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Figure 1: We propose a novel guided volume editing approach for improving the quality of segmented medical data (Jaccard
coefficient in percents). (a) Two suggestions to rectify over-estimation defects, with an initial quality of 88%, (b) after applying
the suggestions, 91%, (c) after applying four more suggestions, 92%. (d) Two suggestions to fix under-estimation defects, with
an initial quality of 80%, (e) after applying the suggestions, 85%, (f) after applying six more suggestions, 94%.

Abstract

Segmentation of volumetric data is an important part of many analysis pipelines, but frequently requires manual
inspection and correction. While plenty of volume editing techniques exist, it remains cumbersome and error-
prone for the user to find and select appropriate regions for editing. We propose an approach to improve volume
editing by detecting potential segmentation defects while considering the underlying structure of the object of
interest. Our method is based on a novel histogram dissimilarity measure between individual regions, derived
from structural information extracted from the initial segmentation. Based on this information, our interactive
system guides the user towards potential defects, provides integrated tools for their inspection, and automatically
generates suggestions for their resolution. We demonstrate that our approach can reduce interaction effort and
supports the user in a comprehensive investigation for high-quality segmentations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms, 1.3.6 [Computer Graphics]: Methodology and Techniques—Interaction tech-

niques, 1.4.6 [Image Processing and Computer Vision]: Segmentation—Edge and feature detection

1. Introduction

Many analysis tasks require the segmentation of volumet-
ric data. Common examples include medical diagnosis and
treatment planning, where individual organs or pathologies
are labeled in order to compute quantitative information such
as diameter or volume, or the segmentation of cell bodies in
microscopy data. While there is a plethora of automatic and
semi-automatic segmentation algorithms, they are frequently
restricted to very specific scenarios and often require manual
verification and adjustment. An example of typical segmen-
tation defects in medical imaging is depicted in Figure 1.
Most commonly, the user coordinates segmentation correc-
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tion, actively searching for defects and editing them. We pro-
pose a novel approach for simplifying and accelerating cor-
rection. Our method extracts structural information from any
initial segmentation and identifies potential defects automat-
ically. These potential defects can be inspected by the user
in 3D using integrated views and corrected by automatically
provided suggestions. Our method enables 1) guidance to-
wards an overall better quality of the result by suggestions,
based on a novel histogram dissimilarity analysis, 2) simple,
yet effective volume editing by reducing and unifying user in-
teraction, and 3) structure-awareness by accounting for the
object’s shape by means of the skeleton.
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2. Related Work

Many different volume editing techniques exist, but most
of them do not actively guide the user throughout the cor-
rection process. Instead, the user pro-actively searches for
the defects, corrects them and evaluates the results. The live
wire approach, proposed by Mortensen and Barrett [MB95]
and enhanced by Hastreiter and Ertl [HE98], allows the user
to define and refine contours of the object, while investigat-
ing the volumetric data slice by slice. Sketch-based meth-
ods employ simple and intuitive sketching operations on
slices, which modify the contours. One of these methods
is proposed by Heckel et al. [HMTH13], where radial ba-
sis functions are used to construct an implicit smooth sur-
face of the object out of several sketches. The work of Salz
et al. [SRW™*12] includes sketches over the object and the
background, which are then used in geodesic segmentation
of heart and lungs. Our previous work [KMS*13] prop-
agates user selections on the skeleton towards the object
voxels and allows the following editing operations: remov-
ing or adding the selected volume, peeling or growing the
surface layer at the selection, and smoothing the selected
surface patch. Graph cuts are widely used in volume edit-
ing [APBO7, BFL0O6, LRNO8]. In such techniques the user
interactively marks a few parts of the object and the back-
ground. Then the object’s boundary is found by a graph
cut optimization procedure with respect to spatial and data
value characteristics. Approaches that employ deformable
3D meshes, like the one proposed by Proksch et al. [PDP10],
provide easy to use and efficient interaction tools for vol-
ume editing. Random walk methods [EZJS13,GFLO06] detect
the object’s boundary from a small amount of seed points,
efficiently improving the segmentation and requiring little
user interaction. Heckel and Braunewell [HB14] propose a
segmentation editing concept, based on interactive water-
shed transformation [HP03] combined with analysis of fore-
ground and background markers provided by the user. Two
recent methods [PRH10, THA11] direct the user to possi-
ble segmentation defects, but do not suggest how to correct
them. PraBni et al. [PRH10] employ a random walk method
and present ambiguous regions with high segmentation un-
certainty in a 3D overview rendering and detailed uncer-
tainty iso-lines in slice views. Top et al. [THA11] determine
ambiguous regions of segmentation and display them in a
slice view where the user can perform corrections with live
wire editing. For an extensive survey on volume editing tech-
niques in medical image processing, we refer the reader to
the works of Heckel et al. [HMM* 14, HMTH13].

Data collection and aggregation are common ways of
summarizing data values over spatial regions of volume data.
The idea is to obtain a discriminative entity that characterizes
each such region. Cubes and spheres centered at a voxel are
commonly used as regions of aggregation. Generic aggrega-
tion functions, which represent the whole region by a single
data value, e.g., minimum, maximum and average, are used,
for example, on vessel data by Mistelbauer et al. [MMV *13].
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Figure 2: Our main contribution is the integration of the
suggestion generation and the visual mapping into the work-
flow of volume editing.
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A more general approach is to fit the collected data values
to a known model such as a normal distribution. First, the
fitting procedure checks whether the collected values corre-
spond to the model by statistical tests and then determines
the parameters of the model. A potential problem of such an
approach is that the distribution model may be insufficient
to describe parts of the object where segmentation defects
are present. Haidacher et al. [HPB*10] propose to collect
the data within a growing sphere around each voxel and fit
it to a normal distribution. The statistical test they used can
distinguish between a region with a single material and a re-
gion with multiple materials and stop the growing process
accordingly. The statistics, however, become biased at the
boundary of the object.

3. Guided Volume Editing

Motivated by the fact that volume editing is a laborious task
with the last percentages of quality consuming the most of
the time, we propose a technique that unifies the interac-
tion and guides the user through the editing process. The
workflow of our technique is depicted in Figure 2. We auto-
matically generate suggestions (correction scenarios) about
where (correction region) and how (correction operation) to
correct potential segmentation defects. With these sugges-
tions we guide the user towards the desired improved seg-
mentation. An application-tailored segmentation technique,
applied prior to the editing process, provides an approximate
object segmentation as an input for our technique. We re-
quire this segmentation to roughly resemble the correct ob-
ject in terms of major features. Hence, the basic assump-
tion of our method is that defects in the segmentation are
localized (e.g., an over-estimation into another organ) and
we utilize the fact that the skeleton of the initial segmen-
tation partially corresponds to the shape of the correct ob-
ject. To simplify the explanation, we restrict our discussion
to a binary segmentation, which labels the voxels of a vol-
ume as either object or background. Despite this, our ap-
proach equally supports scenarios where multiple objects are
labeled.
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In principle, we distinguish between the following two
types of defects of a segmentation (see Figure 3):

1. Over-estimation defects (O) are regions of the volume
that are incorrectly classified as belonging to the object.

2. Under-estimation defects (U) are parts of the object that
are misclassified as being background.

Both classes of defects may be caused by low contrast
between the object and the background or inhomogeneities
of data values. Our approach aims to detect such inhomo-
geneities by analyzing data value distributions and incor-
porating the shape information provided by the initial seg-
mentation. Hence, our method assumes that detectable dif-
ferences of data values could be the cause of a misclassi-
fication that can be resolved by incorporating the domain
knowledge of the user. We distinguish between defects that
occur in the object’s boundary layer (L) and those that af-
fect whole parts of the object (P). This leads us to a total
of four different types of defects (Op,Or,Up,Ur). In order
to identify them and provide automatic suggestions for their
resolution, we analyze changes in the data value distribution
along the structure of the initial segmentation using a his-
togram dissimilarity measure. Based on the nature of these
changes, we identify the most likely type of defect and its
corresponding correction scenario at multiple levels of de-
tail. Overall, we provide an interactive visual interface that
guides the user through the correction process. We now in-
troduce the concepts of our method in detail.

3.1. Editing Region

The global editing region defines the domain of every sub-
sequent editing operation. For O defects it is the set of all
object voxels. To deal with U defects one could be tempted
to just choose the whole background as the editing region.
However, from a usability perspective this is problematic, as
the multitude of structures in the background would gener-
ate a large amount of possible correction scenarios. Thus,
we restrict the editing region to the vicinity of the object by
constructing its convex hull and growing it away from its
barycenter by a fixed amount. Removing the object voxels
from this set yields the editing region for U defects, which
we refer to as the complement of the object. Note that very
large defects could reach beyond this region and would have
to be corrected in several editing iterations. We found that
a growth by 10% of the maximal dimension of the volume
provides a good compromise. It is important that the correc-
tion of U defects of the object is conceptually identical to the
correction of O defects in its complement; a fact that signif-
icantly simplifies the subsequent description of our method.
The user chooses the editing region to correct, either the ob-
ject or its complement.

3.2. Structural Information

We assume that the object has a certain stereotypical shape
(e.g., because the object is a particular organ with known
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Figure 3: Two phantom datasets with common segmenta-
tion defects: (a) object (dark gray), (b) segmentation (green)
of the object from a) with Op, Oy, over-estimation defects,
(c) object (dark gray), (d) segmentation (green) of the object
from c¢) with Up,Ur, under-estimation defects.

characteristics), so variations in its skeleton can provide
valuable information about potential defects. Hence, our ap-
proach for determining correction scenarios operates on the
skeleton of the editing region. We do not perform any skele-
ton post-processing, e.g., pruning, as it may destroy details
of the shape, caused by segmentation defects. We adopt the
concept of a skeleton distance field and influence zones, in-
troduced in our previous work [KMS* 13]. The skeleton dis-
tance field provides distances from all non-skeleton voxels
to the closest skeleton voxels. For a given skeleton voxel,
its associated influence zone can be thought of the set of all
non-skeleton voxels that lie closest to this skeleton voxel,
similar to a Voronoi region. The editing region is partitioned
into influence zones, which emanate orthogonally from the
region’s skeleton. A synthetic dataset is illustrated in Fig-
ure 4. For a discussion on skeletonization, we refer the
reader to the work of Reniers [Ren09]. We denote the in-
fluence zone of a skeleton voxel g as 1Z(q), the distance of
a voxel p from the skeleton as Dg(p), and the largest occur-
ring distance as Imax. Details can be found in our previous
work [KMS*13]. The correction scenarios abstract the user
from the structural information, providing a consistent edit-
ing experience throughout different objects.

3.3. Data Collection

The data values are collected into histograms within the in-
fluence zones and the skeleton-distance iso-surfaces (the col-
lection regions), which respect the structure of the editing re-
gion. We make no assumption regarding the underlying dis-
tribution of data values and directly compare the histograms
to find dissimilarities among them, since they reveal segmen-
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Figure 4: Structure-aligned data collection using the skele-
ton and the influence zones. The histogram Hj(p;) collects
data values in a whole influence zone IZ(p;) (to identify Op
defects). The histogram H,(q, j) collects data values at a
skeleton distance Ds = j in an influence zone 1Z(q) (to iden-
tify Oy, defects). The histograms are normalized for illustra-
tion purposes. The bin size is 4 HU. Colors differentiate the
influence zones and the skeleton-distance iso-surfaces.

tation defects. For all histograms, we choose the same fixed
bin size b. As illustrated in Figure 4, O defects result in ad-
ditional structures along the skeleton (Op) and “orthogonal”
to it (Op). To detect Op defects, we collect the data values
of the influence zone 1Z(p) of each skeleton voxel p into
a corresponding histogram H(p). Additionally, we gener-
ate histograms H;(p,d) for each iso-surface with skeleton
distance d in 1Z(p). As shown in Figure 4, we expect the
H\ histograms to vary considerably along the skeleton in the
presence of Op defects, while O defects would cause an
abrupt change of the H; histograms at the skeleton distance
of the defect. At this point, the histograms are not normal-
ized, as later we may apply the summation kernel on them.

3.4. Dissimilarity Measure

Using the collected histograms, we now compute two dis-
similarity measures to detect segmentation defects: a dis-
similarity value 8;(p) (resp. 8(p)), computed from H;
(resp. H») histograms to detect Op (resp. Or) defects is as-
signed to each skeleton voxel p. Each value is given by a
dissimilarity measure 8(Sg), evaluated on a subset Sy of
the corresponding histograms. Dissimilarity detection ker-
nels, specific to Op and Oy, defects, generate the subsets Sg;.

We use the histogram intersection metric, a common bin-
by-bin histogram comparison metric, equivalent to the L
distance. As it requires the histograms to be normalized,
we perform this operation on the fly. We generalize the
metric by intersecting all histograms in Sy (i.e., hn(l) =
miny, s, ix(I) for each bin /) and computing the intersec-
tion area (i.e., dn(Sy) = Y hn(l)). The dissimilarity mea-
sure is now defined as 8(Sy) = 1 —dn(Sg). It is normalized,
i.e., it yields O for a set of identical histograms and 1 for
no match between any two compared histograms. Other his-
togram metrics, such as the Kullback-Leibler divergence, the

earth-mover’s distance or the Kolmogorov-Smirnov statistic,
would provide statistical information on dissimilarities. A
generalization of these metrics to our scenario, which would
respect mathematical statistics, requires significant theoreti-
cal work and is an interesting direction for future research.

Sometimes, a single histogram may contain too few val-
ues to be representative; hence, larger collection regions are
required. For this purpose, we employ an iterative growing
process during which we sum up nearby histograms bin-
wise, i.e., we apply the summation kernel. This leads to the
following input parameters for the dissimilarity detection al-
gorithm: the detection kernels sizes and the number of the
growth iterations. Different input data quality, objects, scan-
ning resolutions and modalities complicate manual specifi-
cation of these parameters. Hence, we propose an automatic
tuning procedure. For this, we look at the average u(8) over
all dissimilarity values & over the whole skeleton, where &
is either 8; or &,. Serving as a global characterization of
the dissimilarities, a value of u(8) close to 0 indicates a low
dissimilarity. Hence, the editing region either has only sub-
tle inhomogeneities and, probably, is free from defects (case
1) or the parameter selection suppresses the defect detection
(case 2). If u(9) is close to 1, most of the skeleton voxels
have a high dissimilarity. This means that either the editing
region is very inhomogeneous, inevitably causing false pos-
itives (case 3), or the parameters cause too much noise to be
detected as defects (case 4). The goal of the parameter tun-
ing is to achieve u(8) ~ 0.5, which provides sufficient dis-
crimination between homogeneous (low dissimilarity) and
inhomogeneous (high dissimilarity) regions with respect to
the actual data. We found that a two-phase approach is suffi-
cient for our purposes: in the first phase, the detection kernel
size is increased, which increases the number of histograms
that are intersected when computing the dissimilarity mea-
sures 8(Sy ). In the second phase, we sum neighboring his-
tograms, enlarging the collection regions. Note that u(d)
monotonically increases in the first phase, whereas it mono-
tonically decreases in the second phase.

For the dissimilarity 8;(p) (for Op defect detection),
the set Sy is chosen from nearby histograms H; with a
maximum distance of R; along the skeleton, i.e., 8;(p) =
S({H1(q)|d(p,q) <R1}). In the first phase, we grow R
from its starting value 1 in steps of 1 until we hit the limit
(10 in our case) or the kernel covers more than 3% of
the skeleton voxels or u(8;) =~ 0.75, i.e., the midpoint be-
tween the target value 0.5 and the maximum. In the sec-
ond phase, we grow the collection regions using histogram
summation between the influence zonmes, i.e., Hij(p) +
Ya(p.q)<1Hi(g) until u(8;) ~ 0.5, or the number of growth
iterations equals R;. This limit is due to the fact that the fea-
ture detection kernel should be larger than the grown regions.

The parameter tuning for the dissimilarity &;(p) is
slightly different, because it is based on H, histograms
of the skeleton-distance iso-surfaces of the influence zone
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Figure 5: Smart volume editing in the synthetic datasets of Figure 3: (a) the initial segmentation of object #1 with two defects,
(b) skeleton view: the dissimilarity values 8y (green to red transition for [0;1]), the basins of the watershed transformation, and
a level of the basins hierarchy, used in c), (c) the suggestion for the Op defect, (d) skeleton view: the dissimilarity values &
(green to red transition for [0;1]), the basins of the watershed transformation, and a level of the basins hierarchy, used in e),
(e-g) the suggestions for the Oy defect, (h) the correct segmentation of object #1, (i) the initial segmentation of object #2 with
two defects, (j) the suggestion for the Up defect, (k) the suggestion for the Uy, defect, (1) the correct segmentation of object #2.

of p. First, the histograms Hj(-,0), H>(-,1), Ha(-,2) are
removed due to their insufficient information content (too
few collected data values). The first phase is a single
step in which the maximal kernel size is chosen by com-
puting &,(p) over all skeleton distances, i.e., & (p) =
S ({H2(p,i)|2 < i < Imax}). By summing histograms from
neighboring iso-surfaces, i.e., Ha(p, j) <= L|j—ij<1 H2(p, i),
the second phase is continued until u(3;) ~ 0.5 or the itera-
tion limit (again 10) is reached. Finally, Laplacian sharpen-
ing of §; is performed along the skeleton to locate the bor-
ders of Oy, defects between the influence zones.

Choosing a limit of 10 iterations, i.e., a maximal kernel
size of 11 for &; and up to 10 growth iterations proved suf-
ficient for all real-world datasets presented in our results,
although the actual tuning process typically uses fewer it-
erations. Note that these limits guarantee termination of the
tuning procedure for cases 1 and 3, whereas the correct be-
havior in cases 2 and 4 is ensured by the monotonicity of the
two phases with respect to the increase and decrease of u(8).

3.5. Correction Scenarios

Having calculated the dissimilarity values 8;(p) and 8, (p)
for each skeleton voxel p, we finally generate the correc-
tion regions. Each such region constitutes a set of voxels on
which a correction operation will be applied. One could be
tempted to just use thresholding on the dissimilarity values,
but this would lead to a binary decision. We employ a hi-
erarchical watershed transformation, following the work of
Hahn and Peitgen [HPO3], to support users with a variety
of suggestions and smooth transitions between the levels of
detail, thus offering more possibilities to fine-tune the re-
sults. Our approach has similarities to the work of Schultz et
al. [STS07], which uses the watershed transformation over
an anisotropy measure to delineate object features.

The watershed transformation splits the spatial data into
basins with watersheds, placed at the ridges of data values.
Applied on the skeleton voxels with §; dissimilarities, it
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places the watersheds at the ridges of 8; values. The cor-
rection regions are created by propagating the basins on
the skeleton towards the editing region by means of the
influence zones. These regions are the Op and Up defects
and the actual parts of the editing region, as shown in Fig-
ures 5b), 6b,c). The same logic applied on the skeleton vox-
els with &, values provides the correction regions for Oy and
Uy, defects, as shown in Figure 5d). The most detailed level
of the correction regions consists of all the initial basins.

Having generated a usually large number of basins for
various defects, we proceed with the construction of a hi-
erarchy. The main idea is that adjacent correction regions,
which exhibit the same dissimilarities and correct the same
type of defects, can be grouped together. This is the case in
the presence of severe defects, which span over several influ-
ence zones and lead to a multitude of correction scenarios.

To simplify the adjacency check of correction regions,
we add each watershed to every basin it delineates. Suc-
cessively two basins are merged in each iteration, so that
a new basin becomes a new correction region, which re-
places two parental regions from the previous level of de-
tail. To find the merged basins we use the distance met-
ric Dy (By,B;) = W(By,By) — min(L(B;),L(By)), where
B\,B, are two basins, W(By,By) = min,cp,np,0(r) is the
watershed level between them and L(B;) = minpcp,d(p) is
the bottom levels of B;. Non-adjacent basins (B; N B, = ()
cannot be merged. We always merge the pair of basins with
minimal distance Dy . The merging stops if there are no
more adjacent basins. The metric Dy guarantees that we
merge basins with closer dissimilarities first. The hierarchy
of the correction scenarios is illustrated in Figure 5b,d).

For each correction region we select a suitable operation
to correct the potential defect at this region. For Op defects,
it is sufficient to simply remove the correction region from
the editing region, as shown in Figure 5c). For Oy, defects,
the surface layer of the correction region is peeled away from
the editing region, as illustrated in Figure 5e). The thickness
of the peeled layer is fixed at two voxels.
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Figure 6: (a) The dissimilarity values 8y (green to red transition for [0;1]), (b) A coarse level of the basins hierarchy, (c) A finer
level of the basins hierarchy with the basin, which corresponds to the defect. The user interaction with our proposed technique:
(d) the initial coarse level of detail, (e) the user selects correction scenario in the coarse level, (f) the user explores the finer level
of detail and selects the finer correction scenario, which fixes the defect, (g) after applying the selected correction scenario, (h)
example of defect, which is not properly captured by the skeleton. Each correction scenario is depicted by a single glyph.

Each level of the hierarchy represents the editing region at
a certain level of detail, determined as the ratio of the num-
ber of the correction scenarios at this level to the number of
the initially created correction scenarios. This level of detail
approach provides the user with a quality control of the cor-
rection scenarios. Low levels provide coarse corrections, af-
fecting a large number of voxels, but leaving certain defects.
High levels offer detailed correction scenarios, which affect
only small local defects, but provide the required fine-tuning
to reach an acceptable quality. Multiple different levels of
detail of correction scenarios are illustrated in Figure 6e,f).

3.6. Visual Mapping and Interaction

We guide the user through the correction process by visually
conveying the correction scenarios with glyphs. The object
is displayed as a surface in 3D space, together with silhou-
ettes to enhance shape perception. The surface is generated
by the Marching Tetrahedrons algorithm.The context around
the object is visualized by direct volume rendering. We de-
saturate the colors of the context in order to draw more at-
tention to the object and the correction scenarios.

We only display glyphs for the correction scenarios at the
current level of detail. Each glyph connects the projection
of the correction region’s barycenter (the anchor point) with
a miniature that shows a maximum intensity projection ren-
dering of the suggested changes. The background, the object,
and the changes are mapped to data values of 0, 0.5, and 1
respectively; a color map is then applied. Similar to Ropin-
ski et al. [RVB*09], we use a boundary layout to arrange
the miniatures around the viewing area, so that the object
and the suggested correction region remain unoccluded. We
modulate the opacities of the glyphs with the relative depth
of their anchor points. We use color-coding to differentiate
between editing the object (red) and its complement (blue).
To quickly visually convey our two types of defects (P,L),
we encode them into the shape of the glyph (see Figure 5).

We propose the following correction workflow, illustrated
in Figure 6d-g). First, the user operates on the 3D render-
ing, finding the appropriate correction scenario. Initially, a
coarse level of detail is set. If the user hovers over the editing
region, only glyphs representing the corresponding correc-
tion scenarios show up. If only a single correction scenario

is suggested, it can be selected with a single mouse click. If
the user hovers over a glyph, the boundary surface of the re-
spective correction region is highlighted in order to provide a
visual feedback. The correction scenario can also be selected
by clicking on its glyph. Whenever a correction scenario is
selected, a preview is shown to the user. Additionally, an in-
tegrated oblique slice view is provided at the anchor point of
the selected scenario. The user can quickly analyze the re-
sults and, in case of doubt, refine the selection by scrolling
with the mouse wheel in order to adjust the level of detail.
The glyphs of the requested level of detail are displayed in-
stantly. If the user selects a correction scenario, we display
only descendants or ancestors of the selected scenario at a
different level of detail. This offers the user the possibility
to find the desired correction at a suitable level of detail. At
any time, the user only gets a small amount of suggestions
(up to 15) to avoid cluttering. To continue, the user applies
the selected correction scenario, and the pipeline is repeated
until the required quality is reached.

While the correction scenarios enable the efficient resolu-
tion of defects at multiple levels of detail, some segmenta-
tions may still require fine-grained control at the voxel level.
This is the case for defects that partially occupy influence
zones. Hence, our system provides an integrated oblique
slice view as the highest level of detail, which allows users
to inspect and edit minor local deficiencies of the selected
scenario (Figure 7g). Even if a suggested correction is not
perfect, the user still has the ability to fine-tune the resulting
segmentation while benefiting from the guidance provided
by our approach. To aid the user during the interaction, we
allow panning, rotating, and scaling in the 3D view. Minia-
ture 3D renderings are instantly updated in case of rotations.
Panning and scaling have no effect on the miniatures, as they
are automatically centered and scaled.

4. Implementation

Our system is implemented in C#, using Intel TBB (C++,
CPU) and DirectX 11 Compute Shaders (HLSL, GPU) for
parallelization. When calculating the complement of the
object we apply the QuickHull algorithm by Barber et
al. [BDH96] to construct the convex hull. The implemen-
tation is based on the work of Sehnal [Sehl2] and runs
on the CPU in a single thread. For the skeletonization we
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Figure 7: Guided volume editing in CT-A data: (a) the au-
tomatic vessel segmentation exhibiting defects (vessels and
bones are touching), (b-e) the first four correction opera-
tions, (f) the corrected vessel segmentation after only twelve
operations, (g) correctly detected vascular occlusion.

employ the algorithm by Lee et al. [LKC94]. The skeleton
distance field and the influence zones are calculated using
the algorithm from our previous work [KMS™*13]. Between
individual correction operations all data is recomputed, as
all steps of the pipeline depend on the skeleton, which
is a global characteristic of the corresponding editing re-
gion. The performance was estimated on twenty Computed-
Tomography Angiography (CT-A) datasets with a slice res-
olution of 512 x 512 pixels and the number of slices ranged
from 64 to 512. We used an Intel Core i7-2600K 3.4 GHz
CPU with 16 GB of RAM and an NVidia GeForce 680 GPU.
The pre-calculation time ranged from 1.8s to 9.1s with an
average of 4.8s when correcting the object and from 2.8s
to 10.4s with an average of 5.5s when correcting its comple-
ment. The dissimilarity analysis took most of the time. Even
though we parallelize it on the CPU, a GPU implementation
would further improve the performance of our system.

5. Results and Discussion

The only free parameter of our pipeline is the bin size b of
the histograms. We tested different bin sizes 1, 2, 4, 8, 16
HU (Hounsfield Units) on all 4 types of defects, each de-
fect on a specific CT-A dataset. The objects had data values
from -50 HU to 250 HU. Our technique detected the defects
properly for every bin size and provided appropriate correc-
tion scenarios. We suggest b =4 HU to balance computation
time, memory usage and a small number of level of detail
adjustments (see supp. material #1 for details).

We demonstrate the robustness of our technique with re-
spect to the low contrast between object and defects in supp.
material #2. Robustness against noise is investigated in supp.
material #3. Even at the peak signal-to-noise ratio of 19 dB,
our technique can detect and correct segmentation defects.

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

g :
B

Figure 8: Guided volume editing in industrial XCT data:
(a) the dataset, (b) the initial segmentation of the two metal
rods, (c-f) the first four of seven correction operations,
(g) the correct segmentation of the metal rods, (h) the initial
segmentation of the plastic box, (i) the correct segmentation
of the box, after only nine operations.

The study in supp. material #4 shows that our technique of-
fers a consistent editing process even in case of different
initial segmentations.

5.1. Application Scenarios

We demonstrate the generality of our technique by edit-
ing objects in medical, biological, and industrial data. In the
medical scenario, we applied our technique to liver segmen-
tation (see Figure 1) and vessel segmentation (see Figure 7).
Both cases, acquired with CT-A, are clinically relevant and
benefit from our tool. One common task in the latter case
is the separation of vessels from bone when they are touch-
ing each other and automatic segmentations regularly fail.
The usual procedure involves manually specifying separa-
tion objects — a tedious and time-consuming process. With
our technique, this scenario was corrected with only twelve
simple editing operations (see Figure 7f) in about 2m. The
second example shows a vascular occlusion and, surpris-
ingly, our technique provides the insight that the occlusion
is even prolonged inside the stent, which hints to its poten-
tial usefulness even in segmentation-unrelated applications
(see Figure 7g). The industrial scenario is represented by X-
ray Computed Tomography (XCT) data (Figure 8), featuring
significant metal artifacts, rendering the results of common
segmentation techniques impractical. Our method allows to
easily correct the segmentations of the metal rods (about
100s) and the plastic box (about 4m) — the latter significantly
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Figure 9: Guided volume editing in electron microscopy
data: (a) the neuron, segmented automatically, (b-d) three
correction steps, (e) the segmentation of the neuron, cor-
rected without slice editing, (f) the segmentation of the neu-
ron, created manually by the domain expert.

more challenging. As for the biological scenario, we apply
our technique to Electron Microscopy (EM) data of a mouse
cortex, provided by the ISBI 2013 challenge "SNEMI3D: 3D
Segmentation of Neurites in EM images" (Figure 9). The au-
tomatic technique described by Kaynig et al. [KVRKB*13]
provided the segmentation of the neurons, which then re-
quires proofreading (i.e., manual inspection and correction),
as explained by Haehn et al. [HKBR*14]. The data suffers
from high noise levels and slicing nature of the acquisition
technique, leading to difficulties in identifying cell bound-
aries. When correcting the segmentation of a particular neu-
ron, our technique allows the user to isolate over-estimated
regions as well as to recover under-estimated ones in only
three simple operations in about 84s — an otherwise cumber-
some and time-consuming manual task. We show the result
(Figure 9e) before the supported slice-based refinement.

5.2. Evaluation

We evaluate our method with respect to usability, guidance,
interaction, and quality of the results. We conducted a user
study with three radiologists, who have experience in seg-
menting various organs and correcting their segmentation
masks, since the results of their currently employed meth-
ods do not meet the required quality standards. Two experts
analyze data for surgical intervention planning, whereas the
third assesses treatment results comparing data before and
after treatment. The task of the study was to correct the seg-
mentation of the liver in abdominal CT-A data. We used
26 datasets, including the material of the SLiver 2007 con-
test [HvGS*09] and datasets from the routine practice of
our domain experts. For the initial segmentation, we em-
ployed a technique based on the work of Srdamek and Dim-
itrov [vDO3]. This technique merges watershed segments us-
ing data values and gradients. Before the evaluation, we in-
troduced the experts to our system with 8 datasets. A skilled
user presented all types of correction scenarios to provide a
basic understanding and overview. Then, the experts were

introduced to the workflow of the system, as well as to
the method for suggestion generation. Interaction examples
were presented. Finally, the experts tried the system them-
selves on the training datasets.

Afterwards, each expert corrected datasets with our tech-
nique (T1) and compared it to our previous technique
(T2) [KMS*13], and base-line segmentation techniques of
their choice: interactive editing with Philips Brilliance soft-
ware (T3) and Toshiba Vitrea software (T4), manual editing
with General Electric LightSpeed software (TS). As T3, T4,
and T5 do not allow importing custom segmentation masks,
the experts had to re-create masks beforehand. We excluded
timings and efforts of such operations to conduct a fair com-
parison. Each domain expert was assigned 18 unique pairs,
consisting of one dataset (each assigned only once) and one
technique (each used 6 times). After the experts finished
their corrections, they answered our questionnaire. Even af-
ter only a short accommodation period of a few hours, the
domain experts rated our system favorably against well-
established clinical tools of their workflow.

5.2.1. Technique Evaluation

We evaluated the usability and the guidance provided by our
technique, as well as the following features: the levels of
detail, the suggestions, and the miniatures (see Figure 10a).
Our system’s average score on the System Usability Scale by
Brooke [Bro96] was 78 out of 100, which corresponds to the
82nd percentile of the perceived usability. Considering the
relatively short accommodation period, this poses an overall
good result and demonstrates the potential of our approach.
The domain experts considered the overall user guidance
through the correction process as useful. The experts specif-
ically asked whether such guidance could be implemented in
other editing methods as well. Since our system describes a
fairly general concept of structure-aware editing, we are con-
fident that it can be adapted to other applications. The out-
come shows that there is room for improving the overview
provided by our technique. The domain experts mentioned to
display the suggestions for an object together with the com-
plement at the same time. A hierarchy visualization of the
correction scenario space would be a useful extension, which
may help the user in finding the required correction scenar-
ios faster. The domain experts rated the possibility to adjust
the level of detail for the correction as very useful. With this
feature and its immediate visual feedback within the sys-
tem’s interface, the experts were able to quickly select the
correction scenario at the desired level of detail. The experts
specifically mentioned that the suggestions of our system
allow them to focus more on the fine-tuning, analysis and
verification of the corrections. The miniatures were well ac-
cepted by the participants, as they provide an overview and
simplify the exploration of the correction scenarios. The ex-
perts confirmed that our technique, combined with the auto-
matically shown slice views, provides sufficient information
to make decisions in segmentation correction.

(© 2015 The Author(s)
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Figure 10: (a) Evaluation of our technique. (b) Comparative evaluation. Grades for a) and b) range from 1 (worst) to 5 (best).

5.2.2. Comparative Evaluation

We compared the volume editing techniques in terms of
interaction, time spent, ease of use, tolerance to imprecise
user input, and user satisfaction (see Figure 10b). Our tech-
nique T1 requires the least interaction, as it suggests suit-
able correction scenarios, resulting in a reduction of data
exploration time and a reduced need for manual correc-
tion. The necessary interaction time is shortest with our
method T1, since the user explores the correction scenar-
ios, fine-tunes and verifies the corrections instead of man-
ually specifying the correction regions. The experts noted,
that slice-based editing, like in TS5, is always easier to use,
than 3D-space-based editing. Nevertheless, our technique is
rated second, being just slightly more complex than T5. As
we present corrections scenarios to the user, voxel-wise in-
teractions are avoided, leading to increased tolerance to im-
precise user input in comparison to the other evaluated tech-
niques. Since the domain experts still favor the possibility to
edit on the voxel level (even if only in rare cases), they have
rated our technique T1 and their clinical methods T3, T4,
and TS5 as completely satisfying regarding the achievable
quality of the results. With no voxel-level editing available,
the experts reached less satisfying results with technique T2.

5.2.3. Quantitative Evaluation

We analyzed the defect detection and correction rates to
quantify the accuracy of our technique. The first domain ex-
pert had no problems with correcting O defects (12 Op and
8 Oy, but left 1 out of 5 Up and 1 out of 2 Uy, defects uncor-
rected. The second expert successfully corrected O defects
(1 Op and 9 Oy), but did not correct 1 out of 11 Up and 3
out of 5 Uy, defects. While correcting two of these Uy, de-
fects, the expert had an issue with the lowest level of detail.
The third domain expert corrected all but one Up defect out
of 8 Op, 6 O, 5 Up and 3 Uy, defects. As each expert left
one Up defect uncorrected, we investigated the issue. Since
these three Up defects are not surrounded by the object, the
complements capture the defects only partially, and correc-
tion requires multiple steps, which were not straightforward
to our experts. An example of such defect is the large tumor
in the liver in Figure 6h). This issue is not specific to our
method, since highly competent domain experts had diffi-
culties in correcting these defects with other techniques too.
Modulation of growth of the complement by the dissimilar-
ities between parts of the background and the object could
resolve the issue. As we support manual local editing, all re-
maining defects could be fixed to complete satisfaction. Nev-

(© 2015 The Author(s)
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ertheless, the results, presented in this paper, were obtained
without such low-level editing. To evaluate the efficiency of
the techniques, we recorded the interaction time. As for the
accuracy, we evaluated the quality with the Jaccard coeffi-
cient of the resulting segmentation with a ground truth, cre-
ated manually by domain experts. A perfect match yields 1.
The coefficient decreases, as differences appear. Before the
correction, the average quality was at 0.83. With our tech-
nique T1, the experts achieved an average quality of 0.92
in 40s on average. The same average quality was reached
with T2, but it took 1m on average. The quality and the inter-
action time is comparable to results of the interactive method
by Beichel et al. [BBB*07] (before MBR stage). With T3
and T4 the experts achieved an average quality of 0.91 in
100s and of 0.88 in 150s respectively. The technique TS
achieved the best average quality (0.94), but it took much
longer (13m on average). We can conclude that the qual-
ity of the suggestions is comparable to the quality of manual
corrections, finely tuned by the domain experts with T2. Fig-
ure 1 depicts the correction of each of the four defect types.

6. Conclusion

We proposed a novel approach for guided volume editing of
segmentation results based on the analysis of histogram dis-
similarities. Considering the shape of the object by means
of the skeleton, we allow users to correct parts of the ob-
ject that contain segmentation defects. Our system makes
suggestions, which guide users through the entire correction
process. The presented results show that our system provides
an efficient segmentation correction, while offering the pos-
sibility to reach the desired quality with a small number of
simple interactions in a short amount of time.
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