## The Iterative Process of Interactive Visual Analysis

**Helwig Hauser** (Univ. of Bergen)



## **Thanks & context**



- Thanks for the invitation to talk at EuroVA 2012! :-)
- "Order": to comment on VA ↔ SciVis, ...
- Context:
  - ≈12 years of res. on interactive visual analysis, mostly at VRVis and at the Univ. of Bergen
  - PhD projects by Helmut Doleisch (-2004), Raphael Fuchs (-2008), Johannes Kehrer (-2011), Çağatay Turkay (2010–), and several others
  - res. cooperation with SimVis (H. Doleisch, et al.),
     VRVis (Krešimir Matković, Harald Piringer, et al.),
     Univ. of Magdeburg (Steffen Oeltze et al.), etc.
  - related projects, including VisMaster, SemSeg, etc.
  - funding from FFG (Austria), EC, UiB, etc.

## **Interactive Visual Analysis**



- Given data too much and/or complex to be shown at once,
- an interactive visualization methodology to facilitate
  - the exploration and analysis of data (not necessarily the presentation of data), including
    - hypothesis generation & evaluation, sense making,
    - knowledge crystallization, etc.
  - focusing according to the user's interest, e.g., by interactive feature extraction,
  - navigating between overview and details, e.g.,
     to enable interactive information drill-down [Shneiderman]
- through an iterative & interactive visual dialog reminds you of visual analytics?

## Visual Analytics ↔ Interactive Visual Analysis




- IVA (interactive visual analysis) since 2000
- **Tightly related** to visual analytics, of course, e.g., integrating computational & interactive data analysis
- Particular methodology with specific components (CMV, linking & brushing, F+C vis., etc.)
- General enough to work in many application fields, but not primarily the VA fields (national security, etc.), in particular "SciVis fields"...
- Really a question of difference??

<del>一</del>)

## **Integrating Interaction & Computation**



- Goal: to combine the best of two worlds [Keim et al.]:
  - data exploration/analysis by the user, based on interactive visualization
  - and data analysis by the computer, based on statistics, machine learning, etc.
- State of the art / levels of integration:
  - mostly no integration, still
  - some vis. of results of computations
  - also: making comp. semi-interactive (here called "inner integration")
  - rare: tight integration







## **Target Model of "Scientific Data"**

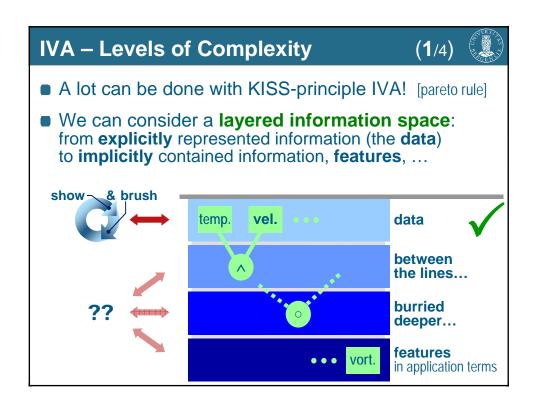


- Characterized by a combination of
  - independent variables, like space and/or time (aka. domain)
  - and dependent variables, like pressure, temp., etc. (aka. range)
- So we can think of this type of data as given as d(x) with x ↔ domain and d ↔ range examples:
  - CT data  $d(\mathbf{x})$  with  $\mathbf{x} \in \mathbb{R}^3$  and  $d \in \mathbb{R}$
  - time-dep. 2D flow  $\mathbf{v}(\mathbf{x},t)$  with  $\mathbf{x} \in \mathbb{R}^2$ ,  $t \in \mathbb{R}$ , and  $\mathbf{v} \in \mathbb{R}^2$
  - num. sim. result  $\mathbf{d}(\mathbf{x},t)$  with  $\mathbf{x} \in \mathbb{R}^3$ ,  $t \in \mathbb{R}$ , and  $\mathbf{d} \in \mathbb{R}^n$
  - **q(p)** with  $\mathbf{p} \in \mathbb{R}^n$  and  $\mathbf{q} \in \mathbb{R}^m$
- **Common property**:
  - d is (at least to a certain degree) continuous wrt. x

## Interactive Visual Analysis of Scientific Data



- Interactive visual analysis (as exemplified in this talk) works really well with scientific data, e.g.,
  - results from numerical simulation (spatiotemporal)
  - imaging / measurements (in particular multivariate)
  - sampled models
- When used to study scientific data, **IVA employs** 
  - methods from scientific visualization (vol. rend., ...)
  - methods from statistical graphics (scatterplots, ...), information visualization (parallel coords., etc.)
  - **computational tools** (statistics, machine learning, ...)
- Applications include
  - engineering, medicine, meteorology/climatology, biology, etc.


## The Iterative Process of IVA



- Loop / bundling of two complementary parts:
  - visualization show to the user! Something new, or something due to interaction.
  - interaction tell the computer! What is interesting? What to show next?
- Basic example (show brush show ...), cooling jacket context:
  - 1. show a histogram of temperatures
  - 2. brush high temperatures (>90°[±2°])
  - 3. show focus+context vis. in 3D
  - 4. locate relevant feature(s)



linking & brushing, focus+context visualization, ...



## IVA – Levels of Complexity

(2/4)

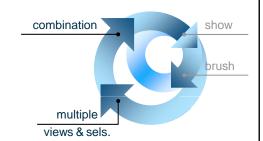


■ A lot can be done with KISS-principle IVA! pareto le

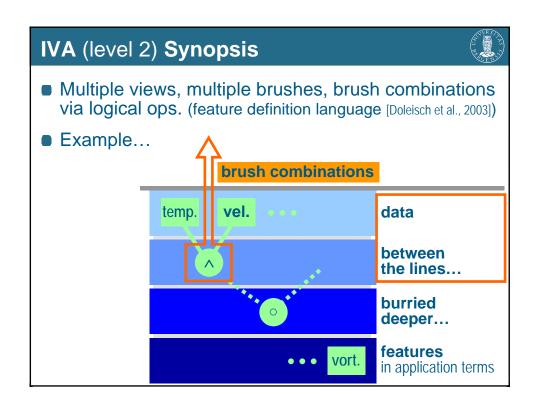


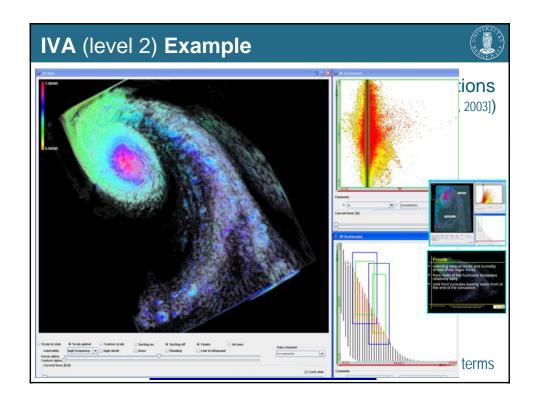
- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
  - IVA, level 2: logical combinations of brushes, e.g., utilizing the feature definition language [Doleisch et al., 2003]
  - IVA, I. 3: attribute derivation; advanced brushing, with interactive formula editor; e.g., similarity brushing
  - IVA, I4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis
- Level 2: like advanced verbal feature description
  - ex.: "hot flow, also slow, near boundary" (cooling j.)
  - brushes comb. with logical operators (AND, OR, SUB)
  - $\blacksquare$  in a tree, or iteratively (((( $b_0$  op<sub>1</sub>  $b_1$ ) op<sub>2</sub>  $b_2$ ) op<sub>3</sub>  $b_3$ ) ...)

## IVA – Levels of Complexity


**(2**/4)




A lot can be done with KISS-principle IVA! pareto fle




- For more advanced exploration/analysis tasks, we extend it (in seveal steps):
  - IVA, level 2: logical utilizing the feature
  - IVA, I. 3: attribute d with interactive form
  - IVA, I4: applicationbased on vortex extr



- Level 2: like advanced
  - ex.: "hot flow, also s
  - brushes comb. with
  - in a tree, or iteratively ((( $(b_0 op_1 b_1) op_2 b_2) op_3 b_3$ ) ...)





## **IVA** – Levels of Complexity

(3/4)



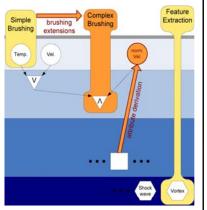
A lot can be done with KISS-principle IVA! pareto [le]



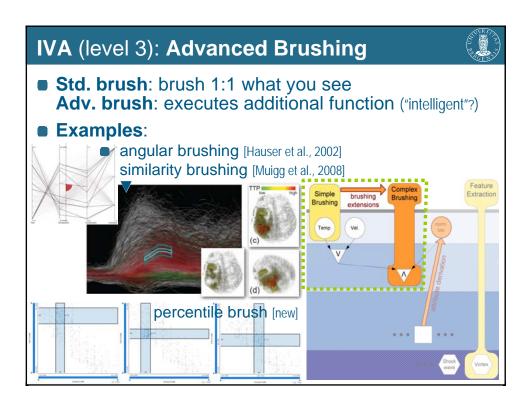
For more advanced exploration/analysis tasks, we extend it (in seveal steps):





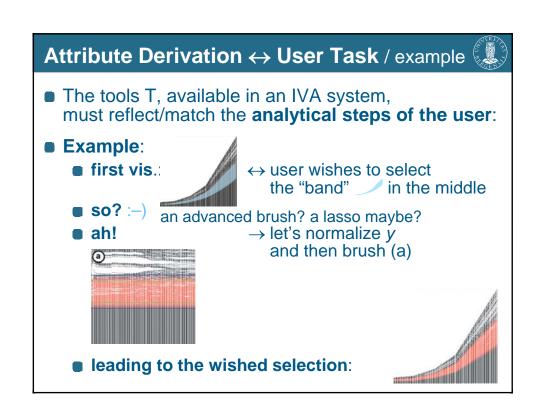

- IVA, I4: application-specific feature extraction, e.g., based on vortex extraction methods for flow analysis
- Level 3: using general info extraction mechanisms, two (partially complementary) approaches:
  - 1. **derive additional attribute**(s), then show & brush
  - 2. use an **advanced brush** to select "hidden" relations

## **IVA – Levels of Complexity**


(3/4)



- A lot can be done with KISS-p Simple Brushing
- For more advanced explorat we extend it (in seveal steps):
  - IVA, level 2: **logical combin** utilizing the *feature definitior*
  - IVA, I. 3: attribute derivatio with interactive formula edito
  - IVA, I4: application-specific based on vortex extraction n




- Level 3: using **general info extraction** mechanisms, two (partially complementary) approaches:
  - 1. **derive additional attribute**(s), then show & brush
  - 2. use an advanced brush to select "hidden" relations



## IVA (level 3): Attribute Derivation Principle (in the context of iterative IVA): see some data feature Φ of interest in a visualization identify a mechanism T to describe Φ execute (interactively!) an attribute derivation step to represent Φ explicitly(as new, synthetic attribute[s] d<sub>φ</sub>) brush d<sub>φ</sub> to get Φ Tools T to describe Φ from: numerical mathematics statistics, data mining etc. scientific computing

■ IVA w/T ↔ visual computing



## What user wishes to reflect?



- Many generic wishes users interest in:
  - something relative (instead of some absolute values), example: show me the top-15%
  - **change** (instead of current values), ex.: show me regions with increasing temperature
  - some non-local property, ex.: show me regions with high average temperature
  - statistical properties, ex.: show me outliers
  - ratios/differences, ex.: show me population per area, difference from trend
  - etc.
- Common characteristic here:
  - questions/tools generic, not application-dependent!

## How to reflect these user wishes?



(fast enough?)

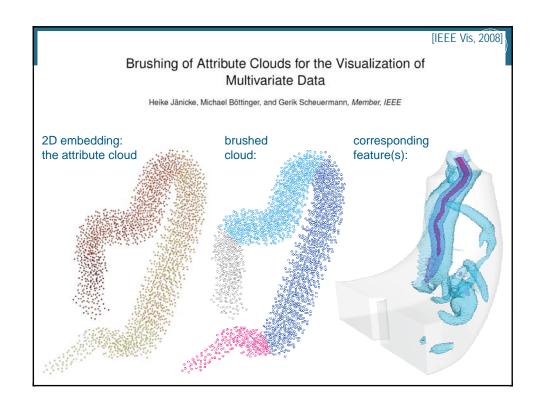
- Many generic wishes users interest in:
  - something **relative** (instead of some absolute values), example: show me the *top-1=>use*, *e.g.*, *normalization*
  - change (instead of current values), ex.: show me regions with incr⇒derivative estimation
  - some non-local property, ex.: show me regions with hig⇒numerical integration
  - statistical properties, ex.: show me *outliers* ⇒ *descriptive statistics*
  - ratios/differences, ex.: show me population per area, difference ⇒ calculus
     etc. ⇒ data mining
- Common characteristic here:
  - questions/tools generic, not application-dependent!

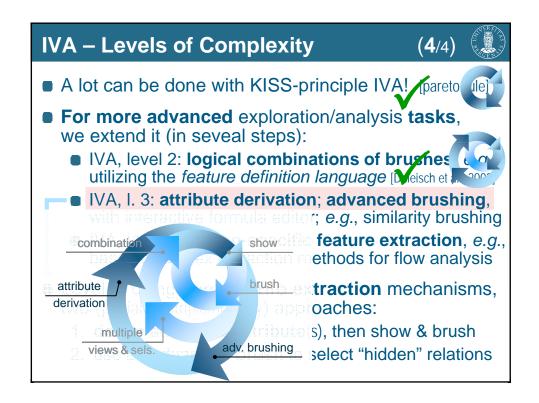
## Some useful tools for 3rd-level IVA

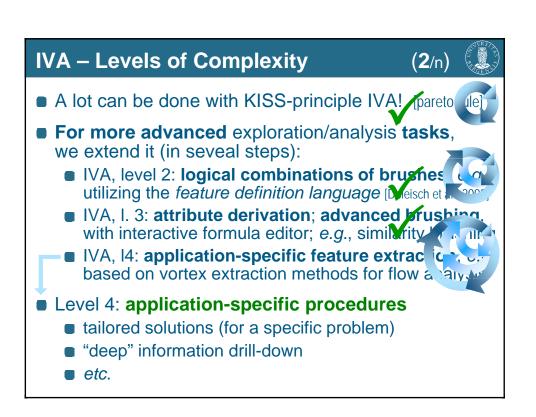


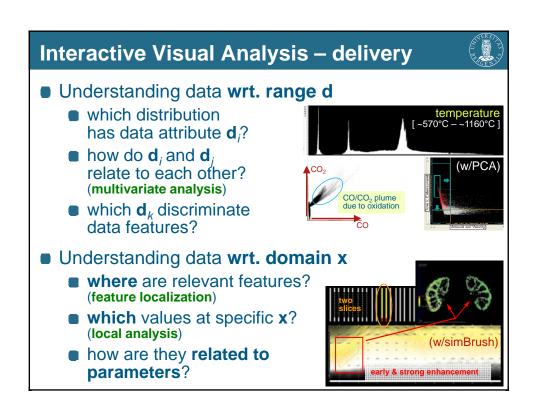
- From analysis, calculus, num. math:
  - **linear filtering** (convolve the data with some linear filter on demand, e.g., to smooth, for derivative estimation, *etc.*)
  - **calculus** (use an interactive formula editor for computing simple relations between data attributes; +, -, ·, /, etc.)
  - gradient estimation, numerical integration (e.g., wrt. space and/or time)
    ⇒ example
  - fitting/resampling via interpolation/approximation
- From statistics, data mining:
  - descriptive statistics (compute the statistical moments, also robust, measures of outlyingness, detrending, etc.)
  - **embedding** (project into a lower-dim. space, e.g., with PCA for a subset of the attribs., etc.) ⇒ example
- Important: executed on demand, after prev. vis.

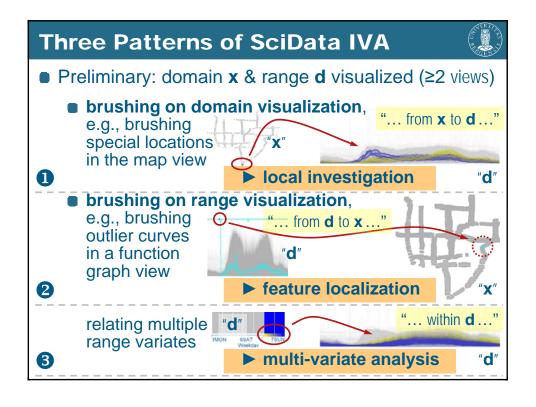
## 3<sup>rd</sup>-level IVA – Sample Iterations


**(1**/2)





- The Iterative Process of 3<sup>rd</sup>-level IVA:
  - Example 1:
    - you look at some temp. distribution over some region
    - you are interested raising temperatures, but not temperature fluctuations
    - you use a **temporal derivate estimator**, for ex., central differences  $t_{\text{change}} = (t_{\text{future}} t_{\text{past}}) / \text{len}(\text{future-past})$
    - you plot t<sub>change</sub>, e.g., in a histogram and brush what ever change you are interested in
    - maybe you see that some frequency amplification due to derivation, so you go back and
    - use an appropriate smoothing filter to remove high frequencies from the temp. data, leading to a derived, new  $\tau = t_{\text{smooth}}$  data attribute
    - selecting from a **histogram** of  $\tau_{\text{change}}$  (computed like above) is then less sensitive to temperature fluctuations


# The Iterative Process of 3<sup>rd</sup>-level IVA: Example 2: you bring up a scatterplot of d<sub>1</sub> vs. d<sub>2</sub>: (from an ECG dataset [Frank, Asuncion; 2010]) obviously, d<sub>1</sub> and d<sub>2</sub> are correlated, our interest: the data center wrt. the main trend we ask for a (local) PCA of d<sub>1</sub> and d<sub>2</sub>: then we brush the data center we get the wished selection from here further steps are possible..., incl. study of other PCA-results, etc.


## Visualizing / analyzing lots of statistics [Kehrer et al., TVCG 2011] Useful statistical measures include: $\blacksquare$ moments $(\mu, \sigma, ...)$ , robust versions (median, IQR, ...) $\blacksquare$ quartiles, octiles, and quartiles q(p) Useful views allow the interactive visual analysis **quantile-plot** q(p) vs. p, quantile-plot quantile-plot, detrended here for numerous x ■ detrending (e.g., -q₂), normalization (e.g., z) quantile-plot, z-standardized q-q-plot detrended q-q-plot b. 0.0 quantiles of normal distribution











## The Iterative Process of IVA...



- ...leads to an interactive & iterative workbench for visual data exploration & analysis (compare to visual computing, again)
- Different levels of complexity (show & brush, logical combinations, advanced brushing & attribute derivation, etc.)...
- ...lead to according iteration frequencies:
  - on level 1: smooth interactions, many fps, for example during linking & brushing
  - on level 2: interleaved fast steps of brush ops., for example when choosing a logical op. to cont. with
  - on level 3: occasionally looking at a progress bar, for example when computing some PCA, etc.
- These frequencies **limit the spectrum** of usable tools
- ➤ New res. work will help to **extend this spectrum!**

### The Iterative Process of IVA...



- ...is a very useful methodology for data exploration & analysis
- ...is **very general** and can be (has already been) applied to **many different application fields** (in this talk the focus was on scientific data)
- ...meets scientific computing as a complementary methodology (with the important difference that in IVA the user with his/her perception/cognition is in the loop at different frequencies, also many fps)
- ...is **not yet fully implemented** (we've done something, e.g., in the context of **SimVis**, **ComVis**, *etc.*) from here: different possible paths, incl. InteractiveVisualMatlab, IVR, *etc.*)

## **Acknowledgements**



## ■ You!

- Krešimir Matković & Giuseppe Santucci!
- Helmut Doleisch, Raphael Fuchs, Johannes Kehrer, Çağatay Turkay, *et al.*!
- Collaboration partners (St. Oeltze, Fl. Ladstädter, G. Weber, et al.)
- All around SimVis and ComVis and ...
- Funding partners (FFG, AVL, EU, UiB, ...)



Vis/IVA PhD in Bergen?
Apply until 10.6. or 10.8.!

see www.ii.UiB.no/vis!!