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Sketch-based fast and accurate querying of time
series using parameter-sharing LSTM networks

Chaoran Fan, Krešimir Matković, and Helwig Hauser

Abstract—Sketching is one common approach to query time series data for patterns of interest. Most existing solutions for matching
the data with the interaction are based on an empirically modeled similarity function between the user’s sketch and the time series data
with limited efficiency and accuracy. In this paper, we introduce a machine learning based solution for fast and accurate querying of
time series data based on a swift sketching interaction. We build on existing LSTM technology (long short-term memory) to encode
both the sketch and the time series data in a network with shared parameters. We use data from a user study to let the network learn a
proper similarity function. We focus our approach on perceived similarities and achieve that the learned model also includes a
user-side aspect. To the best of our knowledge, this is the first data-driven solution for querying time series data in visual analytics.
Besides evaluating the accuracy and efficiency directly in a quantitative way, we also compare our solution to the recently published
Qetch algorithm as well as the commonly used dynamic time warping (DTW) algorithm.

Index Terms—Machine learning, sketch-based interaction, visual analytics, time series data.
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1 INTRODUCTION

IN the emerging era of big data, extensive time series data
are common in a large variety of application domains.

The visualization of such data is often cluttered, especially
when the trend is non-periodic and the data size is large. In
the exploration of long time series data, it is often hard for
the analysts to visually identify specific patterns efficiently.
To overcome this issue, the topic of finding relevant parts of
time series data has become popular in recent research.

In general, it is easier to visually describe patterns in time
series data than to express them textually or procedurally.
Therefore, visual query systems are a convenient user inter-
face with freehand sketching as an efficient means for visual
communication. The use of sketching enables the analyst
to convey complex free-form patterns of interest, which are
matched against the data to identify subsets of interest.

For matching sketches and data, usually a carefully
designed, empirical model is adopted to estimating the
similarity between the sketch and the time series data.
Often, this approach comes with non-optimal efficiency and
accuracy, having so far also resulted in a limited deployment
of sketch-based visual query systems for real-world visual
analytics applications. More specifically in terms of their
limited efficiency, most of these empirical methods are based
on local characteristics and a sliding window (of the same
length as the sketching query) that is used to compute the
best match or a similarity ranking, generally leading to
a time-consuming comparison procedure that can hamper
the interactive exploration. On the other hand, sketches are
artistic expressions and due to ambiguity and inaccuracies
in sketches, an empirical model is often quite far from
robustly representing the underlying ideas and expectations
of the user. This can lead to matching algorithms that
fail to produce good similarity rankings, especially when
“goodness” is evaluated by humans [1].
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To improve sketch-based querying, we see two main
directions. First, in order to secure a fluid data exploration,
we aim at a fast computation of the matching procedure.
Second, we need a better understanding of the user’s in-
tention given her/his sketch—only this way we can make
the querying result as close as possible to what the user
really needs. Due to great recent success, deep learning in
computer vision [2], image classification [3], and natural lan-
guage processing [4], [5] has attracted a lot of attention. As
pattern matching in time series data is somehow similar to
detecting patterns in images, we expected that deep learning
would boost the performance of matching solutions.

In this paper, we now show a successful exploitation of
the long short-term memory (LSTM) architecture [6] to en-
code the sketch and the time series data respectively in two
networks with shared parameters. In principle, two LSTM
networks with different parameters could be used to learn
the representation of the sketch and the time series data.
In our design, the two networks share the same parameters
and this parameter sharing helps with accelerating training
and limiting overfitting. The networks are trained based
on perceived similarities from a user study. This way, we
integrate the user’s perception into the learned model. As
no existing model is capable of fully capturing the complex
semantics of a user’s sketch, we saw a great potential
to improve the situation by learning the matching model
directly from users. We demonstrate the effectiveness of our
method in comparison with two state-of-the-art matching
models—the recently presented Qetch algorithm [1] and the
seminal DTW technique (dynamic time warping) [7].

Overall, the main contributions of our paper are:
• A data-driven method for sketch-based querying of

time series data. To the best of our knowledge, this
is the first time that deep learning is used to learn
the matching relation between a human sketch and
time series data, outperforming two state-of-the-art
models in terms of accuracy and efficiency.
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• A sketch-based querying system for time series
data. We present a prototype of a sketch-based
querying system for time series data. We offer the
user an opportunity to use a freehand sketch to
explore the time series data interactively without the
need to set any offline parameter.

2 RELATED WORK

Sketching is a natural and expressive type of interaction,
which has been frequently used in the visualization area,
especially as a brushing technique [8], [9], [10], [11], [12]
and in visual query systems [1], [13], [14], [15], [16].

In the following, we provide a brief introduction to com-
mon time series similarity matching algorithms, followed
by a detailed overview of prior work related to visual query
systems for time series data and visualization applications
based on deep learning knowledge.

2.1 Time series data similarity
Among a variety of similarity measures, the Euclidean
distance (ED) and dynamic time warping (DTW) [7] are
the most commonly used measures with the squared ED
being the sum of the point-wise squared differences of the
two time series. The basic ED can be improved by data
normalization, often standardization, which considers the
variation of similar patterns in amplitude and y-offset [17].
Since ED is computed point-wise and the mapping of a
query point to a data point is fixed, it is sensitive to noise
and local time misalignments.

DTW overcomes ED’s inability to handle local time
misalignments (or warps) by allowing horizontal stretching
(or compression) of a time series when searching for similar
data subsets. Therefore, DTW is considered to yield better
fits for shape matching, especially when the similar shapes
are not aligned along time.

For matching a sketched query and time series data,
both ED and DTW require a sliding window of size equal
to the query length to compute the similarities over time.
In their survey, Ding et al. [18] conclude that there is no
distance measure that is systematically better than DTW,
while the relatively simple and straight-forward ED can be
computationally competitive with DTW, when the size of
the data increases.

2.2 Visual query systems
In visual query systems, visual interface components are
used to formulate the user’s queries. TimeSearcher [19] was
a pioneering information visualization tool using timeboxes
to query time series data. The analyst draws a rectangular
region to indicate time points of interest on the time axis
and the range of interesting values on the value axis. Time
series data is then highlighted while passing through the
timeboxes. Later, extended versions have been proposed to
improve the basic timeboxes by incorporating the variable
(fuzziness in the boundaries) [20], angular queries and
slopes to search ranges of differentials [21] and support-
ing more flexibility with options to adjust the query [22].
Overall, timeboxes are powerful value-based widgets and
they are used in several visual query systems. Still, it is far

from straight-forward to specify a shape-based query with
timeboxes, for example, a head-and-shoulders pattern.

The Querylines system [23] realizes a filter-based ap-
proach to visual querying. It offers the user the opportunity
to specify constraints by using line segments. The analyst
can qualify these line segments as hard or soft constraints
based on their preference. If the query gets over-constrained,
feedback from the system enables the users to refine the
query specification.

An alternative technique for constructing visual queries
is to first identify common shapes such as a spike, sink, rise,
drop, plateau, and valley, and then build queries using these
basic shapes as pattern templates [24].

The concept of a sketch-based visual query system was
first proposed by Wattenberg [13]. In his approach, the
analyst sketches an approximate pattern on the same dis-
play where also the data is visualized for searching similar
patterns. The similarity to the time series data is calculated
as simple ED. The system is straight-forward to use, but
the quality of matching relies strongly on details and well-
defined time and amplitude ranges of the sketch, which is
in general not easy for the user to handle.

To improve the flexibility and tolerance in their sketch-
based visual query system, Holz and Feiner [14] provided a
relaxed selection technique which allows the user to implic-
itly indicate a level of similarity that can vary across search
patterns during sketching. Specifically, the mouse speed is
used to inform the system about the spatial and temporal
tolerance of points in the sketched query.

In order to study the human perception of correspon-
dence between sketches and time series patterns, Eichmann
and Zgraggen presented a comparison of rankings of com-
puted pattern matches with human-annotated results [25].
They found that human-annotated rankings can differ dras-
tically from algorithmically generated rankings and con-
cluded that the meaning of sketching is too diverse to be
captured in one algorithm or metric.

As a multitude of queries can be targeted by the same
sketch, Correll and Gleicher [15] investigate the ambiguities
of sketch-based query systems in time series data and define
a set of “invariants”, enabling the user to choose the prop-
erties of data to ignore while sketching. In addition, they
adapt different matching algorithms to support different
invariants. The main drawback of this approach is that it
is not easy and straight-forward for the user to think about
the invariants while doing data exploration.

Muthumanickam et al. [16] outline important perceptual
features for effective shape matching and define a grammar
to express time series data approximately by considering
the data as a combination of basic elementary shapes posi-
tioned across different amplitudes. These basic shapes are
represented by using a ratio value and then a symbolic
approximation can be achieved by performing binning on
ratio values. The major problem of this method is the limited
query expressiveness, along with the black-box nature of
query execution with each shape often having its own
processing or matching steps.

Research on visual perception suggests that we mentally
decompose complex shapes into salient parts such as piece-
wise upward or downward lines, peaks and troughs [26],
[27], [28]. Based on this research, Mannino and Abouzied
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present Qetch [1], a tool where users freely sketch patterns
on a scale-less canvas to query time series data and get rid of
specifying query length or amplitude. This method claims
its advantage (dealing with the scale-less sketch) over the
traditional matching algorithms—ED and DTW. However,
in our observation, the query result is very sensitive to the
smoothing level of the time series data as the query length
is based on the salient parts (constructed by extrema and
inflection points) of the data.

2.3 Deep learning for visualization

Traditional machine learning has been used, for example,
in automated visualization design [29], [30], [31], [32], [33],
[34]. In recent years, deep learning has become popular due
to its successful application to a wide range of fields, espe-
cially in image processing and natural language processing.
In the visualization area, according research focuses on
helping with the design, training, diagnosis and refinement
of deep learning models [35], [36], [37]. Using deep learning
for solving visualization tasks, however, is still rare.

Han et al. [38] presented FlowNet, an approach based on
an autoencoder, for improving clustering and the selection
of streamlines and stream surfaces. Kim and Gunther [39]
extract a robust reference frame based on a convolutional
neural network (CNN) that is able to yield a steady reference
frame for a given unsteady 2D vector field. Hu et al. [40]
introduced VizML that predicts visualization design choices
from a large corpus of datasets using neural networks.
Data2Vis [41] makes use of recurrent neural networks to
generate Vega-lite visualization specifications from JSON-
encoded datasets.

Further, we see visualization solutions that leverage
deep learning to improve techniques in visual analytics,
for example interaction techniques. Fan and Hauser [10]
exploited a CNN and modeled sketch-based brushing in
scatterplots to predict the selected points. This method
achieves state-of-art accuracy while providing a fast inter-
action. The model is trained on data from different users
in a user study, leading to a general model that is thus not
optimized to every single user. To address this issue, they
presented a personalized CNN-based brushing technique
that is able to iteratively refine the brushing model for a
single user with additional data that he/she provides while
using the brushing technique [11].

More recently, Chen et al. [42] developed a learning-
based approach to realize a lasso selection of 3D points by
modelling the selection as a latent mapping from viewpoint
and lasso to point cloud regions.

3 THE PRINCIPAL APPROACH

The overall goal of our research was to design a visual
query system for time series data with a fast interaction
and an accurate query result in order to solve efficiency and
accuracy problems of existing solutions. Also, the system
was expected to be friendly to the non-expert and easy to
use with limited training. Figure 1 shows an illustration
of the principal approach. To achieve a swift interaction,
we use freehand sketching as the querying input and a
similarity function S that is capable of interpreting the

Fig. 1. Illustration of our principal approach: users specify the targeted
scale of the time series data by zooming, panning or smoothing, then
freely sketch an approximate pattern on the sketching panel. Then a
similarity rank between the user sketch and the processed time series
data is computed by the proposed parameter sharing LSTM networks.
The network is trained only once offline based on user study data.

relation between the human sketch I and the matching
goal in the time series data V as accurately as possible.
Further, we aimed at a real-time system, meaning that the
computational cost should be minimal, as well.

Based on our understanding that all empirical models
have their limitation at estimating the intended meaning of
a human sketch, we found it promising to exploit learn the
needed similarity measure directly from users. Recurrent
neural networks (RNNs) are a straight-forward solution
for encoding time series data and to do the matching for
two reasons: 1., RNNs have a memory which allows the
model to keep information about its past computations.
This enables RNNs to have dynamic temporal behavior,
which naturally fits to sequential data like time series data.
2., An advanced version of RNNs, LSTM networks (long
short-term memory), can be trained to remember the in-
formation from a specific length of past times steps. This
mechanism can be used to mimic a sliding window while
doing the matching computation along the time series data.
At the same time, it avoids reading the same data repeatedly,
leading to a relatively low computation cost.

To construct the network structure, we used a pair
of LSTM networks with shared parameters to encode the
sketch and the time series data, respectively. The sharing
of the network parameters was beneficial because of the
high similarity between the sketch and the time series. The
thereby reduced overall number of parameters accelerates
the training procedure and helps with preventing overfit-
ting. This design is inspired by the “Siamese” network-
based solution for sentence similarity [5]. Detailed descrip-
tion of our network is given in section 4.3.

To train this pair of networks, we collected data from
two user studies. For the first user study, we gathered the
ground truth about how different users sketch patterns and
how they rate similarities based on their visual perception
of correspondences between their sketches and several clips
of the time series data that we offered. In the second user
study, we examined the variation of the user’s sketches in
order to use this for modeling an extension of the training
data for a more stable training.
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Users can change the degree of  smoothing 

Sketching panel is provided and located in the center 

Users choose a dataset to visualize with a default smoothing level 

Users can explore all the sorted matching results in terms of similarity 

The best match (colored in green) is shown immediately and aligned with the sketch 

Query 

Step 1 

Step 2 

Step 3 

Step 4 

Users can explore all the sorted matching results by using the provided sliding bar 

Zooming/panning/adjust 

the smoothing of the data 

Fig. 2. The interface of our sketching system for time series data. To explore, users choose data first and interact with the data then to specify the
scale of interest by zooming and panning. Then the user sketches a pattern of interest. A matching rank is computed and results are explored.

In the following, we introduce the four basic steps of our
data exploration workflow (technical details are provided
in section 4.1). Figure 2 illustrates the user interface of
our proposed sketching system and the four steps to data
exploration.

Step 1: Data Preprocessing. For most time series data,
some smoothing is necessary to capture the key patterns
of interest, leaving out noise and patterns on other scales.
In our design, cubic splines are used to smooth the data.
Instead of asking the user to specify the smoothing level,
we offer a default smoothing level after loading the dataset.

Step 2: Interactive Scaling and Smoothing. Choosing
a scale (and a smoothing level) for data exploration is a
crucial user-side task – meaningful questions may be asked
about time series data at multiple scales, depending on the
user task. Instead of iterating through all possible scales
and smoothing levels while matching, we allow the user to
interact with the data via zooming and panning (and/or ad-
justing a slider to specify the targeted scale and smoothing
level), after initially estimating a proper scale automatically.

Step 3: Sketching. Once the scale and smoothing is
determined, a sketch panel is provided for the user to do
free-hand sketching. The empty sketch panel is located at
the center of the canvas to let the user sketch at the targeted
scale, visually referring to the scaled time series data in the
background. Sketches are then slightly smoothed in order
to remove hand jitter and the query length is determined by
the sketch length.

Step 4: Query and explore the matching results. The
two parameter-sharing LSTM networks are then executed
to obtain an ordered set of similarities between the sketch
and subsets of the time series data. The best match is
immediately highlighted in green after the computation and
the corresponding time series data is shifted by aligning the
best matching part with the sketch. Moreover, a slider is
provided to explore all the other results from the ranked list
of matching results.

4 TECHNIQUE IN DETAIL

In the following, we first go through the details of scaling
and smoothing before we then describe the specification of
the used RNN and the design of the proposed network.

4.1 Scaling and smoothing the data

As we mentioned, a default smoothing level (denoted by
k0) is computed for the data after loading, based on the
number of salient parts (denoted by Ns). We count the
salient parts by segmenting the time series data at extrema
and inflection points. To obtain the default smoothing level
for each dataset, we adjust the smoothing level until we
are satisfied with the number of salient parts that were
enough to represent the time series data in advance and
this smoothing level is then chosen as the default smoothing
setting in the beginning.

To represent the scale of the data, we use z with z = 1 in
the beginning. We assume that the user wants to see more
details when zooming in (and vice versa when zooming
out). To automatically adjust the smoothing level during
zooming, a linear function is used to adapt the smoothing
according to the (logarithm of the) scale: k(z) = k0−a · ln z,
where a is a coefficient that we obtained via a simple
regression procedure. Specifically, we used that the levels of
details are related to the number of salient parts. A correctly
chosen a should lead to a stable number of salient parts
while zooming in or out. To achieve this, we randomly
choose 10 points in the time series data for a specific value
of a and then compute the number of salient parts with 10
different scales. The results were used to fit a linear function
with h as the coefficient (Ns = h · ln z + d). This procedure
was repeated several times by trying different values of a.
This way, we identified a well-working a by finding hwhich
was closest to 0. In our work (10 different datasets), the
value of a varied from 50 to 1371, while k0 ranged from
9054 to 549923. Doing this offline in advance (finding a and
k0 for each dataset), we can minimize the operations that
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Fig. 3. Complete structure of the LSTM cell, which can process data
sequentially and keep its hidden state through time.

the users have to do and help them focus on the pattern
searching in the time series data. To increase the flexibility,
the user can also use a slider to adjust the smoothing level,
if they are not satisfied with the suggested smoothing level.

4.2 Recurrent neural network (RNN)

An RNN is an extension of the traditional feed-forward neu-
ral network which is able to store relevant parts of the input
and use this information to predict future outputs. More
formally, at time step t, the memory cell’s current hidden
state ht, preserved by the RNN structure, is a function of the
input at the current time step (Xt) and the hidden state at
the last time step (ht−1). The RNN updates its current state
by computing ht = φ(ht−1,Xt), where φ is a nonlinear
function such as the composition of a logistic sigmoid with
an affine transformation. Optionally, the output at time step
t, denoted by Yt is a function of the previous state and the
current input, and it is the same as the hidden state ht for
basic cells.

Although a basic RNN performs well in capturing non-
linearity in time series data, it was observed that back-
propagation dynamics caused the gradients in an RNN to
either vanish or explode while training to capture the long-
term dependencies [6].

To overcome this disadvantage, the LSTM (long short-
term memory) architecture [43] was proposed by Hochreiter
and Schmidhuber. As shown in Figure 3, in addition to the
hidden state vector ht, LSTMs also maintain a memory cell
ct at time t. At each time step, the LSTM can choose to
read from, write to, or reset the cell using explicit gating
mechanisms. The memory cell ct is updated by partially
forgetting the existing memory and adding new memory
content:

ct = f(t)⊗ ct−1 + i(t)⊗ tanh(WcXt + Ucht−1 + bc) (1)

where the forget gate f(t) controls the extent to which the
existing memory should be erased while the input gate i(t)
is used to decide the degree to which the new memory
content is added. The two gates are computed respectively
by

f(t) = σ(WfXt + Ufht−1 + bf ) (2)

data sketch 1
exp(- h - h )

h0                            h10                           h20                                                              h0                            h1000

LSTMdata LSTMsketch

Similarity∈[0,1]

Parameter sharing network

LSTMdata=LSTMsketch

Lead data Sketch dataTime series data

Fig. 4. The structure of our proposed double network: the time series
data (green) with lead data (purple) on the left and the sketch (blue)
are encoded by the two parameter-sharing LSTM networks, which are
trained against a distance metric based on the Manhattan distance.

i(t) = σ(WiXt + Uiht−1 + bi) (3)

Moreover, the output gate o(t) controls the exposure of the
memory content and it is computed by

o(t) = σ(WoXt + Uoht−1 + bo) (4)

As a last step, the output of the LSTM unit (Yt(= ht)) at
time step t is be obtained by

ht = o(t) tanh(ct) (5)

In all of the above, operator ⊗ is the Hadamard product
(entry-wise product). Xt ∈ Rd, f(t), i(t), o(t),ht, ct ∈ Rh.
The weight matrices W ∈ Rh×d and U ∈ Rh×h and the bias
vector b ∈ Rh are learned during training. The dimensions
d and h correspond to the number of input features and the
number of hidden units, respectively.

Instead of overwriting its content at each time step, an
LSTM unit is able to decide whether to store or retrieve the
existing memory via the introduced gates. The activations
of these gates are based on the sigmoid function and hence
range smoothly from 0 to 1 (not at the least to keep the
model differentiable). Intuitively, if the LSTM unit detects
an important feature from an input sequence at an early
stage, it carries this information (the existence of the fea-
ture) over multiple steps, capturing potential long-distance
dependencies.

4.3 Network design

Figure 4 provides an overview of our proposed network
structure for estimating the similarity between the user’s
sketch and the time series data, composed of two LSTM
networks: LSTMdata and LSTMsketch, sharing their param-
eters.

In each time step, the hidden state (h) has to be carried
as an input to the next time step. For the similarity compu-
tation, we only consider the final representation of both the
time series data and the sketch, encoded as hdata and hsketch,
respectively. To compute the similarity between these two
vectors, we use a metric based on the Manhattan distance,
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which can be defined as exp(−‖hdata − hsketch‖ 1) ∈ [0, 1].
The reason to choose an L1 norm for the similarity compu-
tation is that an L2 norm can lead to undesirable plateaus in
the overall objective function due to vanishing gradients of
the Euclidean distance [44]. During the training, the network
learns how the predicted similarity between hdata and hsketch
deviates from the user-annotated ground truth.

In order to compute the similarities along the time series
data, we mimic a sliding window by making use of the
special feature of the LSTM network that in each time step it
can choose to forget a part of the information extracted from
the previous time steps. In the training, which we explain in
more detail further below, the network is trained to force the
output of each time step to represent the information only
for a specific number (L) of previous time steps. Figure 4
shows a typical example, where the sketch data is sampled
as 21 “blue” points, determining the size of the sliding win-
dow (L = 21). Therefore, after a proper training, hdata only
contains the information of the 21 “green” points and the
influence of the previous 10 “purple” points are forgotten.
As the output of each time step can be trained to contain the
information of a certain previous time steps, our method
only needs to iterate the data once and then interpret the
output of each time step for the matching computation,
which is much more efficient than the traditional sliding
window, which needs to access a data point several times
while moving.

4.4 Training the network
We define the training data as ([Li, Ri] ∈ Tin, yi ∈ Tout)Ni=1

as pairs of input and expected output (N is the number
of training samples). Li contains the time series data and
its synthesized left lead data while Ri is the corresponding
user sketch. The reference output yi is the human annotated
similarity between Li and Ri, which the model is trained
against. We optimize the parameters of the network based
on the training data using the mean-squared error as a loss
function.

During training, no hyper-parameter explicitly “tells”
the network to learn the information from a certain length
of previous time steps in each time step. The mechanism
for the LSTM to forget earlier data is when the network
finds that the information carried by certain previous time
steps is important, while the information before that is not.
To teach the network to “understand” this, we add some
synthesized data of half the length of the query to the left
of the time series data (for example the purple points in
Figure 4). The synthesized data is chosen from other parts
of the same data, where the clip of the time series data is
extracted from and then smoothly connected to the left of
the time series data. For one pair of time series data and a
sketch, we add 10 different synthesized lead data to the left
of the time series data, which has been tested to make sure
that the network can recognize the real data and force itself
to forget the influence of the synthesized data. In this way,
the network is trained to only remember a specific length of
earlier data in each time step. Based on this, we can compute
the similarity rank along the time series data while reading
the time series only once.

High accuracy cannot be achieved without provid-
ing enough training data. It is labor-intensive and time-

Fig. 5. Lead data synthesis. Left: time series data (orange) with actual
lead data (red), and the user’s sketch (purple). New lead data (black)
is randomly chosen. Middle: the new lead data is smoothly attached
(green) to the time series data (orange) by interpolation. Right: ten
instances of synthesized lead data.

consuming to invite a large number of users to provide a
large amount of user data. Instead, we follow a common
strategy and synthesize additional training data from the
already acquired training set by modeling the natural varia-
tion of user sketches. In the following, we describe how we
synthesize the left lead data of the time series data and the
variation of user sketches in detail.

4.5 Training data augmentation
In addition to the training data that we acquired by a user
study, we employ two strategies to augment the training
data: First, we synthesize lead data ahead of the actual time
series training data in order to teach the network the actual
query length. Second, we generate variants of the sketch,
based on a second user study that informed us about the
natural variation of the user’s sketching interaction.

4.5.1 Lead data synthesis
To preserve the character of the time series data, we initialize
the newly synthesized lead data with randomly chosen
snippets from the original time series data connected them
to the left of the time series training data. Figure 5 shows the
whole procedure of lead data synthesis: The user’s sketch is
shown in purple and the corresponding time series data clip
in orange with its actual lead data in red (denoted as r(t)).
New lead data (black, denoted as b(t)) is chosen randomly
from the time series data, forming the basis of the newly
synthesized lead data.

To start, we randomly choose another part of the original
time series data (with the targeted length). We do so to
maintain the overall character of the time series data when
synthesizing new lead data. Obviously, this usually leads to
a non-smooth connection with the actual time series data
(illustrated on the left in Figure 5).

To achieve a natural, smooth concatenation, we designed
a simple, fifth-order polynomial weighting function w(t)
to merge r(t) and b(t) by convex combination. We set
up w(t) to fulfill six constraints: w(0) = 0, w(1) = 1,
w′(0) = w′(1) = 0, and w′′(0) = w′′(1) = 0, leading to

w(t) = 6 t5 − 15 t4 + 10 t3 . (6)

Given that we wish to adapt the last n+ 1 values of the ran-
domly chosen new lead data b(t) (of length m) to smoothly
connect to the following time series data, we compute

bnew[i] = (1− w(t)) b[i] + w(t) r[i] (7)
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Fig. 6. Sketch synthesis. Left: illustration of the modeling base between
two consecutive points A and B in the sketch and the corresponding
goal point Bg . Right: 9 modeled interactions (colored in green) accord-
ing to the specific querying target (orange curve) and the original user
sketch (purple curve).

for t = i−(m−n)
n and i ∈ [m − n,m], keeping bnew[i] = b[i]

for i < m − n. Adapted bnew[i] then smoothly connects to
the following time series data in i = m.

In our experiment, the randomly chosen part is sampled
into m = 20 points and the last n = 8 points are merged
with the real lead data. In the middle of Figure 5, r is shown
in red, b in black, and bnew in green. On the right of the
Figure 5, 10 different pieces of lead data are generated for
one pair of sketch and time series data, all smoothly con-
nected to the time series data (orange). This approach leads
to a good variation of synthesized lead data, mimicking
plausible cases for all time series data that we worked with.
Synthesizing ten instances of substantially varying lead data
allows the LSTM to learn that only the actual time series
data (orange) is to be taken into account when matching
with the sketch.

4.5.2 Sketch synthesis
Clearly, there is a certain amount of natural variation in the
users’ sketching interaction (even if intended, they would
not repeat the same sketch twice – at least not exactly).
In order to achieve a stable training result and to reduce
overfitting as much as possible, we synthesize additional
sketches based on the natural variation of human sketches.
To collect information about natural sketch variation, we
organized a user study in which we asked the users to repeat
the same sketch several times for a specific matching goal.
The details of this user study are presented in section 5.2.

Figure 6 is an illustration of how we consider the varia-
tion of sketches based on the user study, also showing nine
sample synthesis results according to the fitted model. As
the user sketch is recorded as discrete points, the variation
is modeled point-wise and consists of two parts that are
meaningfully modeled separately: the horizontal displace-
ment dx and the vertical displacement dy . A and B are
two consecutive points of the user sketch, while Bg is the
corresponding goal point which is located in the time series
data (the point which the user aimed for). The distance dy
is the vertical point-wise displacement between the user
sketch and the goal. θ is the angle between ABg and AB.

By examining the user study data, we found that θ
is strongly correlated with dy , meaning that larger angles

lead also to larger vertical displacements. Based on this
observation, we use a cubic polynomial model m1(θ) to fit
the relation between θ and dy . As m1 represents the central
tendency, we can compute the absolute difference between
m1(θ) and dy to model deviation information. Also here,
we use a cubic polynomial to fit the relation between this
difference and θ as m2(θ). Eventually, we can sample dy
from a normal distribution N(m1(θ),m2(θ)) with m1(θ) as
the mean andm2(θ) as the standard deviation. Additionally,
we compute the horizontal difference dx between two con-
secutive points for distribution fitting from the user study
data. We found that the average of dx is around 1.5 pixels,
which is too small and detailed to observe any variation.
Thus, we consider a larger interval by taking every 10 points
into account instead of every point, which we think is more
reasonable for distribution fitting. Based on the statistical
data we gathered, we used the statistical tool EasyFit [45] to
analyze which distribution fits our variation data best. As
a result, the variance of dx (denoted as var(dx)) follows a
logarithmic distribution f(x) = −αx

x ln(1−α) with α = 0.8525.
For synthesizing a new sketch, given a user sketch I and

the querying target G, we compute a new user interaction
I ′ based on random samples from the fitted PDFs. We start
from the first point in I , denoted by I1. We then have I ′1 = I1
and θ1 as the angle between I1I2 and I1I

′
2. Based on this,

we can synthesize the next point I ′2 with I ′2x = I ′1x + dx1

and for I ′2y we have I ′2y = G2y − dy1 when G2y > I2y
while I ′2y = G2y + dy1 when G2y < I2y . For sampling, dxi

is sampled from the logarithmic distribution f(x) and dyi is
sampled from the normal distribution N((m1(θ1),m2(θ1)))
respectively. All subsequent points of the new sketch I ′ are
estimated in the same way.

On the right of Figure 6, nine user interactions (purple)
from the second user study are shown that we used for
studying the variation of sketches and the correspondingly
modelled synthetic variations are shown in green, confirm-
ing that our model is able to generate meaningful and
realistically looking sketching variations.

4.6 Training details

The original training data collected from the first user study
consists of 2200 pairs of sketches and time series data with
similarity ratings by the users. We extended this data by
synthesizing ten pieces of lead data for each time series
data and adding four modeled sketches for each actually
recorded sketch, resulting in 110 000 pairs of ([Li, Ri], yi) as
the training data. As the queries were supposed to match
independently of their horizontal and vertical position, we
preprocessed the input data ([Li, Ri]) by removing the x-
coordinate and replacing the y-coordinate by its first deriva-
tive.

For our research, we implemented the network and
executed the training in Keras with Tensorflow as the back-
end, providing powerful GPU acceleration and convenient
coding flexibility. For training and testing, we used a PC
with an Intel Xeon E5-1650 CPU and an NVIDIA GeForce
GTX 1080 GPU. There are two main hyper-parameters of
the network to be set: time step (i.e., sliding window length)
and cell size (i.e., output dimension). As the sketching panel
in our experiment is 200×200 pixels, we experimented with
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Candidates computation 

(20 candidates per sketch) 

 Similarity rating 

(Likert scale) 

Step 1                                                  Step 2                                                          Step 3 

Step 4 

Looking at a goal to be selected 

(10 times per user) 

Sketching 

(5 times per user) 
Sketching it 

 Similarity rating 

(5-level Likert scale) 

Fig. 7. Pipeline of the first user study. After sketching a pattern, we offer 20 candidates (computed by ED) per sketch and ask the user to rate
similarity between them. Then, in order to enforce some high similarity data, we offer 10 target time series clips and ask the user to do the sketching
aiming for them. In total, we can get 110 pairs of user sketches and time series data per user with corresponding similarity ratings.

different values of the sampling frequency and found that 40
(sampling interval up to 5 pixels) is sufficient to represent
the details of a sketch. Therefore, we set the time steps of
the LSTMdata to 60 and the one of LSTMsketch to 40, which
means that the length of the sliding window that we mimic
is 40 (L=40). The hidden feature of the LSTM cell was set
to be of size 20. Besides, a dropout function with a drop
rate of 0.2 (common value) was used to limit overfitting.
We optimized the parameters (1760 in total) of the network
based on the training data using the mean-squared error as
a loss function. The Adam optimizer was used during the
optimization and the learning rate was set to 10−3. In total,
we ran 2000 epochs for the training with a full batch.

5 USER STUDIES

Since the user plays a key role in visual query systems and
to meet the user’s expectation as close as possible regarding
the matching, we conducted a user study to investigate
how users sketch patterns and how they rate the similarities
between their sketches and corresponding time series data.
We then used this information to train our double network.
Further, we also conducted a follow-up user study to ex-
plore how the user uses our sketching query in practice and
analyzed the natural variation of their sketching interactions
in order to prepare for the synthesis of additional data for
a more stable training. Eventually, to evaluate our model,
we also organized a third user study, in which we asked the
users to rate the results from our model in comparison to the
Qetch algorithm as well as to the DTW algorithm. Below, we
provide more details about the three user studies.

5.1 User study for base training data
For the first user study, 10 different time series data with
length ranges from 91 to 4774 were prepared as a basis. All
of these data were carefully chosen in advance from datasets
in finance, industry, medicine, and the labor market, with a
healthy spread of characteristics (covering important and
common patterns: head-and-shoulder, sharp rises/dips, up-
ward or downward slopes, peaks and troughs, etc.). For
each dataset, 5 new variants were produced based on 5
different scales and these 50 new time series data were used
for the user study. The procedure of the first user study
consists of four steps, illustrated in Figure 7:

1. First, an empty canvas (900×400 pixels) was shown
to the user and at the same time the user was asked to
think about a pattern he/she wanted to look up from an

instance of time series data. Then the user used the mouse
to sketch this pattern on the sketch panel (200×200 pixels,
located in the middle of the canvas). The reason for choosing
a mouse as the input device was that we wanted as general
as possible results and pen-based input is not generally
available to many users.

2. Based on the user’s sketch, we computed similarities
by using a simple ED matching rule and a sliding window
with step length of 20 pixels, over all the 50 variants of
the prepared time series data, yielding a ranked list of
matches. We then chose 20 candidates evenly from the
matching results based on their similarity rank. The 20
candidates were distributed evenly around 0%, 25%, 50%,
75%, and 100%, where 0% means the most dissimilar and
100% amounting to the best match. The purpose of this
procedure was to achieve training data within a healthy
range of similarities so that the network could learn the
similarity function properly.

3. In the next step, the user was asked to rate the
similarities between their sketch and the 20 candidates we
offered, one by one. The similarity rating was acquired on
the Likert scale [46], which is commonly used to collect
respondents’ attitudes and opinions. We asked the users to
choose their rating from five options: no match (s = 0), bad
match (s = 0.25), half good / half bad match (s = 0.5), good
match (s = 0.75), and excellent match (s = 1). All users
were clearly informed about the correspondence between
the similarities and the five rating options in the tutorial
section of the user study. For the whole study, each user
had to do five sketches and for each sketch he/she rated
the similarity against 20 candidates based on their visual
perception. In total, 100 pairs of time series data and sketch
with rated similarities were recorded per user.

4. In the second step, we used simple ED to do an initial
selection of candidates for rating, aiming at training data
with balanced similarities. The actual situation, however,
turned out to be so that only for very few candidates our
users were satisfied enough to rate them as good match or
even as excellent match. Therefore, in the fourth stage of
this study, instead of asking the users to sketch a pattern
in their mind, we showed them 10 additional candidates in
sequence, asking them to sketch while aiming at the shown
curve. Then, we asked them to rate how satisfied they were
with their own drawing, again using the Likert scale. This
way, we got some additional pairs of data with highly rated
similarity, making sure that our training data covers a health
range in terms of similarity.
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60

Fig. 8. Left: comparison between our method and the Qetch algorithm. Middle: comparison between our method and DTW. Green bars show how
often our technique was preferred (red: how often Qetch/DTW was preferred; blue: tied) and the purple line indicates per user the improvement
as achieved by our method (positive: average improvement due to our method). Right: IQR values showing output variation between different time
series from the 1st time step to the 60th, indicating the change of variation over time.

In the first user study, 20 users were invited to par-
ticipate, all students or employees from the University of
Bergen, and in total 2200 pairs of data with perceived
similarities were collected for training (the details of the
collected pairs are shown in the supplementary material).
Before the user study, every user was given a training
session to get familiar with the interface and the mouse
operations for sketching. In addition, we showed them 10
typical patterns in time series data such as rounded-bottom,
head-and-shoulders, sharp rise and down, falling peaks,
and so on. This procedure is to help those users, who
were unfamiliar with time series data, to do the sketching
meaningfully. During the training session, we answered any
questions they had about the tool until they were ready for
the study.

5.2 Studying the variation of sketches
Naturally, for the same matching goal, the sketch done
by the user will be a bit different every time. In order
to understand the natural variation of the user’s sketches,
when having the same matching goal and sketch operation
in mind, and to model this variation for synthesizing ad-
ditional data for the training, we did this follow-up user
study based on the first user study. In the second study, 10
individuals, all students or employees from the University
of Bergen, participated. We chose 100 representative clips of
the time series data from the first user study. These 100 clips
have an even distribution in terms of shapes and frequency,
which forms a healthy base to investigate the variation of
human sketches. For each user, 10 different time series clips
were displayed as the matching goal for sketching. The
second user study then consisted of two parts:

In the first part, the users were asked to look at a clip of
the time series data that we provided. Then, the users were
required to draw a sketch with the goal to match the shown
clip. The users were asked to repeat this interaction 12 times
in each case. The traces of all sketches were recorded during
the study. Altogether, 1200 sketches were collected and used
for modeling the variation among sketches.

5.3 Evaluation user study
In order to evaluate our new model, learned by the double
network, we conducted a third user study, asking users to

tell whether the computed matching results were consid-
ered good, or not. As a baseline for comparison, we chose
two state-of-the-art techniques, i.e., DTW and the recently
published Qetch algorithm [1]. The well-established DTW
metric was chosen as one of the best options for distance
measures in time series data [18], while the authors of Qetch
claimed its strength over DTW for freehand sketch and
matching for high-level task (in terms of time spent). In this
user study, the users were asked to rate the matching results
computed by Qetch, DTW, and our new method, leading to
a quantitative, comparative evaluation reflecting the user’s
perspective.

For this evaluation study, 10 users were invited. For each
user, 8 new time series data (with lengths ranging from 40 to
1440, none of them used for training before) were provided
in sequence to test the generality of the proposed model.
The procedure of this user study consisted of two steps:

1. To start, a dataset with a useful default smoothing
level (see above) was presented to the user. For each dataset,
the user could interact with the interface and specify the
targeted scale of the visualization by zooming with the
mouse. In addition, users could also adjust the smoothing
level by using a slider.

2. Then, the user was asked to sketch a pattern he/she
wanted to look up from the time series data on the sketching
panel. Based on the user’ sketch, we computed the three best
matching results from our new model, the Qetch algorithm,
and using DTW, respectively. Then, we showed these three
results (in random order and without telling which is which)
to the user and asked them to rate the similarity between
their sketch and these three results separately. As Qetch
and DTW are highly competitive matching algorithms, cap-
turing the difference between good and very good results
requires more detail, so we offered a once refined nine-
points range (also from 0 to 1, s = 0, 0.125, 0.25, 0.375...1.0)
for rating instead of the courser five-points Likert scale,
delivering the required details for a proper comparison.

During this study, we recorded the similarity rating from
each user for a subsequent quantitative analysis (see below).
For each data, the user sketched four times and did four
sets (our method, Qetch, and DTW) rating. Accordingly, we
collected altogether 320 sets of rating results from 10 users.
In addition, the time cost of computation were recorded for
comparing efficiency, also. Before the user study started,
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every users was offered a training session to get familiar
with the interface and the interaction of the user study.

6 EVALUATION RESULTS

For evaluating our matching model, we did a quantitative
comparison with Qetch and DTW – shown on the left and
in the middle of Figure 8. The results (32 pairs from each
user in the third study) are shown as bars (how often one
technique was preferred) and as a line graph (average im-
provement). Green bars show (per user) the number of times
that our method was rated with a higher similarity than
Qetch (left) or DTW (middle), while red bars represents the
contrary (blue bars a tied rating). Further, we also compute
the average improvement (denoted as imp) of our method
as compared with Qetch/DTW in terms of the similarity
value: imp =

sour−sqetch

sqetch
or sour−sdtw

sdtw
(sour, sqetch, and sdtw

denote the average similarity rating of our method, the
Qetch algorithm, and DTW, respectively) and show it (also
per user) as line graph in purple.

By looking at the bar graph in the left of Figure 8, we
clearly see that all users preferred our matching over the
Qetch algorithm and that our method was preferred about
2.5 so often as the other way around (193:77). The line
graph shows that all average improvements are positive,
providing a clear evidence that our method is closer to
the user’s perception in terms of similarity. More specifi-
cally, the average improvement is ≈42% as s̄our=0.64 and
s̄qetch = 0.45, where s̄our and s̄qetch are the average similarity
values of our method as compared to the Qetch algorithm.
Based on this evaluation, we are confident to conclude that
in general our method performs significantly better than
the Qetch algorithm, when the matching results are directly
judged by the users.

By looking at the chart in the middle of Figure 8, 7 out
of 10 users preferred our technique over DTW according to
the bar graph, while the average improvements are positive
(in our favor) for 9 out of 10 users, when looking at the line
graph. The overall ratio of users preferring our method over
DTM is around 1.2 (115:93) and the average improvement
for each user is ≈7% with s̄dtw = 0.6 (s̄dtw is the average
similarity of DTW rated by all the users). Overall, and even
though the improvement numbers are clearly smaller than
in the comparison with Qetch, this suggests that our method
is slightly better than DTW in terms of accuracy (at least not
worse) when evaluated directly from the user’s perception.
The details of all user ratings are in the supplementary
material.

Furthermore, and since a swift user–computer dialogue
in visual query systems is highly dependent on the effi-
ciency of the involved interactions, we also compared the
computation cost of the three methods. According to the
user study, the average computation costs of our method,
Qetch, and DTW, are 33ms, 132ms and 3.6s, respectively.
Based on this data, we see clearly that our method is the
most efficient one due to its linear complexity, while DTW
is the slowest and unable to achieve a real-time interaction.

Besides the quantitative evaluation in terms of accuracy
and efficiency, we also examined the output of each step
of the LSTM network to check whether the network learns
meaningful information. The reason for doing this was that

the network was implicitly taught to only remember the
information of a specific length of previous time steps (we
set this to 40 in our experiment) with a goal to mimic a
sliding window for matching. To investigate whether the
network has successfully achieved this important feature,
we collect the output (namely the hidden state h) of each
time step of several time series data with different left lead
data and compute the output variations over the time steps
to analyze whether the network is able to discard long term
dependencies. The details are illustrated below.

In our training, the time series data clips were sampled
at 40 points with synthesized lead data “on the left” at 20
points. For looking into the information as learned by the
network, we did an experiment that generated 20 time series
snippets with length 60 (denoted as Gi, i ∈ {1, . . . , 20}),
where the trailing 40 entries for each time series were the
same, but the first 20 varied according to our synthesis
procedure. As a reference, we have another time series
(denoted as ref ) that has the same last 40 entries but with
a real lead data that is different from all synthesized lead
data Gi. We then iterated the time series and the reference
time series over the 60 time steps by using the already
trained model and obtained a set of outputs with format
20×1×60×20 and 1×60×20. We then computed the cosine
similarity between all outputs of Gi and ref per time step,
leading to a set of 20 cosine similarities. We compute the
inter-quartile range (IQR), i.e., the difference between the
75%- and the 25%-percentile, as a robust indicator of the
variation over the time steps.

After iterating over all the time steps from 1 to 60, we
have 60 IQR values which represent the output variations
over the 60 time steps and this information is shown in the
right of Figure 8. As we mentioned, from the 1st time step
to 20th time step, the network output corresponds to lead
data – since all of the lead data was randomly synthesized
the variation during this period is fluctuating at a relatively
high level. After time step 20, however, we see a decline
of the IQR values, correlated with the networking reading
actual time series data. Towards the 60th time step, the
IQR values approach 0, which meets our expectation that
the output at the last time step almost only represents the
information of the previous 40 time steps. In summary, this
statistics gives us a strong indication that the LSTM network
has been successfully trained to understand that only the
information from a certain length of the previous time steps
should be taken into account in each time step.

7 LIMITATIONS AND FUTURE WORK

Although our new model demonstrated its accuracy and
efficiency over two state-of-the-art methods, there are still
three limitations: 1. It cannot be excluded that scenarios exist
that are not covered by the model due to limited training
data. This is in general a known problem of deep learning
approaches – high prediction accuracy requires tremendous
amount of training data which is often not easy to obtain. 2.
Deep learning models lack sufficient interpretability due to
their black-box nature, especially when compared with the
carefully crafted empirical models. 3. Using a fixed query
size is not as flexible as the Qetch approach, which matches
based on the salient parts in the time series data.
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In the future, we see several opportunities to further
extend our work, including:

• Further improving the synthesis of additional train-
ing data as this plays a crucial role for the learning
process. One possible way may be to use a gener-
ative adversarial network (GAN) – similar to other
successful applications in image generation and syn-
thesis. We hypothesize that a GAN could synthesize
more realistic variations of the user’s sketch.

• The design of a matching algorithm, which is tailored
for a particular user, using an appropriate method to
learn this user’s particular sketching behavior over
time, would be interesting, as well.

8 CONCLUSION

In this paper, we have demonstrated how deep learning
can be used to further improve a visual query system for
exploring time series data in visual analytics. By learning
the relation between the time series clip to be selected
and a free-hand user sketch, we achieve a solution, which
is both fast and accurate. To the best of our knowledge,
this is the first study to report the successful application
of a matching model, realized by a pair of parameter-
sharing LSTM networks, to improve an important human
interaction scenario in visual analytics. We demonstrate,
quantitatively, and in comparison with the recently pub-
lished Qetch algorithm as well as the classical distance
measure DTW, that our LSTM-based solution leads to an
improvement in terms of the overall similarity (≈42% to
Qetch and ≈7% to DTW), rated by users in a user study,
while enabling a fast interaction (≈4 times faster than
Qetch and ≈100 times faster than DTW). The code of our
prototype is available via github.com/reddestrabbit/LSTM-
based-visual-query-system.git.
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