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a b s t r a c t 

Magnetic resonance spectroscopy (MRS) is an advanced biochemical technique used to identify metabolic 

compounds in living tissue. While its sensitivity and specificity to chemical imbalances render it a valu- 

able tool in clinical assessment, the results from this modality are abstract and difficult to interpret. With 

this design study we characterized and explored the tasks and requirements for evaluating these data 

from the perspective of a MRS research specialist. Our resulting tool, SpectraMosaic, links with upstream 

spectroscopy quantification software to provide a means for precise interactive visual analysis of metabo- 

lites with both single- and multi-peak spectral signatures. Using a layered visual approach, SpectraMosaic 

allows researchers to analyze any permutation of metabolites in ratio form for an entire cohort, or by 

sample region, individual, acquisition date, or brain activity status at the time of acquisition. A case study 

with three MRS researchers demonstrates the utility of our approach in rapid and iterative spectral data 

analysis. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1

 

i  

t  

r  

(  

a  

o  

r  

f  

i  

f  

I

T

r  

t  

t  

t

 

e  

r  

v  

i  

a  

s  

t  

m  

h

0

. Introduction 

Magnetic resonance spectroscopy (MRS) is an in vivo non-

nvasive biochemical technique used to estimate the concentra-

ions of certain small molecules, known as metabolites, in a tissue

egion. When paired with high structural resolution MR imaging

MRI), it has shown clinical potential for improving diagnosis

nd treatment monitoring of numerous diseases and disorders

f the central nervous system [1] . However, its clinical adoption

emains limited. Translation from the metabolite signals acquired

rom MRS into clinically useful biomarkers is an open challenge

n spectroscopy research. Optimization and tuning of parameters

or consistent, isolated metabolite acquisition is one such area of
This article has been certified as Replicable by the Graphics Replicability Stamp 
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esearch, while another branch of research aims to identify pat-

erns of the subtle disease effects on multiple metabolites [2] . In

his paper, we explore the application of visualization techniques

o identify ratios and patterns of multiple metabolites. 

While recent technology improvements in MRS acquisition have

nhanced data quality and resolution [3] , visualization of MRS data

emains a largely unexplored area. MR spectroscopy produces a

astly different readout than MR imaging. Rather than a greyscale

mage of recognizable anatomical structures over many voxels, it

cquires an abstract spectrum per single voxel. This spectrum con-

ists of a series of peaks (resonances) that represent signal intensi-

ies as a function of frequency, as depicted in Fig. 1 . Metabolites

ay consist of single peaks, as in the case of N-acetylaspartate

NAA), or multiple peaks, as in Creatine (Cr). Most tools used to

uantify single voxel spectral data, e.g., LCModel [4] produce only

udimentary visual output, such as the spectral graph in Fig. 1 .

ecognizing the metabolites that correspond to these graphs is

hallenging. Although it is important to see the spectral graph as a

eans of quality assurance, metabolite concentrations are the most
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Plot of the typical visual output for spectral quantification by LCModel, with 

processed data and model (overlayed smooth curve). Structural localization and an- 

notations of key metabolite peaks have been added. 
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clinically relevant output from this method. These concentrations

are most often output to a simple table in standard domain tools.

This does little to advance interpretation, understanding, or to fa-

cilitate rapid comparison of metabolites between acquisitions. 

This paper expands upon our previous design study [5] in

building a general tool for the interactive visual analysis of all per-

mutations of spectral metabolites, in ratio form, for a small cohort.

While we previously emphasized rapid visualization of metabolite

ratios directly from spectral input data, this work allows visualiza-

tion of complete, and more complex, metabolic signatures via an

integrated pipeline with Tarquin [6] , an open source spectral quan-

tification tool. Our specific contributions include: 

1. We provide a detailed review of MRS data characteristics and

abstraction of spectral analysis tasks identified from domain ex-

pert collaboration. 

2. We present a refined pipeline that integrates spectral quantifi-

cation and fitting to allow multi-peak metabolite analysis. 

3. Our visual exploratory analysis tool provides an extended inter-

face for linking of structural, spectral, and patient data, includ-

ing group creation and uncertainty communication. 

4. We introduce a tiered system of visual encodings depicting lay-

ers of aggregated metabolite ratios that can be partitioned by

key attributes. 

5. We present a clinical case study and feedback from three MR

spectroscopy research experts. 

Using SpectraMosaic, MR spectroscopy researchers are able to

rapidly identify patterns at different layers that may be of interest

for deeper clinical exploration. 

2. Related work 

A key challenge in visualizing spectroscopy data is that each

spectrum is in itself a multivariate dataset. We draw inspiration

from tools such as InSpectr [7] , which utilizes multiple linked

views and comparative visualization techniques [8] from multi-

modal data sources (x-ray computed tomography and x-ray flu-

oroscopy) to provide insights into composition of a multivari-

ate sample. SpectraMosaic similarly combines imaging techniques

(MRS and MRI), but for a different domain and with a differ-

ent focus. Isosurface similarity maps defined by Bruckner and

Möller [9] were applied to spectra in Spectral Similarity Maps, an

extension of the Inspectr framework [10] . In this approach, corre-

lations between spectra are shown as an intensity map. We adopt

a similar concept in our tool, but rather than mapping energy cor-

relation we instead map metabolite ratios. 
Prior visualization approaches for MRS data have been lim-

ted to the analysis and visualization of a subset of metabolites

t a time. SDDS (scale driven data spheres) presented by Feng

t al. [11] provide a 3D representation of metabolites within a

oxel. This application was later extended to include scatter and

arallel coordinate plots for a subset of metabolites [12] . Spec-

raMosaic remains in the abstract visualization space, but allows

omparison of all metabolite ratios. Nunes et al. [13] presented a

isual analysis framework combining ComVis [14] and MITK [15] .

rushing and linking mechanisms allow for the definition of a bi-

logical target volume with its corresponding metabolite values.

owever, this work was developed specifically for radiotherapy

reatment visualization. Retention of spectra was not the focus of

he application and it provided limited functionality for metabolite

omparison. SpectraMosaic extends the flexibility of metabolite ra-

io calculations, and displays additional MRS data attributes (spa-

ial, individual, temporal, and brain activity status) in an overview

nd detail visual representation. Marino and Kaufman [16] imple-

ented direct volume rendering (DVR) to represent male prostate

natomy from MRI data combined with PET and MRS in prostate

umor delineation. However, this application was focused on a sin-

le metabolite ratio, and could only present an individual in a sin-

le time slice. SpectraMosaic retains an abstract visualization for-

at, but offers broader insights into metabolite relationships over

ime and between individuals. Jawad et al. [17] developed a system

or the analysis of segmented brain tissue composition to identify

he metabolic signatures of brain tumors—this tool was optimized

or multivoxel data, and focused on statistical outcome measure-

ents. SpectraMosaic works at a more generalized level in spec-

ral analysis. Further work by Jawad et al. [18] presented an ap-

roach for the comparative analysis of single voxel spectroscopy

n cohort data, focusing primarily on violin and parallel coordinate

lots to convey spectral metabolite relationships. Our approach

ses a similar range of data inputs and processing tools. How-

ver, our tool focuses on simultaneous comparison of all metabo-

ite ratios, using a nested visual design linking multiple MRS data

lements. 

First introduced by Bertin [19] , numerous solutions have lever-

ged small related graphics series to visualize multivariate data.

e base SpectraMosaic on this concept, but extend this by in-

luding a second layer of nested visual encodings. This is inspired

y A tom [20] , a grammar for unit visualizations where individ-

al data items are represented by unique visual marks (units) in

 visual encoding system. PivotTable, subsequently trademarked by

icrosoft and extended by Polaris [21] , enables exploration and

nalysis of multidimensional data with the flexibility to modify vi-

ual encodings, graphics, and table configuration for visualization.

lemm et al. [22] built on this concept for linked visualization of

mage-centric heterogeneous cohort data. Our approach is related

n that we allow on-the-fly reconfiguration of our matrix inputs.

lthough the cohorts our application focuses on are not large, we

hare similar considerations with heterogeneous and multivariate

ata inputs. 

While our prior iteration of the SpectraMosaic application fo-

used on the rapid analysis of single-peak metabolites directly

rom spectral graphs [5] , this work expands the tool to allow full,

recise spectral analysis in an integrated pipeline with robust MR

pectroscopy quantification tools. This permits analysis of metabo-

ites with more complex metabolic signatures; these are encoded

o bar and box plots for ease of interpretation. We further increase

he practical usability of the tool with new facilities for analysis

roup creation and additional means for conveying the underly-

ng data distribution. These features arose from additional working

essions and discussions with spectroscopy researchers. 
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. Background 

MRS is an advanced spectroscopic technique used to non-

nvasively describe the biochemical composition of living tissue.

hile MRI shows the spatial distribution of atomic nuclei with

igh spatial resolution, MRS trades spatial resolution for detailed

hemical information, using the same hardware. For example,

here MRI may be used to identify the extent of a tumor, MRS

an help to identify the type of tumor [23] . For each measured

oxel, MRS produces a spectrum of signal intensity as a function

f frequency. Intensity peaks at different resonance frequencies are

escribed as chemical shifts. These chemical shifts, expressed in

arts per million (ppm), arise from fundamentally different nu-

lear properties of the chemical structures being measured, and

epresent metabolites in the acquired voxel [24] . The most com-

only measured signal comes from hydrogen atoms; this is known

s proton MRS ( 1 H-MRS). This technique is capable of detecting

etabolites in concentrations 50,0 0 0 times lower than that of fat

r water as imaged in conventional MRI. 

MRS acquisition techniques include single voxel spectroscopy

SVS) or chemical shift imaging (CSI). CSI is essentially a slab of

ultiple smaller single voxels. It covers a much larger spatial area

han SVS, but suffers from a reduced signal-to-noise ratio. CSI pro-

uces a low-resolution image for each metabolite, being in that

ay similar to conventional MRI, while SVS is more abstract and

annot be visualised in a conventional way. Since SVS acquisition

echniques afford more detailed spectra for analysis, we focus our

ork on this technique. The majority of acquisitions by our col-

aborators are collected at single time points, i.e., in longitudinal

tudies, but may also be captured as time-resolved concentrations

ithin a single examination, i.e., functional studies. In the latter

pproach the subject can also be asked to perform tasks, such as

apping fingers during the acquisition (active brain state), and al-

ernately resting (resting brain state). 

Following acquisition, data are output to a vendor-specific for-

at that contains raw data and a header file containing all exper-

mental parameters. Subsequent preprocessing and quantification

teps follow to map spectral peak intensities to metabolite con-

entrations in the measured voxel. In a final fitting step, a model

ased on prior information is fit to the acquired spectrum; in

any approaches, this is effectively a linear combination of ba-

is sets consisting of simulated or measured metabolite signatures.

etabolite concentrations are typically calculated relative to a sta-

le reference, often water or creatine. This allows for a direct com-

arison of relative metabolite concentrations, assuming the same

cquisition hardware and protocols are used. While a more com-

rehensive discussion of all steps is beyond the scope of this pa-

er, interested readers can refer to Stagg et al. [25] for a de-

ailed overview. A number of existing tools can be used to perform

hese steps: LCModel [4] is one such widely-used commercial tool,

hile jMRUI [26] , TARQUIN [27] , SIVIC [28] , OXSA [29] , and Gan-

et [30] offer open source solutions. Equipment manufacturers also

upply basic tools to facilitate simple analyses on the scanner con-

ole. Our collaborators typically use LCModel or Tarquin; we utilize

arquin in our pipeline for its ease of use and open availability.

he output from these steps includes the experimental parameters

sed for the acquisition as well as the fitted data and quantifica-

ion information for each metabolite. 

. Task and requirement analysis 

We developed SpectraMosaic over the course of one year. We

et weekly with our domain collaborators, two of whom are

oauthors of this paper. Collaborator backgrounds included two

D/PhDs in radiology, eight PhD researchers in MR imaging, and

hree MR engineers. The weekly meetings went through three dis-
inct phases. The first phase focused on domain evaluation, iden-

ification of key challenges and where visualisation could poten-

ially help overcome them. Ultimately, the output from this phase

as agreement on core tasks and requirements. The second phase

xplored the design space for these tasks/requirements with dis-

ussion and interface prototypes. These were refined and narrowed

own to a single option. Our third phase reviewed and refined an

lpha application. Basic use case testing alongside individual and

roup evaluation feedback ultimately helped us settle on the ver-

ion we present in this paper. 

.1. Task analysis and abstraction 

We frame the analysis tasks identified in phase one of our col-

aboration in the context of Brehmer and Munzner’s multi-level

ypology of abstract visualization tasks [31] . This abstraction was

seful for our development process, as it allowed us to more ob-

ectively frame the challenges experienced by our colleagues. These

asks form a generalized workflow shown in Fig. 2 . The first step,

ata discovery, provides a general overview of the input compo-

ents for spectral analysis. Following user selection of components

or analysis, a data production step calculates ratios from all inputs.

atio comparison and summarization follows. 

T1: Data discovery . The first set of tasks relates to data con-

umption for discovery and verification of key MRS data aspects

 Fig. 2 (A)). Spectra, anatomical reference images, and associated

ubject data are reviewed together in an initial overview step. Re-

earchers visualize spectral graphs to establish a general sense of

he data quality and to form initial hypotheses. Supplemental pa-

ameter information, such as the echo time (TE), during the acqui-

ition can be used to verify validity of experimental comparisons.

esearchers additionally validate their assumptions about the spec-

ral graph against its sample location. This serves two purposes:

1) as a second quality assurance measure to check whether the

ata were sampled in the correct region, and (2) to provide initial

alidation for graph differences between spatial regions. This is be-

ause a normal spectrum in one area of the brain may be aberrant

n another region with a different tissue composition [25] . 

T2: Selection and filtering . Following an overview, researchers

ext select and filter the data ( Fig. 2 (B)). In both medical and clin-

cal research studies our collaborators often wish to select a subset

f spectra or metabolites for further analysis for a variety of dif-

erent reasons. For instance, researchers may wish to look only at

he variation in metabolite concentration ratios for a single time

cquisition in a longitudinal cohort study, e.g., pre-operative pa-

ients in a tumor cohort, or to analyze only female subjects within

 study. Furthermore, some metabolites may be uninteresting to

nclude for certain clinical studies, e.g., lipids and macromolecules

re not usually relevant outside of certain oncological studies [25] ,

nd are useful to exclude on–demand. 

T3: Data production . Spectra can vary considerably between ac-

uisitions. This can occur due to different acquisition parameter

ettings or simply between different scanners. Ratios and corre-

ations calculated from metabolite concentrations are two stan-

ard methods to understand spectroscopy data [32] . The use of

atios to determine metabolite concentrations is a core critical

ask for any MRS application for two reasons, (1) as a method to

orrect for inhomogeneity across the sample and (2) to account

or varying tissue composition. Following selection of interesting

etabolites for analysis, a data derivation step takes as input the

arquin–processed and quantified metabolite values and outputs

he metabolites in ratio form ( Fig. 2 (C)). 

T4: Comparison and summarization . Following data derivation,

esearchers then wish to summarize and compare metabolite ratios

 Fig. 2 D). For example, researchers studying oxygen deprivation

hypoxia) in newborns are interested in comparing the metabolic
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Fig. 2. Typical task flow for MRS data analysis. Users begin with data discovery (A) to review spatial voxel position, associated spectral graphs, and relevant acquisition 

parameters. (B) continues with data selection and filtering, where spectral voxels of interest are selected and divided into groups. Data production (C) calculates all possible 

ratios of selected metabolites, e.g., Glutamine (Gln) to N-acetylaspartate (NAA). In (D) ratios are compared and summarized between, e.g., Gln/NAA for different patients or 

different brain regions. Each of theses steps may be revisited. 
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differences between healthy and hypoxic newborns. This can be

achieved by evaluating ratios of the same metabolites between

both groups, e.g., NAA healthy vs. NAA hypoxic. Futhermore, re-

searchers would like to understand the metabolic profile of hy-

poxic newborns on a spatial and individual level. For instance, the

basal ganglia region of the brain is known to be sensitive to oxy-

gen deprivation, so it is clinically relevant to compare this region

to a less sensitive region. Within a given region of interest re-

searchers then wish to compare individuals to identify clinically

relevant outliers in order to answer questions such as “How does

Lactate/Choline compare for Patient X versus Y?” Moreover, oxygen-

deprived newborns who survive often experience developmental

disabilities later in life. Longitudinal MRS studies allow researchers

to understand how the metabolic profiles of affected individu-

als change over time relative to healthy individuals. In a differ-

ent scenario, researchers studying schizophrenia are interested in

comparing the metabolic profiles of individuals when their brains

are active relative to their resting brain state. Different metabolites

present in different concentrations in these states, and identifica-

tion of these differences may help progress understanding of this

disorder. 

Following comparison of interesting metabolite ratios, re-

searchers often wish to refine their hypotheses and revisit

metabolic input data. This task sequence then repeats, following

an iterative analytical approach to hypothesis exploration and ver-

ification in MRS data. 

4.2. Design requirements 

Following the identification of tasks important for our collabo-

rators in MRS analysis, we developed the design requirements for

our application. First, on a technical and infrastructure level, our

colleagues often switch between hospital workstations while ac-

cessing sensitive patient data. Thus, for practical utility it is critical

to provide a tool that enables a machine-independent workflow ( R1 )

that adheres to patient data restrictions ( R2 ). 

As discussed in T3 , for a combined analysis of spectra acquired

from different scanners, or with different acquisition settings, it

is necessary to calculate metabolite ratios ( R3 ). Furthermore, as

implied by T1 and T2 , visual linking between input data (voxel

placement, spectral graph, patient- and acquisition-specific infor-

mation) and calculated metabolite ratios is important for many anal-

ysis questions ( R4 ). For our collaborators, the most important pa-

tient and scanner-specific information to retain include patient age,

gender, and echo time (TE). 
Based on the types of questions outlined in T4 , users must be

ble to compare metabolite ratios of interest ( R5 ). This should be ac-

omplished for any permutation through four key attributes: spa-

ial region, individual, time point, and brain activity state . Addition-

lly, appropriate mechanisms to compare ratios over time as well

s between spatial regions and individuals are critical for longitu-

inal or single-run studies. Furthermore, for functional MRS stud-

es it is important to support comparison of metabolite ratios in an

ctive relative to a resting brain state. 

. SpectraMosaic workflow and interface 

We provide an overview of the SpectraMosaic interface in Fig. 3 .

ollowing an offline processing step, data are loaded into the web

ool ( Fig. 3 (A)). Data of interest for analysis can be explored, se-

ected, and added ( Fig. 3 (B)–(D)) to a spectral ratio heatmap for

eeper inquiry and hypothesis verification ( Fig. 3 (E)). A legend

rovides information on the encodings used in the tool ( Fig. 3 (F)).

 table below the heatmap summarizes salient acquisition infor-

ation ( Fig. 3 (G)). 

Data processing and loading . We first perform an offline pro-

essing step that automates spectral processing and quantifica-

ion from Tarquin and MATLAB [33] . We utilize MATLAB to pro-

ess the structural imaging files, which includes patient data de-

dentification ( R2 ). The resulting output contains a structural image

o localize the voxel sample, the spectral graph, quantified metabo-

ites, and associated metadata; these data remain semantically

inked in the visual tool. We use a custom data format because

he DICOM standard is not universally or consistently adopted for

RS data. 

Visual inspection of voxel positioning and spectral graphs . Fol-

owing data loading ( Fig. 3 (A)), the spatial voxel overview panel

 Fig. 3 (B)) is used to review the spectral graph, associated anatom-

cal image, and included metadata for each acquisition. This panel

onsists of a set of images for each patient. In each structural im-

ge, a fuchsia rectangle indicates the voxel sample region for the

RS acquisition ( Fig. 3 (B1)). To the left, a position selector consists

f small filled nodes, each of which indicates an acquisition for

he selected patient. Using the standard CPK color convention for

tomic elements [34] , we represent 1 H spectral metabolites with

 white-filled node. A light gray bar behind the disks shows the

ctive selection image, while the node becomes filled in fuchsia

o indicate image linkage to a spectrum that is selected in the

pectral heatmap panel ( Fig. 3 (B2)). Users can access different im-

ges via these position nodes or time acquisition nodes (horizontal
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Fig. 3. SpectraMosaic application workflow overview. Raw spectral data are first processed in an offline step (A), then loaded into the application. In (B) the user visualizes 

the anatomical image with voxel placement for each acquisition (B1) and the associated spectral graph (B2). In (C) users may create custom groups for analysis. Metabolites 

may be selected (D) for analysis from custom or preset groups in a drop-down list, and selections assigned to the x- or y-axis of a ratio heatmap (E). The ratio heatmap 

is divided into a cell grid (E1) based on the number of metabolite inputs to each axis. Detailed inspection of a cell (E2) shows the ratios in a series of nested glyphs 

representing spatial region, individual, individual brain state, and individual time acquisitions. A legend at the right provides a reference for heatmap glyphs and colors (F). 

A table (G) shows relevant metadata for each voxel. 
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xis). A selected node shows the structural image with localized

oxel, associated spectral graph, and supplemental metadata, such

s TE setting, patient age and gender, stored with that voxel ( R4 ).

hese data are stored hierarchically, where each voxel sample with

patial information is first sorted by individual identifier and asso-

iated metadata, then by time of acquisition, and finally by brain

ctivity state during the acquisition. 

Group creation and metabolite selection . Following visual inspec-

ion of voxel position and spectral graphs, the user may then cre-

te custom groups of spectral voxels for subsequent analysis ( T3 )

n the Voxel Group Overview panel ( Fig. 3 (C)). Custom groups may

e edited at any time. Membership in a custom group is listed

n the metadata table at the bottom right region of the interface

 Fig. 3 (G)). Our application additionally creates preset groups for

ach echo time, spatial region, individual, brain state, and time

oint. These may be immediately accessed in a drop-down list in

he Metabolite panel ( Fig. 3 (D)). 

Following a group selection from the metabolite drop-down list,

ll quantified metabolites from the offline processing step are dis-

layed. Users then have the option of adding all metabolites in the

ist to the x-axis, y-axis or both axes of a spectral ratio heatmap lo-

ated to the right of this list ( Fig. 3 (E)). Alternatively, only a subset

f metabolites may be added to the heatmap axes. Groups may be
exibly added or removed from either axis at any time. Metabo-

ites populate along heatmap axes in alphabetical order; we dis-

ussed a number of ordering options with our domain collabora-

ors, settling on this ordering method for consistency and pattern

ecognition between studies. 

Ratio exploration . Following loading of metabolite groups onto

ach axis, we determine ratios for all metabolite permutations for

isplay in the heatmap panel ( Fig. 3 (E)). This serves as the pri-

ary visualization component of our tool, as shown in Fig. 3 (E)

nd which is described in detail in Section 6 . In this view, users

an compare average ( Fig. 3 (E1)) or individual metabolite ratios

t different levels of detail ( R5 ). Users may interactively expand

 cell to reveal key attribute details ( Fig. 3 (E2)), as inspired by

ertifier [35] . The background of the cell remains visible behind

ndividual ratio elements for all expansions to preserve context

f the aggregated value during navigation. This subtle context

reservation was deemed useful by experts in our development

rocess. 

A legend at the far right ( Fig. 3 (F)) serves to indicate hue

nd glyph meaning. Hovering over a cell or glyph correspondingly

ighlights linked data elements in fuchsia, including the associated

pectral graph, patient anatomical image, and associated metadata

 R4 ), as depicted in Fig. 3 G. 
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Fig. 4. Box and bar plots encode metabolite concentrations (tier 1 visual encoding). 

(A) utilizes bars where height encodes the concentration of each metabolite for a 

single spectral input. (B) is utilized for two to four spectral inputs on an axis, where 

height encodes the median value and whiskers encode the minimum and maximum 

metabolite concentration values, respectively. A box plot (C) is utilized for five or 

more spectral inputs on a given axis. 
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6. Spectral ratio heatmap 

In the heatmap panel we divide MRS data elements into tiers

of visual priority ( R3–R5 ): 

Tier 1 Quantified spectral data 

Tier 2 Derived spectral data 

Tier 3 Spectral metadata 

Tier 1 has primary importance; it consists of relative metabolite

concentrations which are the result of pre-processing and quan-

tification steps from the raw spectral acquisition. Tier 2 comprises

the complete set of metabolite ratios. It is used for comparison be-

tween user-defined groups as well as the following key attributes:

spatial region, individual, brain activity state, and time point. Spa-

tial region indicates the voxel sample position within the brain.

Individual refers to a given patient included in the analysis. Time

indicates either the number of separate spectral acquisitions per-

formed on an individual over a study period, as in a longitudinal

study, or recorded metabolite values within an acquisition session,

as in a time-resolved MRS study. Finally, brain activity state indi-

cates if the subject was in an active (task-explicit) state or rest-

ing (task-negative) state during signal acquisition. Tier 3 includes

metadata important for context and selection that are unnecessary

to include as explicit encodings in the visualization: gender, age,

and acquisition settings can have varying impact on the resulting

concentrations and ratios of metabolites [25,36] . 

Tier 1 encoding: Visual perception research has shown that en-

coding position along a common axis is the most effective visual
Fig. 5. In nested ratio calculations, the cell background (A) is first mapped to color bas

metabolites on the y -axis. Within the cell (B), the value of each input metabolite for all p

for each spatial region. Within a spatial region, the average of each metabolite is compa

time, takes a single metabolite input for both the numerator and denominator. 
hannel for communicating quantitative information [37] . Box plots

re a simple, ubiquitous and descriptive means of visually encoding

tatistical information about a dataset [38] . Since each MRS spec-

rum is essentially a multivariate set, where each metabolite is a

ariable, each metabolite in the spectrum then is tied to its own

et of unique statistical information. We chose box plots over vio-

in [39] or summary plots [40] to visualize tier 1 data, as our goal

ith this tier is to provide clean, quickly readable insight to the

nput value range. Our use of box plots is additionally inspired by

lumenschein et al. [41] , who used bars to encode aggregate di-

ensions in their work on table visualization. Bars and box plots

re additionally well-recognized and easy to interpret; use of ele-

ents that were familiar to our target user group was an impor-

ant design consideration. Furthermore, since box plots are only

pplicable when a dataset consists of five or more members, we

ntroduce three variations depending on the number of inputs as

llustrated in Fig. 4 . For any of these variations, we first flatten the

oxel hierarchy described in the spatial overview panel, and split

he data into one voxel array per axis. In each array, we calculate

he mean for each metabolite. In the case of a single spectral input,

e use design variation A, which utilizes bars only, where height

ncodes the concentration of each metabolite ( Fig. 4 (A)). We calcu-

ate median, minimum, and maximum for two or more metabolite

alues on an axis. This corresponds to variation B, where height

ncodes the median value and whiskers encode the minimum and

aximum metabolite concentration value, respectively ( Fig. 4 (B)).

or five or more metabolites on an axis we additionally calculate

he interquartile range. The box and whisker plot in variation C is

tilized in this case, and shows the median, first and third quar-

iles, and the minimum and maximum value ( Fig. 4 (C)). 

Tier 2 encoding: Overview. In tier 2 , we visualize ratios between

he mean along the x - and y -axes in a heatmap matrix ( R5 ), as

hown in Fig. 3 (E). This effectively trades the low spatial resolu-

ion of MRS data for abstract resolution, focusing on biochemical

oncentrations in detail for a small region of interest. Each cell

hows the aggregate ratio of the metabolite on the x -axis posi-

ion to the corresponding y-axis metabolite, for instance mean Glu-

amine (Gln)/mean N-acetylaspartate (NAA), as illustrated in Fig. 5 .

e map the ratio value to a diverging red-blue colormap [42] in-

ide each heatmap cell, as this color scheme is a familiar sight to

ur collaborators. In instances where the ratio is less than 1, we

nvert the ratio and switch the sign. To obtain a cleanly symmet-

ic, divergent mapping structure we drop all values by 1 so the
ed the average of input metabolites on the x-axis divided by the average of input 

atients, at all time and brain state collections, is averaged and compared as a ratio 

red for each patient, then for the brain state of each patient. The innermost step, 
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individ.Case region time ptstate visual individ.Case region time ptstate visual

Fig. 6. Key tier 2 visual attributes include: brain spatial region, individual, brain state, and time point. We assign a unique glyph to each of these four attributes. Brain state 

is defined as active or resting; in absence of a classification we assume a resting state. All remaining three attributes may have single or multiple recordings. This produces 

16 possible scenarios for spectral analysis. A sample visual is included for each scenario. 
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iagonal of the heatmap matrix is 0, rather than 1. Our aim is to

raw attention to large input differences; this was identified as im-

ortant for spectroscopy researchers. Red indicates a higher x -axis

etabolite input while blue indicates a higher y -axis metabolite

nput. Equivalent inputs map to white. If an input value is 0, we

ap the cell color to dark grey. We originally thought to exclude

uch values from the heatmap, but on further discussion with our

ollaborators felt these were useful to include in order to preserve

ontext. This heatmap view provides a means to visualize other-

ise undetectable patterns in a rapid overview. To aid color in-

erpretation and perception, our application includes a colormap

egend to the right of the heatmap ( Fig. 3 (F)). 

Tier 2 encoding: Attributes. Through a series of group interviews

nd individual shadowing sessions to the MR scanners we iden-

ified that, following an overview of all aggregated metabolite ra-

ios, researchers are most interested in comparing and summariz-

ng ( T4 ) individual metabolites. For a given metabolite ratio, re-

earchers first are interested in comparing brain spatial regions , as

his can provide the most context for understanding ratio differ-

nces, e.g., in a tumor cohort study where voxels are acquired in

he tumor region and in a healthy region of the brain. With spatial

ontext, researchers can easily compare ratios between individuals .

ssessing brain activity state is then most relevant in the context of

he individual. After comparing the difference in active vs. resting

rain state for an individual, the researcher may review the differ-

nce in these values over a cohort. Similarly, time points are best

ssessed first within a given brain state, then between states of an

ndividual, before comparing between individuals. 
In order to support experts in better identifying unexpected

ource ratios in a study, they thus need to evaluate four key at-

ributes: (1) brain spatial region, (2) individual, i.e., patient, (3) brain

ctivity state, and (4) time point . Furthermore, through each of

hese analysis stages we found that researchers prefer to maintain

ontext between attributes to better understand sources of varia-

ion. This helped drive our development of a detailed metabolite

atio view that nests within each heatmap cell. Many MRS stud-

es, particularly proof-of-concept research studies, by our collabo-

ators often include around 20 subjects. They may sample up to

our brain regions (although two is more typical), include up to

hree time points, i.e., pre-operative, post-operative, and long-term

ollow-up, and measure either a single or dual brain activity state.

his space of attributes and approximate study size produces a set

f 16 possible case scenarios to account for in our detailed com-

arison view. 

Tier 2 encoding: Detail. Given the low number of key attributes,

e found a simple glyph representing each attribute to be the

ost conducive to user analysis. Our glyph choice and design

as mainly inspired by findings from unit visualization research,

ainly the A tom grammar by Park et al. [20] , for this method’s

emonstrated strong intuition and interaction properties. Since

ur target study sizes are typically relatively small, we avoid issues

ith display and perceptual scalability from which unit visualiza-

ions often suffer. To maintain important context in the analysis

ow, we nest glyphs to mirror the order of analysis preferred

y researchers. Our glyph nesting design was inspired by dimen-

ional stacking visualization techniques pioneered in XmdvTool
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and N-land by Ward et al. [43,44] . Since nested glyphs can form

complex shapes, we chose glyphs that were simple and familiar

to our collaborators to reduce interpretation difficulties. Although

we discussed different stroke styles for glyphs, for simplicity and

clarity our ultimate design uses a solid hairline stroke for each of

the four attributes. Experts felt that changes in stroke weight or

style was distracting and overemphasized elements; this may bias

conclusions. 

The visual design for this detailed view is mapped from a se-

ries of nested ratios. Inside each cell we flatten the data to a sin-

gle voxel array, skipping any duplicate voxels. We then determine

ratios for each of the key attributes, where available, in a nested

fashion that mirrors the preferred order of user analysis: the ra-

tio for each spatial region (using the average of all individuals for

this region), each individual (using the average of all states for the

given individual in a given region), each state (using the average

of all time points for a given state of an individual from a given

region) and each time point, as shown in Fig. 5 (B). These nested

values then map to the appropriate glyph. 

We represent spatial regions as rounded rectangular glyphs.

We chose rounded corners to distinguish spatial glyphs from the

square shape of the heatmap overview cell. Furthermore, the

rounded corners leave space to reveal the heatmap cell color,

thereby subtly preserving context within the detail view. In each

cell, we evenly divide the space vertically by the number of dis-

tinct regions sampled. Individuals are presented as filled disks

when only shown in a single time acquisition (e.g., case 9), ex-

panding to rounded squares when time series data are incorpo-

rated (e.g., case 3). This shape change permits a spark line to move

evenly across the space without going outside the border of the

enclosing glyph. Shapes scale to fill space within their frame. In

instances where different brain activity states are analyzed, we

divide the shape in half horizontally (e.g., case 2). This feature

was important to include for our collaborators who perform time-

resolved spectroscopy, as this is not available in other tools. Finally,

we encode different time acquisitions as points connected via a

spark line, inspired by Meyer et al. in their work, Pathline [45] .

This spark line is nested into the relevant glyph: if a multi time

step series is captured in a study analyzing different brain states,

the spark line is placed within each state half-moon glyph (e.g.,

case 4). If analysis is only for a single activity state, the spark line

nests inside the individual glyph (e.g., cases 3, 11), or inside spa-

tial glyphs for a single patient (e.g., case 7). The remaining cases

comprise different permutations of these spatial region, individual,

brain state, and time point arrangements. 

For example, consider an instance of scenario 16: two patients

are sampled in two regions of the brain four times in a year. Dur-

ing two acquisition times the subjects were asked to perform a

task (active brain state), while the other two times were asked to

relax (resting brain state). This produces a total of 12 unique mea-

surements, 6 per patient. The overview cell is calculated by aver-

aging the 6 values of Gln for patient 1 and the 6 values of NAA for

patient 2, and dividing the result of NAA into Gln. Inside the cell,

we compute this ratio as a series of nested averages for each of

the four key attributes, as depicted in Fig. 5 : (1) spatial region, (2)

individual, (3) brain state, and (4) time point. For each, we average

the metabolite concentrations before computing the ratio. For ad-

ditional detail view images and example tasks of each scenario in

a more complex dataset, we refer interested readers to the supple-

mentary material SpectraMosaic Detail Case Scenarios . 

Hovering facilities display the ratio value for each cell or at-

tribute of interest ( R5 ). Displaying this numerical value provides a

safeguard against possible distortions of color perceptions that may

occur with our chosen glyph nesting structure. This value is dis-

played in red text if one metabolite input exhibits an uncertainty

above 15% (Cramér-Rao lower bound) [46] . This information may
e used to assess both the quality of the measurement and the

ccuracy of the spectral processing and quantification steps. 

Tier 3 of MRS data consists of metadata information used for

ontext and selection. We depict this information in a table below

he heatmap. Gender, age, and echo time comprise other important

atient attributes to track because the shape of the spectrum can

ary considerably with these factors—for example, the lactate peak

s virtually undetectable in healthy babies [36] , but is nearly always

easurable in healthy adults with increased neural activation [25] .

cquisition settings are also important, as different echo times will

ield a vastly different spectral representation for the same patient.

. Implementation 

SpectraMosaic is a web-based application implemented with

TML, CSS, Javascript, as well as the D3 [47] , P5, and gridster

avascript libraries. It was developed as a web application to al-

ow for easy integration and use within the hospital network ( R1 ).

 Python back end integrates MATLAB [33] and Tarquin [27] com-

onents in the preprocessing steps. Assets are stored on the

lient and fetched on-demand. Our visualization tool code is open

ource and is publicly available at https://github.com/mmiv-center/

pectramosaic-public . 

. Case study 

We evaluated the utility of SpectraMosaic as a research tool us-

ng a giardiasis MRS case study. Giardiasis is a parasite-borne dis-

ase affecting the small intestine caused by drinking water con-

amination. The metabolic byproducts of this disease are subtle,

ut have been shown to be detectable by MRS [4 8,4 9] . The goal

f this study is to explore and identify possible metabolic indica-

ors for infection using our tool. 

Collected in Bergen, Norway, study data comprised two patients

maged some months apart in three different regions of the brain

t a single echo time (TE 35 ms). For one region (prefrontal region)

wo different TE parameter settings were used (TE 35 ms and TE

44 ms). These data were analyzed by three volunteers recruited

rom the fMRI/MRS research group in Bergen. All three provided

eedback on earlier interfaces of the SpectraMosaic application, and

re not co-authors of this work. User A is an MR physicist special-

zing in development and refinement of spectroscopy protocols for

linical studies of neuropsychiatric and developmental disorders.

ser B, also an MR physicist, uses 31 P- and 

13 C-labeled pyruvate

imecourse data to study real-time metabolism. User C is a cog-

itive neuroscientist who uses MRS in conjunction with fMRI in

esearch on neurodegenerative and developmental disorders, e.g.,

arkinson’s disease, stroke, and stuttering. We processed the data

n advance to focus evaluation on the visual web tool; this step

ncluded de-identification of patient-specific information. 

Case workflow feedback . After a brief introduction to the tool,

sers analyzed this case following a “think-aloud” protocol [50] .

e conducted follow-up interviews after the analysis was com-

lete, which we summarize and discuss in this section. 

All three users began with an overview of the spectral graphs

nd voxel position for each imaged brain region ( T1 ). User A

nvestigated spectral graphs by region, while B and C explored by

atient. Users A and B commented that this overview provides an

mportant quality assurance check for each acquisition. Since all

hree users are familiar with MRS, they agreed with our decision

o exclude labeling of spectral peaks; they felt this would have

een unnecessary and distracting to include. All commented that

he hippocampus region spectra looked strange, which could be

ndicative of either a pathology or acquisition problem. They noted

hat this region is particularly difficult to image well, and requires

eeper investigation. 

https://github.com/mmiv-center/spectramosaic-public
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Fig. 7. Heatmap inspection in a two-patient, multi-voxel study acquired at two TEs: 

35 ms ( x -axis) and 144 ms ( y -axis). Investigating the Alanine (Ala)/Alanine (Ala) 

cell reveals a higher measurement in the TE 144 ms group. However, the tooltip 

indicates that this ratio may be unreliable due to a poor model fit. 
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All users then explored available group presets and experi-

ented with creation of custom groups for analysis ( T2 ). They

greed that the presets particularly improved the practical usabil-

ty of the tool, stating that these were comprehensive and largely

emoved the need to make custom groups. All users experimented

ith adding a subset of basis set metabolites ( Fig. 3 (D)) to the

eatmap view, although they felt that analysis of all metabolites

s a useful first step for exploring new hypotheses. However, they

greed that subset metabolite analysis is useful as hypotheses are

efined to a narrower metabolite set. 

Feedback was positive for the alphabetical ordering of metabo-

ites on heatmap axes. User C strongly felt that any statistics-based

rdering method would make interpretation too difficult because

hey would spend too much time locating metabolites along the

xes. All users agreed that the representation of metabolite relative

oncentrations as whisker bar or box plots was extremely useful,

s it offered additional insight into unexpected values observed in

he heatmap. User B stated: “Checking the range on the metabolite

nputs helps me as a first check; a huge range could indicate a [brain

egion] area effect or a bad acquisition. I can easily then verify this

y checking the spectral graph in the other panel.” All users noted a

assive range for Gamma-Aminobutyric acid (GABA) in this study,

nd were able to quickly conclude that the acquisition technique

sed is not effective for this metabolite. For this study and others

cquired on the same scanner, through the same technique and pa-

ameters, this representation allows for a straightforward relative

omparison of metabolites before ratio computation ( T3 ). 

In the spectral ratio heatmap, user A was primarily interested

n exploring ratios at different echo times (TE) ( T4 ). We see this

xploration in Fig. 7 ; TE 144 ms voxels are placed on the y-axis

hile TE 35 ms voxels are placed on the x-axis. This user focused

n the diagonal of the matrix, and primarily on examining known

etabolites implicated in giardia infection, e.g., Alanine. Although

his ratio shows relative similarity, we note that the model fit for

his metabolite is outside the accepted range. This requires further

nvestigation. User B also compared different echo times, but over

he entire matrix space for any unexpected dark color regions. For

ach unexpected cell, the user noted whether this could be pathol-

gy, or an acquisition problem. 

All three users were also interested in comparing ratios of

etabolites between patients for each of the three measured brain

egions ( T4 ). They first filtered out TE 144 ms acquisitions, then
rrayed each patient on opposing axes. Assuming both patients are

ealthy, we would expect that the patient glyphs for all spatial re-

ions would show similar values. All three users noted an unex-

ected, relatively large difference for Lactate/Total Creatine in the

ippocampal region ( Fig. 8 ). To investigate this disparity, users A

nd B first verified whether the value met the threshold for each

atient. The value did not meet the threshold for the female pa-

ient, indicating an unreliable fit. Users then reviewed the spec-

ral graph of the hippocampal acquisition for this patient, noting

ts abnormality—users concluded that this merits deeper investiga-

ion, and likely requires an new acquisition. 

Summary feedback . All three participants felt that SpectraMosaic

as useful and could augment their standard workflow for deeper

nsights into spectral data. User A noted that the visual feedback

n the model fit in each ratio provides invaluable data quality in-

ormation. User B stated, “The linking between the glyph ratios, the

pectra, the table, and the images is incredibly useful for us—whenever

e look at metabolite results we always want to go back to the raw

pectra and see if this makes sense, and if the quality is good, and this

akes it really easy to see. I see this tool as being useful to verify as-

umptions I have going in to the study, and to explore the entire range

or quality checks that might affect the results that I’m expecting.”

All participants felt the nested glyphs were integral elements of

he metabolite ratio exploration process. The detail glyph view pro-

ided a means to quickly drill into an unexpected ratio and iden-

ify the possible source(s), while easily retaining contextual infor-

ation from the surrounding heatmap. User C noted: “This [spec-

ral heatmap] overview and detail glyph feature is useful to have a

loser look at, for example, neurodegeneration [in Parkinson’s] with

he loss of dopaminergic connections, as seen with concentrations of

lutamate or GABA... and it is ideal for testing new protocols against

stablished protocols.” Furthermore, experts agreed that the glyph

esign and nesting structure was intuitive and clear in all case sce-

arios, even in larger, more complex studies. All three stated that

nterpreting these glyphs was not difficult, particularly when com-

ared to the very steep learning curve to interpreting spectral data

hrough their standard approach. They agreed that the inclusion

f the legend was helpful when first familiarizing themselves with

he system, but that they had little need to reference it after the

rst few minutes of heatmap exploration. However, two experts

ommented that our mapping of vertical time points could be

caled differently to more clearly demonstrate relative ratio value

hanges, which were at times difficult to recognize. For detailed

xpert feedback on clarity and interpretability of the nested glyph

tructure in all 16 possible case scenarios in a larger dataset, we re-

er interested readers to SpectraMosaic Detail Case Scenarios in the

upplementary material. 

All users indicated interest in an option to extract spectral

eatmap visuals and data for subsequent statistical analysis; user

 expressed interest in seeing this output to the hospital PACS for

ccess by radiologists to aid in more rapid interpretation of spec-

roscopy data for more widespread clinical use. 

. Discussion and limitations 

In the case evaluation of SpectraMosaic we found that our tool

rovides new, interesting insights on metabolic profiles at different

ggregation levels. 

Our task analysis showed that experts were particularly inter-

sted in large metabolite differences. Although our diverging color

apping approach in the heatmap is effective in demonstrating

arge differences between metabolites, subtle differences are less

bvious. Investigation into fine grained color mapping options or

ser-defined color map scaling may help more clearly highlight

hese instances. This extends to our plotting of time points, where
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Fig. 8. Following overview of the metabolite ratios between the individual patients, the user inspects Lactate (Lac)/Total creatine (TCr) ratio between two patients for all 

three regions at TE 35 ms. The user notes a high lactate measurement for the female patient relative to the other measured regions (A). Subsequent inspection of spectral 

metadata (B), the spectral graph (C), and the brain region in which this measurement was acquired (D) help establish reasons for this difference. 
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subtle ratio changes could benefit from a logarithmic axis scaling

approach to highlight such changes to users. 

While our decision to sort metabolite inputs in a consistent or-

der limits the ability for pattern recognition within a study, this ap-

proach allows for pattern recognition between studies, where users

can begin to observe a typical “footprint” for certain acquisition

techniques. 

Although this is uncommon for our collaborators, we also note

that if data are not acquired from the same scanner and same pa-

rameters, the utility of the bar and box encoding becomes more

limited. This is because different scanners and different parame-

ters can vastly change the metabolite concentrations; in this case

the ratio heatmap becomes the primary tool for comparative anal-

ysis. 

Our visual design, particularly with reference to the nested

glyphs in the detail view, was guided by collaborative discussions

with research experts. These relatively small study sizes are con-

ducive to nested unit visualizations, and in this iteration of the ap-

plication were not designed to scale to, e.g., hundreds of patients.

With respect to the scalability of groupings within our planned de-

sign, we conducted a preliminary assessment of nested glyph inter-

pretability for each case scenario using a larger study. We provide

the results of this assessment in the supplementary material ( Spec-

traMosaic Detail Case Scenario ). Our collaborators even indicated

that they could envision this approach scaling beyond 20 patients

for some scenarios. Additionally, we could incorporate clustering

or an additional design layer for automatically- or user-generated

groupings for further scalability ( T4 ). 

Lastly, while our glyph system covers all main use cases, we

found that echo time is varied in research studies more often than

initially expected. This frequency of use may imply that this at-

tribute should be encoded at the second priority visualization tier,
ather than its current third level. However, comparison of differ-

nt echo times beyond an overview level is of less clinical inter-

st than the four attributes we have discussed. Inclusion of a fifth

lyph would require careful consideration. 

0. Conclusions and future work 

In this design study we contributed a characterization of the

ata, task, and design requirements for the development of Spec-

raMosaic, followed with an expanded tiered visual encoding sys-

em and pipeline. We performed case studies with three domain

xperts to validate our tool in spectroscopy clinical research and

rotocol development. MR spectroscopy is a ripe area for contin-

ed visualization research. 

The flexible design of our tool allows for a number of possi-

le extensions; this may include investigation into additional sta-

istical measures relevant for comparative analysis, e.g., correlation.

lthough this paper focuses on 

1 H-MRS, 31 P-MRS and 

23 Na-MRS

nalysis may also be integrated to our tool. While we offer ba-

ic mechanisms for uncertainty visualization, exploring additional

eans for uncertainty feedback in the heatmap cells and glyphs

an offer deeper insights into the data. Finally, although typical

RS cohort studies are relatively small, exploration of methods to

xtend our visual encoding system to successfully manage larger

ohorts may further increase tool usability. 

Automatic interface adjustment based on acquisition technique

ffers a valuable investigation of parameter space analysis in MRS.

xploration of the most salient features to reveal for, e.g., PRESS

ersus MEGA-PRESS, may help experts more effectively identify in-

eresting ratios for further investigation. Beyond the medical do-

ain, an additional interesting line of inquiry would be to explore

he adaptability of our abstracted tasks paired with our visual en-
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oding system in other areas facing similar challenges with het-

rogeneous multidimensional data, such as meteorology or geo-

hysics. 
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As supplementary material, we provide a video demonstrating

he SpectraMosaic application features and workflow. We addition-

lly include SpectraMosaic Detail Case Scenarios , which detail each

f the 16 detail case scenarios in a more complex case study. 
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