Cell Invisibility Cache

Our solution for entry point determination was presented
in the previous section. However, the problem of skipping
transparent regions within the dataset remains. In addition,
if the depth of the octree does not reach down to cell level,
the initial position of a ray might not be its exact intersec-
tion point with the visible volume. Thus, some transparent
regions are still processed. We therefore introduce a cell
invisibility cache to skip the remaining transparent regions
at cell level. We can skip resampling and compositing in
a cell if all eight samples of the cell are classified as trans-
parent. To determine the transparency, a transfer-function
lookup has to be performed for each of these samples. For
large zoom factors, several rays can hit the same cell and
for each of these rays the same lookups would have to
be performed. A cell invisibility cache is attached at the
beginning of the traditional volume raycasting pipeline.
This cache is initialized in such a way that it reports ev-
ery cell as visible. In other words every cell has to be
classified. Now, if a ray is sent down the pipeline, every
time a cell is classified invisible this information is stored
in the cache. If a cell is found to be invisible, this infor-
mation is stored by setting the corresponding bit in the cell
invisibility cache. As the cache stores the combined infor-
mation for eight samples of a cell in just one bit, this is
more efficient than performing a transfer function lookup
for each sample. The information stored in the cell invis-
ibility cache remains valid as long as no transfer function
modifications are performed. During the examination of
the data, e.g. by changing the viewing direction, the cache
fills up and the performance increases progressively. The
advantage of this technique is that no extensive compu-
tations are required when the transfer function changes.
The reset of the buffer can be performed with virtually no
delay, allowing fully interactive classification. As trans-
fer function specification is a non-trivial task, minimizing
delays initiated by transfer function modifications greatly
increases usability.

6 Results

In this section, we present results for each of the addressed
issues. These results were obtained by extensive experi-
ments on diverse hardware.

For a comparison of bricked and linear volume layouts,
we use a Dual Intel Pentium Xeon 2.4 GHz equipped with
512 KB level-2 cache, 8 KB level-1 data cache, and 1 GB
of Rambus memory.

In our system, we are able to support different block
sizes, as long as each block dimension is a power of two. If
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Figure 4: Block-based raycasting speedup compared to
common raycasting on linear volume layout

we set the block size to the actual volume dimensions, we
have a common raycaster which operates on a simple lin-
ear volume layout. This enables us to make a meaningful
comparison between a raycaster which operates on simple
linear volume layout and a raycaster which operates on a
bricked volume layout. To underline the effect of brick-
ing we benchmarked different block sizes. Figure 4 shows
the actual speedup achieved by blockwise raycasting. For
testing, we specified a translucent transfer-function, such
that the impact of all high level optimizations was over-
ridden. In other words, the final image was the result of
brute-force raycasting of the whole data. The size of the
dataset had no influence on the actual optimal gains.

Going from left to right in the chart shown in Figure 4,
first we have a speedup of about 2.0 with a block size
of 1 KB. Increasing the block size up to 64 KB also in-
creases the speedup. This is due to more efficient use of
the cache. The chart shows an optimum at a block size of
64KB (32 × 32 × 32) with a speedup of about 2.8. This
number is the optimal tradeoff between the needed cache
space for ray data structures, sample data, and lookup ta-
bles. Larger block sizes lead to performance decreases,
as they are too large for the cache, but still suffer from the
overhead caused by bricking. This performance drop-off is
reduced, once the block size approaches the volume size.
With only one volume-sized block, the rendering context
is that of a common raycaster operating on a linear volume
layout.

The achieved speedups for Symmetric Multiprocessing
and Simultaneous Multithreading are shown in Figure 5.
Testing Simultaneous Multithreading on only one CPU
showed an average speedup of 30%. While changing the
viewing direction, the speedup varies from 25% to 35%,
due to different transfer patterns between the level 1 and
the level 2 cache. Whether Hyper-Threading is enabled
or disabled, adding a second CPU approximately reduces
the computational time by 50%, i.e., Symmetric Multipro-
cessing and Simultaneous Multithreading are independent.
This shows that our Simultaneous Multithreading scheme
scales very well on multi-processor machines. The Hyper-
Threading benefit of approximately 30% is maintained if
the second hyper-threaded CPU is enabled.
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Figure 5: SMP and SMT speedups

To demonstrate the impact of our high-level optimiza-
tions we used a commodity notebook system equipped
with an Intel Centrino 1.6 GHz CPU, 1 MB level 2 cache,
and 1 GB RAM. This system has one CPU and does not
support Hyper-Threading so the presented results only re-
flect performance increases due to our high-level acceler-
ation techniques.

The memory consumption of the gradient cache is not
related to the volume dimensions, but determined by the
fixed block size. We use32 × 32 × 32 blocks, the size of
the gradient cache therefore is is(33)3 · 3 · 4 byte≈ 422
KB. Additionally we store for each cache entry a valid bit,
which adds up to333/8 byte≈ 4.39 KB.

Figure 6 shows the effect of per block gradient caching
compared to per cell gradient caching and no gradient
caching at all. Per cell gradient caching means that gra-
dients are reused for multiple resample locations within a
cell. We chose an adequate opacity transfer function to en-
force translucent rendering. The charts from left to right
show different timings for object sample distances from
1.0 to 0.125 for three different zoom factors 0.5, 1.0, and
2.0. In case of zoom factor 1.0 we have one ray per cell,
already here per block gradient caching performs better
than per cell gradient caching. This is due to the shared
gradients between cells. For zooming out (0.5) both gra-
dient caching schemes perform equally well. The rays
so far apart that nearly any gradients are shared. On the
other hand, for zooming in (2.0), per block caching per-
forms much better than per cell caching. This is due to the
increased number of rays per cell. For this zoom factor,
per brick gradient caching achieves a speedup of approx-
imately 3.0 compared to no gradient caching at a typical
object sample distance of 0.5

The additional memory usage of the acceleration data
structures is rather low. The cell invisibility cache has
a size of323 bit = 4096 byte. The min-max octree has
a depth of three storing 4 byte at each node (a 2 byte
minimum and maximum value) and requires at most 2340
byte. Additionally, the classification information is stored,
which requires 66 byte. We use block of size32×32×32
storing 2 bytes for each sample, which is a total of 65536
bytes. Our data structures increase the total memory re-
quirements by approximately 10%.

Figure 7 compares our acceleration techniques for three
large medical datasets. In the fourth column of the table,
the render times for entry point determination using block
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Figure 6: Comparison of different gradient caching strate-
gies

(a) (b) (c) (d) (e)

Visible Male Aorta Lower extremities

Image Dimensions Size Block Octree Cell
(a) 587× 341× 1878 0.70 GB 0.61 s 0.46 s 0.40 s
(b) 587× 341× 1878 0.70 GB 0.68 s 0.53 s 0.45 s
(c) 512× 512× 1112 0.54 GB 1.16 s 0.93 s 0.61 s
(d) 512× 512× 1202 0.59 GB 0.86 s 0.70 s 0.64 s
(e) 512× 512× 1202 0.59 GB 0.69 s 0.46 s 0.37 s

Figure 7: Different degree of high-level optimizations
tested on large datasets

granularity is displayed. Column five shows the render
times for octree based entry point determination. In the
fifth column, the render times for octree based entry point
determination plus cell invisibility caching are displayed.
Typically, about 2 frames/second are achieved for these
large data sets.

7 Conclusions

We have presented different techniques for volume visu-
alization of large datasets on commodity hardware. We
have shown that efficient memory management is funda-
mental to achieve high performance. Our work on paral-
lelization has demonstrated that well-known methods for
large parallel systems can be adapted and extended to ex-
ploit evolving technologies, such as Simultanous Multi-
threading. Our memory efficient data structures provide
frames/second performance even for large datasets. A
key point of our work was to demonstrate that commod-
ity hardware is able to achieve the performance necessary

for real-world medical applications. In future work, we
will investigate out-of-core and compression methods to
permit the use of even larger datasets.
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