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Abstract—Fast and accurate brushing is crucial in visual data exploration and sketch-based
solutions are successful methods. In this paper, we detail a solution, based on kernel density
estimation (KDE), which computes a data subset selection in a scatterplot from a simple click-
and-drag interaction. We explain, how this technique relates to two alternative approaches, i.e.,
Mahalanobis brushing and CNN brushing. To study this relation, we conducted two user studies
and present both a quantitative three-fold comparison as well as additional details about the
prevalence of all possible cases in that each technique succeeds / fails. With this, we also
provide a comparison between empirical modeling and implicit modeling by deep learning in
terms of accuracy, efficiency, generality and interpretability.

INTRODUCTION

Linking and brushing is a widely adopted
interaction technique for visual data exploration
in coordinated multiple views [1]. Over 30 years
ago, Becker and Cleveland [2] defined brushing
as an interactive method to select data points by
using simple geometries on a data visualization
such as a square, circle, or a polygon. In coordi-
nated multiple views, brushing usually leads to a
consistent highlighting of the selected data in all
linked views, amounting to an important form of
focus+context visualization [5].

Since brushing is central to visual analytics, a
substantial amount of research has been devoted
to it. The many available forms of brushing can
be categorized into four different types:

• simple geometries—this is the most common

category, including the rectangular brush on
scatterplots, line brushing on data graphs, etc.

• lassoing—the user selects a data subset by
drawing a geometrically detailed lasso around
the subset’s visualization in a view.

• logical combinations of simple brushes—the
user refines the data selection iteratively by
using multiple brushes and combining them
using logical operators such as AND and OR.

• sketch-based brushing—the user sketches a
shape onto a visualization and a selection
heuristic is used (often based on a similarity
measure) to determine which data are selected.

To evaluate a brushing technique, the following
two criteria are of particular importance:
• efficiency—how fast is the brushing algorithm

and how much time does the users spend on
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the selection process; is the interaction fluid?
• accuracy—to which degree does the interac-

tion lead to an accurate selection of the data
subset as the user actually intended to select?

Clicking on a mark in a visualization to select the
corresponding data point, for example, is highly
efficient for selecting individual data points. High
accuracy is possible, when using a geometrically
detailed lasso to select data points in a scatterplot.
In many cases, it is not trivial, or possible, to
optimize for both criteria concurrently.

Many brushing techniques are indeed fast—
we think of brushing to be fast, if only one click
or only very few atomic interactions are needed
to specify the brush, leading to a swift user–
computer dialogue during exploration / analysis.
The use of simple brushing geometries (rectangle,
circle, etc.) and sketch-based brushes, where only
a quick gesture is used for brushing, are examples
of fast techniques. A common disadvantage of
these methods is, however, that it can be difficult
to accurately brush a targeted data subset.

Certainly, we also have brushing techniques
that are accurate—likely with lassoing and the
logical combination of simple brushes being the
most prominent examples. With such a technique,
it is straight-forward to accurately select a subset
of interest. This benefit of being accurate, how-
ever, commonly comes at the cost of reduced
efficiency—specifying a lasso point-by-point, for
example, easily becomes a lengthy unit task by
itself, interrupting the data exploration process.

To optimize both criteria for one technique
as much as possible, data-driven methods are an
interesting option. One typical kind of such a
solution is based on sketch-based user interaction.
The sketching of a simple shape, for example a
line segment by a click-and-drag interaction, is
complemented with a heuristic that estimates the
actual data selection from the sketch. To achieve
high accuracy, the parameters of such a technique
can be optimized on the basis of data from a user
study [7], [8].

The Mahalanobis brush [7], [9] is an example
of a data-driven technique, using local covariance
information as basis for a Mahalanobis metric
that determines which points are closest to the
sketch. The parameters of Mahalanobis brushing
can be optimized based on data from a user

study [7]. Quantitative evaluation shows that it
can achieve ≈92% of accuracy, based on a fast
click-and-drag interaction. Inspired by the success
of machine learning, a brushing technique based
on deep learning (DL) with a convolutional neural
network (CNN) was developed [8] and achieved
a substantially improved accuracy (≈97%). Both
the interaction as well as the data visualization
were represented as images to subject them as
input to the CNN, and letting the network learn
the model based on data from a user study.

With Mahalanobis brushing [7] and CNN
brushing [8], two principally different approaches
are given, i.e., representing the principles of em-
pirical modeling (based on reasoning) vs. implicit
modeling (based on deep learning). Since CNN
brushing resulted in a significantly higher accu-
racy [8], and since Mahalanobis brushing is not
based on any advanced distance metric, we were
interested in studying to which degree empirical
modeling can in fact compete with deep learning
in this context.

In this paper, we now provide details of our
attempt to construct an improved empirical model
by further extending the Mahalanobis brush, in-
corporating kernel density estimation (KDE) [10],
to inform a clustering step which then returns
one of the clusters as the data selection [11].
Additionally, we contribute an in-depth, three-
fold comparison between the Mahalanobis brush,
the CNN brush, and the new KDE brush.

Related work
Selecting data subsets by brushing is one of

the most common types of interaction in visual
analytics, where often data points are selected in
one display, while the same information is high-
lighted in linked views (linking and brushing) [1].

Often, a combination of mouse motions and
button clicks are used to realize brushing [3]. Less
common methods are based on eye / head tracking
or gestures, as for example in virtual reality [4].

Several extensions to simple brushing have
been proposed, including techniques to formulate
complex brushes by combining simple brushes
using logical operators, including the union, in-
tersection, and negation of brushes, and enabling
the user to iteratively refine the data selection.

Furthermore, brushes are often adapted to in-
teract with a particular aspect of the visualization
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mapping. Hauser et al. [6], for example, devel-
oped angular brushing on parallel coordinates to
select data points, whose representation include
lines with a particular angle.

MyBrush was suggested by Koytek et al. [12]
in order to extend brushing and linking by incor-
porating personal agency, allowing to configure
the source, link, and target of multiple brushes.

Sketching is a natural and intuitive way for
users to identify data subsets of interest in a visu-
alization. Similarity brushing [13] is an example
of sketch-based brushing, which is based on a
fast and simple sketching interaction—the user
performs a swift and approximate gesture (for
example, drawing an approximate shape that the
data should follow) and then a similarity measure
is used to identify, which data items are actually
selected. The main advantage of sketch-based
brushing is the fast interaction, which, however,
is not perfectly accurate, usually.

As another sketch-based solution, the Maha-
lanobis brush was presented as an interesting
option for brushing scatterplots [9]. In this tech-
nique, a simple sketch (a click near the center of
the data subset that should be selected) is used to
brush the data. The link between the interaction
and the actual selection is computed on the basis
of the underlying data (local covariance informa-
tion is used to determine the overall shape and
orientation of the selection): all data points near
the click-point, measured according to a local
Mahalanobis metric, are selected.

While this technique is giving good results
(≈65% accuracy [7]), it still has limitations,
including a non-optimized selection of the local
context for the Mahalanobis computation and
one off-screen parameter for the brush size. To
improve the accuracy of this approach, the Ma-
halanobis brush was extended by optimizing its
parameters using data from a user study and
getting rid of the off-line parameter [7]. In terms
of efficiency, the average interaction (click-and-
drag) time spent for the new Mahalanobis brush-
ing is only 41% of Lasso [7]. However, this
improved solution is still linear and has therefore
difficulties with complex structures that would
require a more flexible approach.

Inspired by the success of deep learning in
a wide range of applications, especially in image
processing, we then developed CNN brushing [8],

using deep learning to establish the link between
the user sketch and the actual data selection,
achieving very high accuracy. However, as a
general model, it learns the “average behavior”
from different users, and thus is not able to match
every single user’s brushing preferences 100%.
To address this issue, we further improved CNN
brushing and achieved a solution which is able
to turn the general model into a tailored model
for a specific user [14]. To achieve this, we take
the user into the loop to iteratively refine the
brushing model with additional data which the
user provides while using the brushing technique.

Despite the opportunity to achieve really good
results with the help of deep learning, related
approaches to solve interactive visualization tasks
are still rare. The limited utilization of deep
learning for visual analytics solutions is likely
based on three reasons: (1.) Understanding a
deep learning based model is challenging due
to its “black box” nature. (2.) Usually, high
accuracy of DL-based prediction requires large
amounts of training data, which often is difficult
to acquire. (3.) There is no established com-
mon understanding of how to determine the right
DL solution as knowledge of topology, training
method and required hyperparameters. Conse-
quently, it is often difficult to efficiently make
good use of deep learning—especially, when non-
standard tasks are to be supported.

KDE brushing on scatterplots
Fig. 1 shows an overview of the new KDE-

based brushing technique. We keep the simple
click-and-drag interaction for sketching the tar-
get data subset: click into the middle of the
subset and drag the pointer swiftly to the outer
boundary of it. The click point s = (sx, sy)>

and the end point e = (ex, ey)> of the drag
interaction indicate the size of the target subset
that the user wishes to select. As with the Ma-
halanobis brush [7], we first consider a circular
subset, centered around s, and estimate the shape
and orientation of the data in this region by
looking at the local covariance information. We
then start a short iteration to refine this data
subset selection, based on the local covariance
information—ideally, we would like to directly
use the resulting user selection as the data subset,
of course, amounting to a chicken-and-egg type
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Figure 1. Overview of KDE brushing: the user clicks
into the middle of the subset to be selected and drags
the pointer to the border of the subset (sketching
interaction); then a selection of points around the
click-point is determined, based on the estimated
density of the data; two parameters, α and β, related
to the sample size and the size of the KDE bandwidth,
influence the results and we optimize them based on
a user study with 50 participants.

of problem, since the eventual selection is not
known in advance. After a sufficiently close con-
vergence of this iteration, we make a selection of
data points, based on a kernel density estimation
(KDE), using the local covariance information as
a basis for specifying the kernel. The choice of
KDE is based on three assumptions: (1.) Data-
driven density information, captured by KDE,
should improve results over the linear model in
Mahalanobis brushing. (2.) A non-linear model
should be suited to select general shapes. (3.) The
modes (local maximum points) of a 2D KDE,
at the right scale, can represent clusters of data
points, corresponding to selection targets. In
the following, we provide more details about the
individual components of this approach.

Mahalanobis distance computation
Since the Mahalanobis distance is central to

KDE brushing, we briefly review it first. Intro-
duced by Mahalanobis in 1936 [15], it is based
on the correlation between data variables to help
with the identification and analysis of multivariate
patterns. It is unitless and scale-invariant, which
is a useful way for determining the similarity of
an unknown sample to a known one. It differs
from the Euclidean distance, which measures the

distance with the available data. The Mahalanobis
distance between vectors a and b is defined by

dΣ(a,b) =
√

(a−b)
>

Σ−1 (a−b) (1)

where Σ is the covariance matrix of the sam-
ple. The locations of equal Mahalanobis distance
from a central reference vector x form an ellipse
around x in 2D.

In our proposed KDE brushing, the local
covariance structure of a data subset around the
click-point s is used as the basis of the kernel
specification. Therefore, it is an important part
of our approach to determine, which data subset
should be used for this computation. We perform
this in two steps.

Initially, we consider a circular area with
radius α ·dE(s, e), where α is a weighting factor
and dE(s, e) is the Euclidean distance between s
and e. All data points within this circle are used to
compute the first instance of the local covariance
information, Σ1.

Next, we consider all points in a Mahalanobis
ellipse, based on Σ1 and sized to dΣ1

(s, e).
Usually, this leads to a new subset, which is
similar to the initial one, but fitting the underlying
data structure more closely. To obtain an even
better sample, we refine the sample iteratively by
replacing it with the points in the Mahalanobis
ellipse that is updated every iteration according
to the covariance of the samples in last iteration.

While this process usually converges quickly,
we observed that it sometimes can lead to small
fluctuations, including and excluding a few points
in consecutive iterations. To stabilize the con-
vergence of the covariance matrix optimization,
we enable the partial consideration of data points
during the computation, leading to a solution that
is based on the weighted covariance matrix. The
elements σjk of the weighted covariance matrix
Σw can be defined as:

σjk =

∑
i ωi(xij − x̄j)(xik − x̄k)

1−
∑

i ω
2
i

(2)

where ωi is the normalized weight (ωi ≥ 0) for
vector xi in a weighted sample with

∑
i ωi = 1

and x̄ being the weighted mean vector, given by∑
i ωi xi. During the iteration, the weight of each

point is updated and the points that are stable
in the Mahalanobis ellipse are assigned a higher
weight than less stable points. This process results
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Figure 2. Changing the kernel size in KDE: bigger
kernels, i.e., larger |H|, bring forth larger structures in
the data, while smaller kernels represent details.

in a well-converged covariance matrix after a few
interations. More details of this procedure (weight
function design, singular matrix handling, etc.)
are described in an earlier publication [7].

Density estimation
Kernel density estimation (KDE) is a popu-

lar method for data analysis [10]. It is a non-
parametric way to estimate the probability density
function of a random variable. KDE can be used,
for example, to make inferences about data, based
on a finite sample, without imposing any a priori
structure on the data.

Given that {xi}1≤i≤n are n samples of d-
dimensional vectors from a common distribution,
KDE can be used to estimate their density as

fH(x) =
1

n

n∑
i=1

KH · (x − xi) (3)

with H being a d × d bandwidth matrix (sym-
metric and positive definite). The choice of matrix
H is the most important factor, critically affecting
the characteristics of fH. Fig. 2 shows four results
from 2D KDE with increasing determinant of H,
where fH reveals details for small |H|, while
larger data structures dominate for larger |H|.

KH(x) = |H|− 1
2K(H−

1
2 x) is the kernel

function, with K(x) being a symmetric mul-
tivariate density function with K(x) ≥ 0 and∫
K(x) dx = 1. A variety of kernels has been

A                                  B                                                       C 

Figure 3. A: KDE of a dataset (relatively small ker-
nel). B: Clustering related to the modes of A, shown
as small cyan triangles. C: The one cluster, corre-
sponding to the mode nearest to s, determines which
data points are selected (indicated as green points).

studied, including the uniform kernel, the triangle,
normal / Gaussian, and Epanechnikov kernel, as
well as others. The choice of the kernel function
is actually not as important as the choice of the
size (and shape) of H. Being interested in the
local mode of the data distribution, we use the
normal kernel for KDE brushing.

To consider the local data distribution, when
modeling kernel matrix H, we make direct use
of the converged covariance matrix Σw, leading
to the following anisotropic kernel function:

KH(x) =
e−

1
2x>Σ−1 x√
(2π)d|Σ|

(4)

To realize an proper scaling of the kernel, we use
the eigendecomposition of Σw = V Λ V> with
eigenvectors V and eigenvalues Λii. This leads
to the scaled versions of |H|− 1

2 = |βφΛ|−
1
2 and

H−
1
2 = V (βφΛ)−

1
2 V>. Used with an isotropic

kernel function K(x) = (2π)−
d
2 e−

1
2x>x, this

corresponds to KDE with an accordingly scaled
kernel matrix. We optimize the scaling of H by
choosing the two scaling parameters φ and β by
two separate methods: On the one hand, we use a
data-driven approach to determine φ. On the other
hand, we optimize β as a general parameter using
the data from the user study.
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Selecting a data subset using clustering

The modes of KDE represent groups of data
items (at the scale determined by |H|). We use
clustering (each mode leading to one cluster)
to identify the one group of data items, which
is associated with the click-and-drag interaction,
and select it.

The clustering is applied to a grid-based can-
vas where each grid has its KDE value. During
the clustering, we use a simple watershed algo-
rithm [16]: Starting with the mode with the high-
est KDE value, we iteratively include neighboring
locations into the corresponding cluster, lowering
the threshold iteratively. In every step, we either
join a neighboring location to an existing cluster,
or create a new cluster, if the new location is
not adjacent to an existing cluster. In addition,
for the clustering, we only apply the algorithm
to the points in a square area with center being
the start point s and side length being 2 · r · ω
(r is the length of interaction). Examining the
user study data, we found ω = 1.5 to be a
reasonable value that the corresponding square
area can cover all the user goals. Fig. 3B shows
an according clustering result for a KDE with a
relatively small kernel (shown in Fig. 3A) where
the different clusters are shown in different colors
and the corresponding KDE modes are located by
small blue triangles. Fig. 3C shows an example
of how data points are then selected (the points
in the same cluster, corresponding to click-point
s, are selected and highlighted in green).

Optimizing the kernel size

The number of modes of a KDE is strongly
related to the kernel size: the bigger the kernel,
the fewer modes. Thus, there is a strong relation
between the size of the kernel and the size of the
cluster, which is used to select the data points. In
the following, we describe a data-driven approach
to determining an appropriate scaling factor φ.

Since we aim at a KDE that provides one
cluster with the targeted data points, we optimize
the size of the bandwidth kernel so that the size
of the resulting cluster matches the size of the
Mahalanobis ellipse around s and through e as
closely as possible—as a measure of comparison,
we are using the dice coefficient between the Ma-

Ours Goal 

Goal KDE 

Figure 4. Clustering based on varying kernel sizes.
Left: too small kernel, s(φ) = 0.63; Middle: optimal
size, s(φ) = 0.72; Right: too big kernel, s(φ) = 0.64.

halanobis ellipse E and the KDE cluster C(φ):

s(φ) =
2 |E ∩C(φ)|
|E|+ |C(φ)|

(5)

where |E| and |C(φ)| are the sizes of the Maha-
lanobis ellipse and the KDE cluster, respectively
(evaluated grid-based). In our experiment, the
searching domain for φ was [ 1

10
, 3].

The example in Fig. 4 illustrates the influence
of different kernel sizes (sensitivity wrt. β) on
the resulting selection. True positives (correctly
selected), true negatives (correctly omitted), false
positives (falsely selected), and false negatives
are colored in yellow, white, pink, and purple,
respectively. There are more false negatives when
the kernel size is too small (Fig. 4, left) with a low
similarity between the gray KDE cluster and the
Mahalanobis ellipse. More false positives appear
when the kernel size is too big (Fig. 4, right).

Data for parameter optimization
KDE brushing, as described so far, has two

not-yet-optimized parameters: α (size of the ini-
tial selection, determining the context of the local
data shape analysis) and β (overall scaling pa-
rameter on top of φ, influencing the kernel size).
To achieve an as accurate as possible brushing
result, we need information about how users
would use our technique to brush and what they
actually intend to select as ground truth. As the
interaction and brushing targets are the same as
with Mahalanobis brushing [7], we can use the
same user study data to optimize α and β.

In the user study [7], six diverse datasets were
used. To select these datasets, we examined their
scagnostics [17], aiming at a good spread of scat-
terplots with varying characteristics. Scagnostics
are useful to characterize scatterplots and help
with the identification of relevant structures due
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Figure 5. The influence of different values of α: too
small values lead to underselection (left; false nega-
tives in purple), too large values lead to overselection
(right; false positives in pink).

to density, skewness, shape, outliers, etc. For the
user study, four scatterplots were chosen from
Boston Housing data with 14 variables and 91
different scatterplots, so that their scagnostics
were maximally different from each other [7].
The other two datasets were one with Gaussian
clusters and one with path-based spectral clusters
(difficult due to the bent, elongated outer cluster).

For the study, 50 participants were asked to do
12 selections each. In every case, one scatterplot
(of the six) and a rather general request (“choose
a large cluster”, “choose a small cluster”, or
“choose an elongated cluster”) were given to
cover a reasonable variety of cases. The actual
choice of what to select was left to the user.
Including a request to select an elongated cluster,
was also to provoke non-trivial cases, as common
in real-world applications, on top of the more
simple standard cases.

During the study, the user was instructed to
select a target subset (as ground truth, reported
by the participants using a lasso tool), before then
also providing the corresponding click-and-drag
interaction that this participant would use to select
the target group. Accordingly, 600 brushing cases
were collected from the user study (the details are
attached in the supplementary material), of which
we used 400 for the optimization (see below).

Optimization
To better understand the result of this pa-

rameter optimization, we also investigated the
influence of parameter α with respect to the
resulting selection (see Fig. 5). The green line
is the diameter of the circular area determined by
the user sketch. We see that there are more false
negatives (colored in purple as underselection)
when α is too small. Conversely, more false posi-

tives (colored in pink when overselecting) appear,
when the value of α is too big. The influence of
the kernel size (scaled by β) is demonstrated in
Fig. 4. We found that α and β were the most
critical parameters to optimize in our technique.

Of the 600 selections from the user study [7],
we randomly chose 400 as training data. As
a measure for how well the selection S(α, β)
agrees with the user goal G, we computed the
dice coefficient for these two sets:

s(α, β) =
2|G ∩ S(α, β)|
|G|+ |S(α, β)|

(6)

If the computed selection S(α, β) matches the
user goal G perfectly, s(α, β) = 1; in the case
of a complete mismatch, s(α, β) = 0.

Having collected the ground truth (lasso data)
from the study and the click-and-release-points of
the sketching interaction, we were able to conduct
an optimization of α and β according to the
following procedure (not involving users): Based
on varying choices of α and β, we could execute
our selection heuristic, using the datasets from
the user study and the recorded interaction data,
leading to a particular S(α, β) per case—it was
then straight-forward to compare S(α, β) to G as
collected during the user study, leading to a cor-
responding accuracy s(α, β). We started with a
large matrix of different combinations of the two
parameters, covering domain [ 1

10
, 10] that was

certainly big enough. Inspecting the s-values for
all these cases lead us to further examining a more
detailed subset of the parameter space (basically,
we refined our optimization hierarchically, doing
the refinement manually). Eventually, we ended
up with the following (near-optimal) values for
both parameters: α = 1.05 and β = 1.05. The
optimization was done offline once.

Evaluation

Using the optimized parameters, we did an
in-depth comparison in terms of accuracy, effi-
ciency, generality and interpretability between the
Mahalanobis brush [7], the CNN brush [8], and
the KDE brush, using the interaction informa-
tion from the user study [7] considering 252 400
points in all 600 selections.
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Accuracy
Table 1 shows quantitative evaluation results

for the three brushing techniques, according to a
number of different measures [18]:

• TP: true positives (correctly selected points),
total number and in percent

• FP: false positives (falsely selected points),
total number and in percent

• TN: true negatives (correctly left out points),
total number and in percent

• FN: false negatives (falsely left out points),
total number and in percent

• Accuracy: correctly selected or left out, rela-
tive to all, (TP+TN)/all (the higher, the better)

• Recall: how much of the goal is selected,
TP/(TP+FN) (higher ↔ less underbrushing)

• FPR (fall-out): how much of the non-goal is
selected, FP/(FP+TN) (lower ↔ fewer FP)

• FOR (false omissions): how much of the non-
brushed was goal, FN/(FN+TN) (lower ↔
fewer omissions)

• TS (threat score): how much of brush∪ goal
is TP, TP/(TP+FP+FN) (higher ↔ better)

• Precision: how much of the selection is goal,
TP/(TP+FP) (higher ↔ less overbrushing)

• F1 score: harmonic mean ( precision, recall ),
2TP/(2TP+FP+FN) (higher ↔ better)

• MCC (Matthews correlation coefficient):
measuring the quality of binary classification
(the higher, the better), (TP ·TN − FP ·FN)/√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

According to the quantitative evaluation in the top
part of Table 1, CNN brushing performs best with
respect to TP, FP, TN, and FN. When comparing
the two empirical models, KDE brushing gives
more TP than Mahalanobis brushing and fewer
FN, while it leads to more FP and fewer TN.
This could indicate that KDE brushing is better
at recognizing the user’s brushing goal, but at the
cost of more false negatives (some overbrushing).

By looking at the bottom part of Table 1,
showing eight different measures for judging
the quality of the classification, CNN brushing
also outperforms the two empirical models in all
measures. Comparing the two empirical models,
KDE brushing seems to outperform Mahalanobis
brushing in recall (how much of the goal is
brushed) and in the false omission rate (how

much of the non-brushed view is actually goal),
while Mahalanobis brushing appears to be better
in all other six measures.

In addition to comparing each method with
the goal, we also did a threefold comparison to
see the relation of the four related sets (actual
goal, brushed by the Mahalanobis brush, the KDE
brush, and the CNN brush), shown in Fig. 6A.
The Venn diagram in Fig. 6B is an illustration
of the threefold comparison: the thick green line
surrounds the actual goal, the dashed violet line
surrounds all that’s brushed by the Mahalanobis
brush, the dashed orange line surrounds what
the KDE brush selects, and the dashed pink link
surrounds, what the CNN brush selects (in the
shown schematic, the areas do not correspond to
the proportions of the respective cases).

For each point in the 600 cases from the user
study [7] – 252 400 points, altogether – we check
whether it belongs to the brushing goal (green),
whether the Mahalanobis brush selects it (violet),
whether the KDE brush selects it (orange), and
whether the CNN brush selects it (pink), leading
to 24 = 16 possible situations per point. The
relative prevalence of these situations is shown in
Fig. 6A, leaving out the dominating “good” cases
of all techniques brush a goal point, TP(all),
19.45% of all, all techniques leave out a non-
goal point, TN(all), 73.86%, all techniques select
falsely, 0.12% of all cases, and all techniques
fail to select, 0.05% of all cases, emphasizing
the situations, where at least one brushing tech-
nique has a problem (FP or FN) and at least
one technique succeeds (TP or TN). The label
of each situation indicates its characteristics –
if one technique has a problem, then this is
indicated (for ex., “FN(Mah): 1.30%” indicates
the situation, when only the Mahalanobis brush
fails to select a goal point); when two techniques
have a problem, the opposite is done (for ex.,
“TN(Mah): 0.11%” indicates the situation, when
only Mahalanobis brushing leaves out a non-goal
point, while both other techniques incorrectly
select it). As an additional mark in Fig. 6A, a
combination of emojis is used to indicate the
situation: a frowny indicates a problem (color:
technique, filled: FP, empty: FN), while a smiley
shows that the technique succeeded (filled: TP,
empty: TN). Below, we briefly address all cases:
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Table 1. Quantitative evaluation of the three brushing techniques, based on a dozen measures, computed for all 600
selections from the original user study [7] (emphasizing the best result in bold):

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mahalanobis 50 737 20.10% 5 189 2.06% 191 682 75.94% 4 792 1.90%

KDE 52 436 20.77% 9 583 3.80% 187 288 74.20% 3 093 1.23%
CNN 55 321 21.92% 929 0.37% 195 942 77.63% 208 0.08%

accuracy recall FPR FOR TS precision F1 MCC
Mahalanobis 96.05% 91.37% 2.64% 2.44% 83.56% 90.72% 91.04% 88.51%

KDE 94.98% 94.43% 4.87% 1.62% 80.53% 84.55% 89.22% 86.18%
CNN 99.55% 99.63% 0.47% 0.11% 97.99% 98.35% 98.98% 98.70%

Goal                   KDE                 Mah                   CNN

TP(KDE)  TP(Mah)  TP(CNN)  TN(KDE) TN(Mah)  TN(CNN)  FP(KDE)  FP(Mah)  FP(CNN)  FN(KDE) FN(Mah)  FN(CNN) FP(Mah) TN(CNN) FP(KDE) TN(all)

TN(KDE) FP(all) TN(Mah) FP(CNN)

FN(KDE) TP(all) FN(Mah) TP(CNN)

TP(Mah) FN(CNN) TP(KDE) FN(all)

Filled: TP     Empty: TN     Smile: succeed     Frown: fail

A                                                                                                           B

0.012 0.007

0.54

0.006 0.11

1.71
1.85

0.21
0.13

0.63

0.014

1.3

0%

0.5%

1%

1.5%

2%

Prevalence

Figure 6. A three-way comparison of four sets (A): actual goal (green), Mahalanobis brush (violet), KDE brush
(orange), CNN brush (pink). The cases of all techniques correctly brush the goal (19.45% of all), all techniques
leave out the non-goal correctly (73.86%), all techniques select falsely (0.12%) and all techniques fail to select
(0.05%) are not shown, focusing on those cases, where at least one technique has a problem (FP or FN) and
at least one technique succeeds (TP or TN); Venn diagram, illustrating the relation between the sets (B).

• TP(all), TN(all): in most cases, all three tech-
niques do the right thing, i.e., select a goal
point or leave out a non-goal point: 19.45% are
consistently well-selected goal points, 73.86%
are consistently left-out non-goal points; thus,
altogether, 93.31% of all cases are “good” for
all three techniques!

• FN(KDE), FN(Mah.), FN(CNN): the indicated
brush is the only one failing to select a goal
point; of these, the case where the Mahalanobis
brush underselects is most prevalent: 1.30%,
compared to 0.63% and 0.014% of underbrush-
ing by the KDE and CNN brushes.

• FP(KDE), FP(Mah.), FP(CNN): the indicated
brush is the only to falsely select a non-goal
point; of these, clearly the case where the KDE
brush overbrushes is most prevalent: 1.85%,
compared to 0.21% (Mah.) and 0.13% (CNN).

• TP(KDE), TP(Mah.), TP(CNN): the indicated

brush succeeds to select the goal, while the
other two fail; of these three, clearly the case
where only the CNN brush succeeds is most
prevalent: 0.54%, compared to 0.012% (KDE)
and 0.007% (Mah).

• TN(KDE), TN(Mah.), TN(CNN): the indi-
cated brush succeeds in not selecting a non-
goal point, while the other two select it falsely;
of these, also the case where only the CNN
brush is right is most prevalent: 1.71%, com-
pared to 0.11% (Mah) and 0.006% (KDE).

• FP(all), FN(all): in these rare cases, all three
techniques do the wrong thing (select falsely or
fail to select), amounting to 0.12% and 0.05%,
respectively.

Efficiency
We evaluate the actual efficiency of sketch-

based brushing in two ways: the time users spend
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Table 2. Quantitative evaluation of the three brushing techniques, based on a dozen measures, computed for all 120
selections from the new user study [8] (emphasizing the best result in bold):

TP TP (%) FP FP (%) TN TN (%) FN FN (%)
Mahalanobis 18 989 21.90% 1 549 1.79% 65 921 76.03% 241 0.28%

KDE 18 927 21.83% 1 859 2.14% 65 611 75.68% 303 0.35%
CNN 19 100 22.03% 1 286 1.48% 66 184 76.34% 130 0.15%

accuracy recall FPR FOR TS precision F1 MCC
Mahalanobis 97.94% 98.75% 2.30% 0.36% 91.39% 92.46% 95.50% 94.25%

KDE 97.51% 98.42% 2.76% 0.46% 89.75% 91.06% 94.60% 93.10%
CNN 98.37% 99.32% 1.91% 0.20% 93.10% 93.69% 96.43% 95.44%

on the interaction and the computation cost of
the method. The three methods adopt the same
click-and-drag interaction and the average time
spent is around 41% of using a lasso [7]. In
terms of computation cost, CNN brushing and
Mahalanobis brushing are similarly fast for small
subsets. It takes, for example, around 20ms when
brushing 2000 points, while the computation cost
for KDE brushing is around 110ms. In the case
of larger datasets, the CNN brush takes only
180ms when brushing one million points, while
Mahalanobis brushing and KDE brushing take
comparably long 110s and 300s for 100 000
points, respectively, which is too slow for a fluid
interaction. Accordingly, all three methods enable
a smooth and fluid interaction for small datasets
while Mahalanobis brushing and KDE brushing
are too slow for large data (>≈ 100 000 points).

Generality
Generality is used to describe a model’s abil-

ity to react to new and previously unseen data.
To further substantiate the evaluation of the three
techniques in terms of generality, we also tested
the three methods on new data from another user
study [8], which has not been used for training
of the models at all. This user study used six
new datasets (including compound data, personal
hiking data, aggregation data, the omnipresent
Iris data, R15 data and spirals shape data) and
10 users provided 12 selections each, leading
to 120 selections in total (details in the supple-
mentary material). The corresponding quantitative
comparison is shown in Table 2 and Fig. 7,
considering 86 700 points in total.

Comparing the quantitative evaluation based
on the two user studies, we see that CNN brush-
ing produces many more FP in the follow-up
study (0.37%→ 1.48%), leading also to a higher

fall-out value (0.47% → 1.91%). Mahalanobis
brushing and KDE brushing produce much fewer
FN in the follow-up study (1.9% → 0.28% and
1.23% → 0.35%, respectively), while CNN pro-
duces more FN (0.08% → 0.15%). With respect
to the other measures, KDE’s threat score got
better in the follow-up study (80.53%→ 89.75%)
and became more similar to the others. Maha-
lanobis’ threat score improved also (83.56% →
91.39%), while CNN’s threat score worsened
(97.99% → 93.1%). Besides that, Mahalanobis’
recall got better in the follow-up study (91.37%
→ 98.75%) and became more similar to the oth-
ers (all methods are very good). CNN’s precision
and accuracy went down in the follow-up study
(98.35% → 93.69%, 99.55% → 98.37%) and
became more similar to the others. In addition, the
FPR and FOR of KDE brushing are both largely
reduced (4.87% → 2.76%, 1.62% → 0.46%),
becoming more similar to the other two methods.
In terms of the F1 score and MCC, both Maha-
lanobis and KDE brushing improved (91.04% →
95.5%, 88.51% → 94.25%; 89.22% → 94.6%,
86.18% → 93.1%), while CNN brushing got
worse (98.98% → 96.43%, 98.7% → 95.44%).

For the threefold comparison, we see a per-
formance decline of CNN brushing in TP(CNN)
(0.54%→ 0.08%), TN(CNN) (1.71%→ 0.46%),
FP(CNN) (0.13% → 0.15%) and FN(CNN)
(0.14‰ → 0.51‰). For the empirical models,
KDE is better in TP(KDE) (0.12‰ → 0.14‰),
TN(KDE) (0.06‰ → 0.21‰), FP(KDE) (1.85%
→ 0.37%) and FN(KDE) (0.63% → 0.18%),
while Mahalanobis brushing is better in TN(Mah)
(0.11%→ 0.42%), and FN(Mah) (1.3%→ 0.1%)
but not in TP(Mah) (0.07‰ → 0.05‰), and
FP(Mah) (0.21% → 0.41%).

While almost all measures got better for both
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Goal                   KDE                 Mah                   CNN

TP(KDE)   TP(Mah)    TP(CNN)   TN(KDE)   TN(Mah)   TN(CNN)   FP(KDE)    FP(Mah)     FP(CNN)    FN(KDE)   FN(Mah)   FN(CNN)

Filled: TP     Empty: TN     Smile: succeed     Frown: fail
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Figure 7. Threefold comparison between the Mahalanobis brush, KDE brush and the CNN brush based on the
user’s goal from a follow-up user study (details in the text). Note that all relative prevalences are below 0.5%.

Mahalanobis brushing and for KDE brushing in
the second user study, they all got worse for CNN
brushing – at least a bit. It is important to see,
however, that CNN brushing still outperformed
both other methods in all indicators (even though
they are much more similar in the follow-up
study). This could reveal one disadvantage of the
CNN brush, namely that it is less general, when
compared with the empirical models.

Interpretability
Interpretability refers to how much a human

can understand the model’s process and result.
Although the three brushing methods achieve all
good results (>90% accuracy) in two studies, we
were curious to see how the methods perform
in particularly difficult cases (for example, when
brushing the large ring shapes in the original
study or the spiral shapes in the follow-up study).
Therefore, we had a closer look at special cases
and found that the average accuracy for brushing
the ring shapes are around 53%, 51% and 95% for
KDE brushing, Mahalanobis brushing and CNN
brushing, respectively, while they achieve 54%,
50% and 41% accuracy when selecting the spiral
shapes. We can see that KDE brushing is slightly
better than Mahalanobis brushing in these cases
due to its nonlinear model while the performance
of CNN brushing falls in the follow-up cases,
possibly because of issues related to overfitting.

In addition to the “bad cases” analysis, we
observed that some prediction results of CNN
brushing are unreasonable. CNN brushing can,

for example, accurately find the border of a
cluster while some scattered points inside the
cluster are not selected. This situation is not pos-
sible in Mahalanobis brushing and KDE brushing,
representing an increased uncertainty and low
interpretability of the DL-based model.

Summary
In general, we could not see that KDE brush-

ing would significantly outperform Mahalanobis
brushing based on the comparison between KDE
brushing and Mahalanobis brushing, even though
we see slightly better results for KDE brushing in
the follow-up study and in some nonlinear-shape
cases. An according assumption was originally
made, because we thought that more carefully
considering the local data distribution should
help to further improve the technique’s accuracy
(as a nonlinear method, KDE brushing should
have much better abilities to adapt to nonlinear
structures in the data). So far, we cannot rule
out that we have overlooked another limitation
when realizing the KDE-based approach – either
a conceptual one, or a limitation of our implemen-
tation. Accordingly, we see it still possible that
another solution could achieve a further improved
accuracy. To outperform CNN brushing, however,
seems like a tall order.

We note that empirical modeling comes with
the advantage of an explainable result (for ex-
ample, we know how different values of α and
β influence the results), while the excellent per-
formance of the DL-based model comes at the
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cost of a poor interpretability (including some un-
certainty concerning the stability of its predictive
power). This comparison leads to the interesting
question of how much accuracy we are willing to
sacrifice for a good interpretability.

Conclusion and future work

In this paper, we presented our attempt to
improve Mahalanobis brushing by incorporating
kernel density estimation to increase its accuracy.
Although more information is taken into account
for modeling the KDE-based model, we have
not seen a significant improvement compared to
the simpler Mahalanobis brush. Based on this
result, we think that the increased cost of in-
corporating KDE could have come with an over-
design issue. When compared with deep learning,
we found that its black-box nature results in a
questionable interpretability (but with excellent
accuracy), whereas the results based on the em-
pirical model are explainable (even though not
as good as the ones based on the learned model).
Considering its reduced robustness, the DL-based
method appears to be (a bit) less stable and a bit
more unpredictable, even though it does have the
best performance, after all. It is unclear, however,
how to weigh in all factors, when comparing the
overall performance for model selection.

In the future, we see several opportunities to
further extend our work, including:

• Combining advantages of both sides, i.e., em-
pirical modeling and deep learning. We imag-
ine, for example, to automatically learn the
kernel size or to design the deep learning input
on the basis of the KDE.

• Investigating more closely, why KDE brushing
did not outperform the Mahalanobis brush, and
make a new attempt to further improve it.

• A sensitivity study with respect to the (opti-
mized) parameters of the empirical models.

• Exploring other machine learning approaches
to develop a new brushing technique which
outperforms CNN brushing.

We hope, also, that this work can inspire further
related research, especially in visualization for
model design and model selection.
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