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Visualization and Visual Analysis of
Multi-faceted Scientific Data: a Survey
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Abstract—Visualization and visual analysis play important roles in exploring, analyzing and presenting scientific data. In many
disciplines, data and model scenarios are becoming multi-faceted: data are often spatio-temporal and multi-variate; they stem
from different data sources (multi-modal data), from multiple simulation runs (multi-run/ensemble data), or from multi-physics
simulations of interacting phenomena (multi-model data resulting from coupled simulation models). Also, data can be of different
dimensionality or structured on various types of grids that need to be related or fused in the visualization. This heterogeneity of
data characteristics presents new opportunities as well as technical challenges for visualization research. Visualization and
interaction techniques are thus often combined with computational analysis. In this survey, we study existing methods for
visualization and interactive visual analysis of multi-faceted scientific data. Based on a thorough literature review, a categorization
of approaches is proposed. We cover a wide range of fields and discuss to which degree the different challenges are matched with
existing solutions for visualization and visual analysis. This leads to conclusions with respect to promising research directions,
for instance, to pursue new solutions for multi-run and multi-model data as well as techniques that support a multitude of facets.

Index Terms—Visualization, interactive visual analysis, multi-run, multi-model, multi-modal, multi-variate, spatio-temporal data.

1 INTRODUCTION

OUR society is confronted with rapidly growing
amounts of scientific data that arise in various

areas of science, engineering, and others. Examples are
multi-variate and time-dependent climate simulations,
computational fluid dynamics, sensor logs, and medical
scans. Visualization has proven to be very useful to ex-
plore, analyze and gain insight into such data [1]. How-
ever, due to the increasing complexity and heterogene-
ity of scientific data, new sophisticated approaches are
needed [2]. Interactive visual analysis is a still new multi-
disciplinary field that combines analytical and interactive
visual methods [3], [4], [5], [6]. Interaction schemes such
as linking and brushing enable a powerful drill-down
mechanism into the represented information [7].

1.1 Multi-faceted Scientific Data

The integration of abstract data from multiple sources
is more common in information visualization (InfoVis), for
example, when visualizing relational databases [8], [9]
or web data [10]. In this survey, however, we focus on
challenges that arise from the heterogeneous nature of
scientific data. Such data are usually given with a strong
inherent reference to space and often also time and
result from a scientific data acquisition method such as
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simulation or imaging. When talking about multi-faceted
scientific data, we consider mainly the following facets:
(f1) spatio-temporal data that represent spatial structures
and/or dynamic processes; (f2) multi-variate data con-
sisting of different attributes such as temperature or
pressure; (f3) multi-modal data stemming from different
acquisition modalities (data sources); (f4) multi-run data
(also called ensemble data) stemming from multiple sim-
ulation runs that are computed with varied parameter
settings; and (f5) multi-model data resulting from coupled
simulation models that represent physically interacting
phenomena [11] or neighboring climate compartments
such as ocean and atmosphere [12]. Current methods
for visualization and visual analysis typically address
only one data facet (see Fig. 1). In practice, however,
we increasingly often find model and data scenarios that
are more heterogeneous. A central goal is “to synthesize
different types of information from different sources into
a unified data representation” [4].

Before going into more details with respect to our
survey, examples of different facets of scientific data
are discussed together with related challenges for vi-
sualization research. Advanced computing allows the
simulation of dynamic phenomena on high-resolution
grids over large timescales (e.g., global climate models
or automotive engine simulations). The visualization and
analysis of such spatio-temporal data (f1) is challenging
and a lot of research has been dedicated to this facet.
A number of surveys give a good overview [13], [14],
[15], [16], [17], [18]. Analysts commonly investigate how
their data relate to time and space. They want to study
changes, compare different points in space and time, and
uncover spatio-temporal patterns (e.g., special events or
repeated behavior). A frequent goal is to integrate data
from multiple time steps in a single image, for instance,
by using a linear or cyclic axis to represent time [17],
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Fig. 1. Multiple facets of heterogeneous scientific data.

[18]. Alternatively, different locations or time steps can
be shown side-by-side to facilitate comparison [19], [20].
The decision whether to use a 2D or 3D representation is
a general question in visualization and usually depends
on the task at hand [7], [13], [18]. However, some kinds of
data such as volumetric or 3D flow data inherently sug-
gest a 3D representation. Automated analysis methods
are often applied in order to abstract time-related data
characteristics, for example, by computing temporal data
trends [21] or statistical aggregates such as mean values
or standard deviations [15].

Scientific data often contain multiple attributes per
space-time location. The interactive visualization of such
multi-variate data (f2) is challenging too [2]. Wong and
Bergeron [22] and, more recently, Fuchs and Hauser [23]
give comprehensive overviews on the topic. Interesting
data subsets (features) can often be extracted only when
considering multiple data attributes and their relations.
Many visual analysis approaches, therefore, integrate
computational methods such as statistics or dimension-
ality reduction [24], [25]. When fusing (intermixing) mul-
tiple scalar fields in a visualization, one typically has to
cope with cluttering and occlusion. Multi-variate data are
often analyzed using multiple linked views that support
interactive feature specification via brushing [26].

While multi-variate data usually result from one data
modality and describe different physical (or other) prop-
erties for the same spatio-temporal locations, multi-
modal data (f3) stem from multiple data sources. Ex-
amples are different medical scans such as computer
tomography (CT) or magnetic resonance imaging (MRI),
which have to be co-registered first [27], [28]. Another
example are data from different numerical models that
simulate the same physical object or phenomenon (e.g.,
different atmospheric or ocean models). Such data can be
given on various data grids (e.g., 2D/3D, unstructured
or hybrid) with different temporal or spatial resolutions.
Accordingly, one challenge is to fuse such multi-modal
data in the visualization [23], [29]. An analytic task
can be, for instance, to compare data from a climate
simulation with observational measurements in order to
find errors and to reduce uncertainties [30].

In areas such as climate research [12], [31] and engi-
neering [32], multi-run simulations (f4) are increasingly
often performed to study the variability of a simulation
model and to understand the model sensitivity to certain
control parameters. The simulation is repeated multiple
times with varied parameter settings (also called an
ensemble simulation). In the resulting data, a collection
of values co-exists for the same data attribute at each
space-time location [33] (one value for each simulation
run). The goals of such a sensitivity analysis include [34]:
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Fig. 2. Fluid–structure simulation of warm water flow though a cooler
aluminum foam [37]: The fluid and solid part of the simulation are
connected by an interface that relates grid cells sharing a common
face and allows the exchange of properties such as heat.

the identification of model parameters that require ad-
ditional research, which also reduces the output uncer-
tainty; identifying control parameters that are strongly
correlated with the simulation output; or finding in-
significant parameters that can be eliminated from the
model [34]. In the analysis, the data is often aggregated,
for example, by computing statistical properties with
respect to all runs [31], [35]. While often only the sum-
marized information is analyzed further, it can be useful
to integrate and related both multi-run and aggregated
data in the visual analysis [36], [37]. It is generally very
challenging to depict and analyze a larger number of co-
located data volumes; to extract interesting patterns and
trends that occur in different runs; to investigate how
many of the runs exhibit a certain pattern; or to study
correlations between input and output variables of the
simulation (compare also to Wilson and Potter [38]).

While dynamic flow is traditionally simulated with
respect to a rigid (or open-ended) boundary, fluid and
solid parts interact during modern multi-physics simula-
tions [11]. The solid part, for instance, can be heated or
deformed by the surrounding flow. The different data
parts are commonly modeled individually on spatially
adjoining grids that are connected by a so-called inter-
face (see Fig. 2). During the simulation, the parts can
interact with each other via the interface and exchange
physical properties such as heat. In the climate system,
as another example, components such as atmosphere,
ocean, ice, and land interact with each other, as well.
Atmosphere and ocean, for instance, exchange through
thermal absorption, precipitation and evaporation [12].
To understand such dynamics, models for the different
climate components are coupled in the simulation, com-
monly with additional coupler modules. Creating a co-
herent visualization from such multi-model scenarios (f5)
with two or more interacting data parts (e.g., fluid and
structure or atmosphere and ocean) is a challenge for vi-
sualization, which has been hardly addressed so far [37].
How can, for instance, feedback and relations between
spatially neighboring data parts be investigated?

We focus on the data facets described above, since they
are typical examples for scientific visualization. There
exist also other interesting modalities such as pictures,
video or text. Textual information, for example, can pro-
vide semantic context to the data and will become more
important in the future, also in scientific visualization
(e.g., patient reports or description of genes). A detailed
description of these types, however, is beyond the scope
of this survey.
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1.2 Survey Structure and Contributions

In this survey, we give an encompassing view on the vi-
sualization and visual analysis of multi-faceted scientific
data. We explain our choice of which facets to focus on
and which to only survey in terms of an overview. Based
on an extensive literature review, we have identified a
number of techniques that are common to all the facets
of scientific data. We propose a novel categorization of
approaches based on characteristics of these techniques
and discuss them with respect to the different facets. We
identify mature areas in visualization and visual analysis
as well as promising directions for future research.

The visualization of spatio-temporal (f1) and multi-
variate (f2) data, for instance, have been broadly in-
vestigated, and a lot of good solutions are available.
Although these areas belong to the topics discussed here,
we only touch them briefly and refer to other good
overview articles. As part of our contribution, we add
a discussion of newer approaches that came up more
recently. The primary focus of this survey, however, is
on multi-modal (f3), multi-run (f4) and multi-model (f5)
data. Especially multi-run and multi-model data scenar-
ios are relatively new to the visualization community
[33], [37], even though these types of data are getting
more popular in important application domains such
as engineering, climate or multi-physics research. While
we aim at putting existing approaches for multi-faceted
scientific data into a broad common framework, not all
related work can be discussed in such an article. We
consider it valuable, however, to present an integration
of such a broad spectrum of topics in a joint survey.

The remainder of this paper is organized as follows:
before going into detail with respect to related work,
some basic notations are clarified in section 2. We also
present our classification of approaches. Section 3 dis-
cusses important concepts in interactive visual analysis
such as coordinated multiple views and the combination
of computational analysis and interactive visualization.
Section 4 addresses the visualization and visual analysis
of spatio-temporal data (f1), and section 5 does this
for multi-variate scientific data (f2). The representation,
fusion and comparison of multi-modal data (f3) are
described in section 6. Section 7 discusses the visual
analysis of multi-run data (f4), and section 8 addresses
challenges for multi-model data (f5). Finally, an outlook
to promising future research and open challenges is
given in section 9. In sections 4 to 7, we distinguish
between approaches for representation (in terms of vi-
sual metaphors), computational analysis and interaction,
which also integrate analytical/exploratory procedures.

2 TERMINOLOGY AND CATEGORIZATION

In this section, some basic notations are clarified first.
Next, we propose our categorization of approaches for
multi-faceted scientific data with respect to common
visualization, analysis and interaction methods.

A continuous data model is very often assumed with
scientific data, which means that the data can be interpo-
lated between discretely sampled values [39]. In many

cases, such data can be denoted as fi(x) where different
data values fi (e.g., velocity vectors, temperature or
pressure values) are measured or simulated with respect
to points x in an n-dimensional domain. The domain
(i.e., the independent data dimensions) can be 2D or
3D space, time, but also independent input parameters
to a simulation model. Multi-run data (f4), for example,
stem from a simulation that is repeated multiple times
with varied parameter settings, leading to a larger num-
ber of co-located data volumes given for the same space-
time [12], [33], [38]. In this understanding, the word
multi-dimensional (f1) refers to the dimensionality of the
independent variables, while multi-variate (f2) refers to
the multitude of dependent variables [22].

Categorization of approaches: Based on a literature
review of more than 200 papers that address at least one
facet of modern scientific data, we aim at identifying
common groups of visualization, analysis and interaction
methods. The different categories are described in the fol-
lowing and represented in the columns of Table 1. Similar
to the categorization of Bertini and Lalanne [24], the
groups cover a broad spectrum, ranging from techniques
that mainly address visual mappings, i.e., how to represent
the data (left in Table 1), to methods that focus on
computational analysis, i.e., what are the main character-
istics or features of the data (right). Additionally, many
approaches rely on interaction concepts such as linking
and brushing, zooming, panning, or view reconfigura-
tion [40]. Although often discussed separately, visualiza-
tion, interaction and computational analysis clearly are
not mutually exclusive. The tight integration of all three
levels is a major goal in visual analysis (see Sec. 3).

Approaches for visual data fusion aim at intermixing
different facets of scientific data in a single visualization,
using a common frame of reference. Different time steps
can, for instance, be shown along a spatial axis (e.g.,
as function graphs or on a spiral). According to Fuchs
and Hauser [23], multi-variate data can be fused at
different stages of the visualization pipeline, for instance,
when mapping variables to different visual properties
(e.g., glyphs, texture or color), during rendering, or in
image stage using layering techniques. For multi-modal
data, the different data sources first need to be regis-
tered and normalized to each other in order to make
them comparable (e.g., resampling to a common grid).
The visualization thereby has to be designed carefully
to avoid the introduction of artifacts that can be er-
roneously interpreted as features [29]. Multi-run data
can, for example, be represented as families of data
surfaces [41] or spaghetti plots [42]. However, it is often
not practical to directly visualize such data since they
can consist of multiple co-located volumes of spatio-
temporal (and often multi-variate) data. Consequently,
some approaches compute summary statistics from the
multiple runs, which are represent by glyphs or box plots
[33], [37], [43].

Comparative visualization investigates the data for sim-
ilarities and differences [30]. Examples are the com-
parison of different time steps, spatial locations, data
variables or modalities. Dependent on the level of data
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TABLE 1
Categorization of techniques for the visualization and visual analysis of multi-faceted scientific data.

visual mapping computational analysisinteractive visual analysis

visual data fusion relation & comparison navigation focus+context &
overview+detail

interactive feature
specification

data abstraction &
aggregation
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al maps [13], [14], [92]; Helix
glyphs [93]; flow maps [105];

function graphs [70], [71], [72];
Time Histograms [94], [110],
[111]; chrono volumes [98];
illustrative techniques [99];

texture-based flow vis. [100]

2-tone coloring [20];
Helix glyphs [93];
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difference views [107]

search, zooming
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abstraction, scientific data can be compared at the image,
data or feature level [44]. In the context of information
visualization, Gleicher et al. [45] classify comparative vi-
sualization according to three categories: 1) juxtaposition,
which compares objects side-by-side; alternatively, 2) the
data can be overlaid in the same frame of reference
(similar to visual fusion [29]); or 3) computed relation-
ships can be explicitly encoded, for example, by showing
differences or correlations. Additional interaction tech-
niques such as linking and brushing or repositioning of
objects can facilitate visual comparison [45].

Navigation is an important task in visualization and
can be done manually [40], [46], automatically [47], or
computationally assisted [48], [49]. The user typically
explores the data by zooming, rotating or panning. Se-
lecting a good viewpoint is a challenge for volumetric
data [49]. In the context of multi-variate data, it is
very challenging to find those attributes that describe
important data characteristics such as correlations or
outliers. Using an overview visualization such as a scat-
terplot matrix [46], [50], the user can select an interest-
ing attribute combination. Alternatively, views can be
ranked by computing quality measures [48]. Navigating
the space of input and output variables of a multi-run
simulation is highly challenging as well [51], [52].

Focus+context visualization can be generalized as the
“uneven use of graphics resources (space, opacity, color,
etc.),” where the focus is shown in detail and the context
is provided for orientation or navigation purpose [53].
Such methods typically rely on interaction, where the
user specifies the data in focus (e.g., by pointing, query-
ing or brushing). While related visualizations aim at
seamlessly integrating focus and context in a single view,
overview+detail techniques spatially separate both con-

cepts (e.g., using juxtaposed views). Cockburn et al. [54]
recently provide a survey on the related topics.

Interactive feature specification enables the user to man-
ually select interesting data, for example, via brush-
ing [50]. The resulting markup information can then
be used to highlight and relate the selected data, for
example, using coordinated multiple views (Sec. 3.1).

Closely related to manual feature specification are
automated data abstraction and aggregation. Such analysis
methods aim at algorithmically extracting meaningful
values or patterns from the data, where the main data
characteristics are still represented but irrelevant details
are suppressed [17]. The abstracted data can then be
visualized or analyzed instead of the original one. Many
related approaches come from the fields of statistics, data
mining, or machine learning [55]. Visual analysis aims at
combining such methods with interactive visualizations,
where the user can steer the analysis process (see Sec. 3).

By grouping the related work by techniques, we aim
at presenting alternatives for addressing different kinds
of scenarios. While we give a comprehensive view on
the visual analysis and representation of multi-run and
multi-model data, only selected examples for spatio-
temporal and multi-variate data are discussed together
with existing surveys. It should be noted that also other
techniques (e.g., knowledge-assisted visualization [56] or
clutter reduction) and other factors could be used for this
classification, for example, visualization challenges [2],
user tasks [7], [39], or application domains. Keller and
Keller [57], for instance, present an early task-based cat-
egorization for visualization. They illustrate methods for
a variety of data types and visualization goals. Amar and
Stasko [58], more recently, discuss higher-level analytical
tasks such as showing uncertainty, exposing relation-



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, AUTHORS’ PERSONAL COPY 5

ships, identifying cause and effect, including metadata,
finding multi-variate correlations and constraints, and
validating hypotheses. Some of these tasks are closely
related to individual techniques discussed also here.

3 EXPLORATORY DATA ANALYSIS, VISUAL
DATA MINING, AND VISUAL ANALYTICS

Visual analytics is the interdisciplinary science of analyt-
ical reasoning facilitated by interactive, visual and ana-
lytical methods [3], [4], [5], [6]. Since automated analysis
methods only work reliably for well-specified problems,
the idea is to combine such approaches with interactive
visualization. Visualization can then, for example, sup-
port the specification of parameters at different steps of a
data mining algorithm [59]. By interactively and visually
exploring the original data as well as derived properties,
analysts should be enabled to [4]: detect the expected and
discover the unexpected; draw conclusions and generate
hypotheses based on the visual information; reject or
verify hypotheses; and communicate and present the
results of the analytical reasoning process.

While statistical tools utilize static visualization mainly
for presentation purposes (confirmatory analysis), Tukey
suggests in his seminal work on exploratory data anal-
ysis [60] to also support direct interaction with the
data. Some of the early works in InfoVis were inspired
by considerations from statistics [61], [62], [63]. The
analysis often follows Shneiderman’s information seek-
ing mantra [7]: “overview first, zoom and filter, then
details-on-demand.” In later work, Shneiderman [59]
compares the different philosophies behind exploratory
data analysis (used for hypothesis generation) and statis-
tical hypothesis testing. The latter requires a hypothesis
beforehand in order to work. Also, it is challenging to
identify features that are not anticipated prior to the
analysis. The author thus suggests the combination of
data mining and visualization, where users should be
able to express their interest in the data and specify what
they are looking for (e.g., outliers or correlations).

If the data are too large and complex to be represented
directly, the application of automated data abstraction
techniques is often necessary. Keim proposes an accord-
ing extension to the information seeking mantra for
visual analytics [5]: “Analyze first, Show the Important,
Zoom, filter and analyze further, Details on demand.”
While visual data mining [64], [25] mainly focuses on the
integration of data mining1 into the visualization, visual
analytics [4], [5], [6] aims at integrating other methods
of analytical reasoning as well (e.g., cognitive, perceptual
or decision science). Excellent overviews on visual data
mining are given by Keim [64], Keim et al. [25], and
de Oliveira and Levkowitz [66]. Bertini and Lalanne [24]
more recently survey the integration of visualization
and automated analysis in knowledge discovery. Based
on the degree to which such methods are combined,

1. Data mining denotes the algorithmic extraction of valuable
patterns and models from data. It is part of a more general process
of knowledge discovery in databases (KDD), which also includes steps
such as data preparation, selection and cleaning [65].

the authors categorize solutions into 1) computationally
enhanced visualizations, 2) visually enhanced mining,
and 3) integrated visualization and mining (compare to
a similar categorization by Keim et al. [25]).

In the following, typical concepts for interactive visual-
ization and computational analysis are briefly discussed,
namely coordinated multiple views (Sec. 3.1) and auto-
mated data abstraction (Sec. 3.2), respectively.

3.1 Coordinated Multiple Views

The concept of coordinated multiple views originates
in the InfoVis community and has been steadily de-
veloping over the last two decades (see Roberts [26]
for an overview). Different data variables are shown,
explored and analyzed in multiple linked views that
are utilized side-by-side. The views include histograms,
scatterplot matrices [46], [50], parallel coordinates [67],
[68], [69], or function graphs [70], [71], [72]. Data can be
interactively selected (brushed [50]) in a view, the related
data items are instantly highlighted in all linked views
(compare to Polaris/Tableau [9] or the XmdvTool [73],
for example). Logical combinations of brushes across
multiple views support the specification of complex
features, for example, in a hierarchical feature definition
language [74]. In cross-filtered views [75], as another
example, brushing filters between pairs of views can be
enabled/disabled and the data are filtered, accordingly.
Relationships between different variables can thus be
explored, also across multiple datasets. Several visual
analysis frameworks support the computation of new
data attributes from existing ones, which facilitates the
investigation of features [3], [9], [26], [74], [75].

Interaction and flexibility of the application are both
crucial for visual analysis. The user should be able to
query data in many different ways and quickly change
what data portions are shown and how they are rep-
resented [9], [40]. ScatterDice [46] is such an example
where the user explores multi-variate data using scatter-
plots. A scatterplot matrix [50] gives an overview of
the possible axis combinations in a plot and is used for
navigation. Transitions between the scatterplots are then
performed using animated 3D rotations. Features can be
explored and iteratively refined via brushing.

SimVis [74], WEAVE [76] and PointCloudXplore [77]
are just three examples of visual analysis systems for
scientific data. Such frameworks link attribute views such
as scatterplots or parallel coordinates with 3D views for
volumetric data (usually given on grids over time). This
combination enables the analyst to investigate brushed
features also in the spatial context (compare to the three
typical patterns of visual analysis of scientific data [78],
i.e., feature localization, multi-variate analysis, and local
investigation). Instead of a binary selection information,
some systems integrate a fractional degree-of-interest attri-
bution (DOI j ∈ [0, 1] for each data item j, compare to the
DOI information in generalized fisheye views [79]). With
smooth brushing [80], a transition can be specified around
the main region of interest, where the DOI information
gradually changes (compare also to ramped brushing in
the XmdvTool [73]). The DOI values are then used in all
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linked views to visually discriminate interesting features
(focus) from the rest of the data (context), leading to a
focus+context visualization [53], [71], [74], [81].

3.2 Automated Data Abstraction

Typical (semi)automated analysis methods that are often
combined with InfoVis techniques include [24], [25]:
data reduction via sampling or algorithmic feature extrac-
tion [82]; clustering [68], [83], [84] where data items are
grouped by similarity; and dimensionality reduction that
aims to reduce the data dimensionality while maintain-
ing the higher-dimensional data characteristics. Dimen-
sionality reduction approaches include: principal com-
ponent analysis [17], [78], [85] (PCA), which transforms
multi-variate data into an orthogonal coordinate sys-
tem that is aligned with the greatest variance in the
data; multi-dimensional scaling [86], [87] (MDS), where
higher-dimensional data items are mapped into a lower-
dimensional space while preserving the dissimilarities
between the items;2 and self-organizing maps [88], [89],
[90] (SOM) which represent an unsupervised learning
method that reduces the data dimensionality and also
provides a classification of the data. An issue with
dimensionality reduction approaches is, however, that it
can be hard to mentally relate the derived attributes to
the original data. One solution can be to analyze both
side-by-side in a multiple views framework with linking
and brushing (see Oeltze et al. [78], for instance).

Ma [91] suggests to go a step beyond visual data
mining by integrating machine learning into the anal-
ysis process. Such methods could learn from previous
analysis sessions and input data, and abstract away
many details of the utilized algorithms, for instance,
using case-based reasoning (compare to an infrastructure
supporting knowledge-assisted visualization [56]). Only
high-level decisions are then left to the user by providing
an “intelligent interface” for the visual analysis [91].

4 MULTI-DIMENSIONAL DATA

Multi-dimensional data such as time-varying 3D mea-
surements and simulations are ubiquitous in disciplines
such as medicine, climate research, or engineering. Being
able to understand time-related developments allows
one to “learn from the past to predict, plan, and build
the future” [18]. When visualizing the data, time and
space can be treated “just” like any other data attribute
using parallel coordinates, scatterplots, or other infor-
mation visualization techniques [6], [18]. In many appli-
cations, however, the independent dimensions of time
and space have a semantic meaning and often play a
central role in the data. Accordingly, there has been a
lot of work in related fields such as cartography [92] or
geovisualization [13], [14]. A number of useful reviews
have been published on the visualization and analysis
of spatio-temporal data [13], [14], [15], [16] as well as
time-dependent data [17], [18]. According to Andrienko
et al. [14], approaches for spatio-temporal data can be

2. Since MDS also maintains the higher-dimensional structure of
the data, it is well suitable for subsequent clustering.

categorized into the visualization of raw data, computed
summaries, or automatically extracted features.

This section gives a brief overview on methods that
address mainly the spatial and/or temporal characteris-
tics of scientific data. Such data are often multi-variate
as well, which is elaborated in further detail in section 5.
Related surveys are discussed together with selected
examples. In this context, the following subsections ad-
dress the visual representation (Sec. 4.1), computational
analysis (Sec. 4.2), and interactive methods (Sec. 4.3) for
spatial and temporal data.

4.1 Representation of Multi-dimensional Data

Aigner et al. [18] give a systematic view on the visu-
alization of time-oriented data. In their categorization,
they consider different characteristics of the time axis
such as temporal primitives (discrete points vs. time
intervals) or the structure of time (linear vs. cyclic
vs. branching time). These considerations are important
when designing a visual analysis system, since they ad-
dress the data validity and the possible relations among
temporal primitives [18]. Common approaches for time-
varying data include automatic animations or interactive
visualizations. The latter, for instance, show the data
at different time steps (e.g., juxtaposed views) or along
a common time axis (e.g., function graphs or spirals).
Selected visualization methods for spatio-temporal data
are discussed in the following.

Time-varying data can be represented in a single view
by showing them with respect to a linear or cyclic
time axis [18]. The latter supports the comparison of
different points in time and the analysis of recurring
patterns such as seasonal trends. An example for such
an approach are Helix glyphs [93] that can be placed
on a geographic map (see Fig. 3c). The “tunnel view” at
the bottom of the figure reveals hidden information by
increasing the ribbons height and radius for each time
step. The ThemeRiver [72] is an example visualization
that uses a linear time axis. Thematic changes in large
document collections are depicted, where the number
of occurrences per topic is represented as the width
of the corresponding river band (see Fig. 3a). The Time
Histogram [94] is another example showing consecutive
1D histograms of the data for every time step.

Two-tone coloring [20] is an example for an inte-
grated overview+detail technique, which enables the
compact representation of many time series (details) in
an overview visualization (see Fig. 3b). By showing the
data values of each time series as a combination of two
colors, the actual values can be read out more precisely
as compared to using a continuous color map. Other ap-
proaches [70], [71], [74], [95] use color and saturation for
a focus–context discrimination and are discussed in con-
junction with interactive feature specification (Sec. 4.3).

Spatio-temporal data have additional characteristics, for
instance, that “near things are more related than dis-
tant things” (Tobler’s first law of geography [96]) or
that events can happen at different spatio-temporal
scales [14]. Geospatial data are often shown on carto-
graphic maps, following a set of well-established con-
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(a) (c)(b)

Fig. 3. Linear vs. cyclic time: (a) ThemeRiver [72] for analyzing
temporal trends in document collections (image courtesy of S. L.
Havre, c© 2002 IEEE). (b) Visualization of temperature variations
using a continuous and two-tone color map [20], respectively. The
latter represents the data value of each time series as a combination
of two colors (image courtesy of T. Saito, c© 2005 IEEE). (c) Helix
glyphs [93] for analyzing cyclic temporal patterns for two diseases
(image courtesy of C. Tominski, c© 2005 IEEE).

ventions [13], [14], [92]. In this context, the visualization
of textual information is highly relevant, for instance, by
placing labels that give semantic information to the data.
Many approaches for spatio-temporal data support nav-
igation techniques such as zooming and panning [54].

Ma and Lum [16] discuss techniques that support
the efficient rendering of time-dependent volumetric data,
for example, data compression, automated feature ex-
traction, hardware acceleration, or parallel rendering.
Jankun-Kelly and Ma [97] study the (semi)automatic
generation of a single or multiple transfer functions,
which capture important structures in time-varying vol-
umetric data such as regular, periodic or random pat-
tern. The generated transfer funtion(s) can then be used
for batch-mode rendering, for instance. Woodering and
Shen [98] propose chronovolumes that fuse multiple
time steps in a single image using color composition
techniques. Joshi and Rheingans [99] present illustrative
techniques that are inspired by depictions of motion
in comics. Examples are speedlines, flow ribbons, or
silhouettes showing the previous positions of an object.

Besides the visualization of time-dependent scalar vol-
umes, also the visualization of time-dependent vector
fields is important in many areas. Such approaches for
flow visualization can be classified into [82], [100], [101]:
1) direct flow visualization such as color coding or
arrow plots; 2) dense, texture-based approaches using,
for instance, spot noise, line integral convolution, or tex-
ture advection; 3) geometric flow visualization depicting
geometric objects that are extracted/computed from the
flow such as streamlines, stream surfaces, streaklines, or
pathlines; 4) feature-based techniques that are based on
the extraction of relevant structures such as vortices or
shock waves; and 5) partition-based flow visualization
that subdivides the domain with respect to certain flow
characteristics. While the first three categories depict
basic quantities of the flow, the later two provide a more
abstracted view on the data.

4.2 Analysis in Multi-dimensional Data Visualization

The approaches presented in the previous section usually
reach their limits when representing larger amounts

(a) (b)

Fig. 4. Visualization of car movement data [105]: (a) Original
movement trajectories are drawn using opacity. (b) Trajectories are
aggregated and shown in a flow map (images courtesy of N. An-
drienko, c© 2010 IEEE).

of data with several million entries, for instance. For
such data, (semi)automated data reduction and abstrac-
tion techniques need to be applied first, which trans-
form the data into a compressed but still representative
form [5]. Andrienko and Andrienko [15] give a system-
atic overview on the visual analysis of spatial and tempo-
ral data. Aigner et al. [17] discuss approaches for time-
oriented data where visual and analytical methods are
combined. Many approaches for temporal data abstrac-
tion come from the field of data mining (see Fu [102] for
a recent survey). Examples include clustering, principal
component analysis, or wavelet analysis.

In order to reduce the data complexity or visual
cluttering, spatial and/or temporal aggregation is often
applied (see López et al. [103] for an overview). With
such an approach, data items sharing the same spatio-
temporal domain are summarized and depicted instead
of the individual data values. According to Andrienko
and Andrienko [15], data aggregation can be done either
by calculating data characteristics (e.g., the sum, arith-
metic mean, or variance) or by grouping techniques such
as clustering or binning. Aggregation techniques, how-
ever, need to be applied with care to preserve important
information such as outliers [69].

Hao et al. [104] use pixel-based techniques to visualize
time series data at multiple levels of aggregation, based
on importance values per data interval. Andrienko and
Andrienko [105] visualize movement data by combining
data aggregation with flow maps. The spatial domain is
subdivided into appropriate areas, based on significant
points in the movement. Aggregated trajectories with
common start and end points are shown with arrows (see
Fig. 4b). Willems et al. [106] propose a visualization ap-
proach based on the convolution of dynamic movement
data with a kernel, where the resulting density field is
visualized as an illuminated height map. Daae Lampe
et al. [107] propose interactive difference views based on
kernel density estimates (KDEs). Quantitative differences
between different categories (or bins) of aggregated data
are analyzed using juxtaposed views.

Nocke et al. [83] discuss visualization techniques for
clustered climate data such as the ThemeRiver [72] or
Cluster Calendar View [84]. The latter approach, for
instance, groups time series data over a certain period
(e.g., month or day) into clusters. The clusters are then
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visualized using function graphs and also encoded in
color in a calendar-like representation. As a result, the
frequency of occurrence of each cluster can be seen as
well as the daily trends and patterns.

Dimensionality reduction techniques typically aim at
reducing the data dimensionality while preserving the
higher-dimensional characteristics. Aigner et al. [17] dis-
cuss the integration of PCA into the visualization of
time-dependent climate data (compare also to Müller et
al. [85]). Self-organizing maps [88] (SOM) can be seen
as a combination of dimensionality reduction and clus-
tering. Andrienko et al. [90] apply this approach for an-
alyzing spatio-temporal data from two complementary
perspectives: as spatial situations in different time units
(space-in-time SOM) and as profiles of temporal changes
at different places (time-in-space SOM). For each per-
spective, a SOM matrix display provides an overview of
data objects arranged by similarity. The matrix is linked
to views such as spatial maps, function graphs, and
periodic pattern views, which enable the investigation
of spatio-temporal patterns.

Concepts from information theory can be applied to
automatically extract distinctive structures in the data.
Jänicke et al. [108], for example, compute the local sta-
tistical complexity in order to identify regions with dif-
ferent temporal behavior than the rest of the field. The
measure assesses the amount of information from the
local past that is necessary to predict the local future. In
later work, the same authors utilize wavelet analysis for
exploring climate variability changes [109]. Clustering
techniques based on mutual information are applied,
amongst others, in order to identify coherent structures
in the data. Similarly, Woodering and Shen [110] ap-
ply wavelet transformation to time-dependent volume
data. The resulting multi-resolution data representation
is clustered and visualized in a spreadsheet [19]. Here,
multiple Time Histograms are shown that also support
linking and brushing (compare to Akiba et al. [111]).

4.3 Interactive Methods for Multi-dimensional Data

While computational analysis methods typically rely on
well-defined problems, certain data features are difficult
to describe mathematically or hard to anticipate prior to
the analysis. Consequently, many applications support
interactive feature specification using brushing or query-
ing techniques. Additionally, computational methods can
be applied on-demand to facilitate the analysis.

The TimeSearcher [95] is especially designed for the
visual analysis of time-dependent data using Time Boxes
or angular query widgets. The latter are applied for
selecting time series that have a similar slope on a
sequence of time steps (compare to angular brushing for
parallel coordinates [112]). Konyha et al. [70] introduce
line brushes that select function graphs, which intersect a
line segment drawn in the view. Akiba et al. [111] utilize
a Time Histogram [94] to specify transfer functions for
time-varying volume data.

Jern et al. [113] propose a coordinated multiple views
system for exploring spatio-temporal multi-variate data.
Cartographic maps are linked with attribute views such

Fig. 5. Visual analysis of perfusion data acquired after an acute
ischemic stroke [71]: brain tissue with reduced and delayed perfusion
is selected using similarity-based brushing in the function graph view.
The related tissue at risk is shown in the spatial context (inset).

as parallel coordinates that also support brushing. In-
teractive feature specification in multiple linked views
is also an integral part of the SimVis framework [74].
Oeltze et al. [78] study the integration of both correlation
analysis and PCA into the visual analysis of perfusion
data. Parameters describing the temporal perfusion char-
acteristics are extracted and analyzed together with the
principal components using linking and brushing. The
approach is applied in the diagnosis of breast cancer,
ischemic stroke, and coronary heart disease.

Kehrer et al. [21] use brushing of derived temporal
characteristics such as linear trends and signal-to-noise
ratios for the steered generation of hypotheses in climate
research. Spatio-temporal regions in the atmosphere are
identified which can act as sensitive and robust in-
dicators for climate change. This work is based on
an extension of SimVis, which enables the interactive
depiction of large amounts of time series as function
graphs together with advanced brushing techniques [71].
Function graphs that are similar to a pattern sketched by
the user can be interactively selected (see Fig. 5). Also,
transfer functions are applied for visual clutter reduction
by mapping the number of function graphs per pixel to
the pixel’s luminance (compare to Johansson et al. [68]).
Using aggregation techniques (frequency binmaps [69]),
the responsiveness of the system can be maintained, even
when interacting with large amounts of time series.

5 MULTI-VARIATE SCIENTIFIC DATA

The multi-variate characteristics of scientific data are of-
ten of special interest, typically in combination with their
spatial and/or temporal reference. When investigating,
for instance, the fronts of a storm [114] or environmental
phenomena such as the El Niño [109], multiple data
attributes and their interrelation need to be considered.
Johnson [2] identifies the visualization of multi-variate
scientific data (also referred to as multi-field data) as one
of the top challenges in scientific visualization. Compre-
hensive surveys on the topic are given by Wong and
Bergeron [22] as well as Fuchs and Hauser [23].

In the following subsections, the representation, com-
putational analysis, and interactive methods for multi-
variate scientific data are discussed.
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5.1 Representation of Multi-variate Scientific Data

Multi-variate patterns such as correlations or outliers can
often be directly perceived when plotting the data in
attribute space, for instance, using scatterplot matrices or
parallel coordinates [22]. Such attribute views, however,
are less able to convey spatial relationships of the data.
Another challenge is which of the many data variables to
show in order to not miss important patterns (e.g., using
quality metrics [48] as discussed in Sec. 5.2). Alternative
methods for spatial data such as direct volume rendering
typically have difficulties encoding multi-variate charac-
teristics. When fusing multiple scalar fields in a single
visualization (e.g., using glyphs or layering techniques),
one often has to cope with cluttering and occlusion.
Different portions of the data can be represented using
a set of visual styles (e.g., focus+context or illustrative
visualization [53], [115], [116]). Such feature-based ap-
proaches, however, typically rely on segmentation infor-
mation, which can be specified, for instance, interactively
via brushing or transfer functions [74], [76], [114], [115].

Multiple data values can be simultaneously repre-
sented in an image using preattentive visual stimuli such
as position, width, size, orientation, curvature, color
(hue), or intensity [117], [118]. These features are rapidly
processed by the low-level visual system and can thus be
used for the effective visualization of large data. Special
care is required, however, if several such stimuli are
combined—the result may not be preattentive any more.
Healey and Enns [119] propose simple texture patterns
and color to visualize multi-variate spatial data. Different
data attributes are encoded in the individual elements
of a perceptual texture using equally distinguishable
colors and texture dimensions such as element density,
regularity and height. Groups of neighboring elements
form texture patterns that can be analyzed visually.

Glyphs are a powerful way of encoding multi-variate
data, which is often used in information visualization
(e.g., star glyphs, stick figures, faces, see Ward [120] for
an overview). Different data variables are represented
by a glyph using a set of visual stimuli such as shape,
size or color. Relations between the data variables can be
directly perceived and compared, often also in the spatial
context when using a hybrid visualization [23]. It should
be noted that some visual cues and/or their relationships
can be easier perceived than others [117], [118], [120]. An
effective glyph visualization should, therefore, carefully
chose and combine the utilized visual properties.

Ropinski and Preim [121] propose a perception-based
glyph taxonomy for medical visualization. The authors
categorize glyphs according to 1) preattentive stimuli
such as glyph shape, color and placement, and 2) at-
tentive visual processing, which is mainly related to
the interactive exploration phase (e.g., changing the po-
sition or parameter mapping of a glyph). Additional
usage guidelines are proposed, for instance, that glyph
shapes should be perceivable unambiguously from dif-
ferent viewing directions. Kindlmann [122], for example,
uses superquadric glyph shapes that fulfill this criterion.
Ropinsky and Preim [121] also suggest that the mapping
of data variables to glyph properties should focus the

VortexVortex

(a) (c)(b)

Fig. 6. Visualizing multi-variate data with layering techniques:
(a) Combining glyphs, elongated ellipses, and color to show a total of
nine variables [124] (image courtesy of R. M. Kirby, c© 1999 IEEE).
(b) Filigree graphics encoding flow direction combined with a stream-
line texture [126] (image courtesy of P. C. Wong). (c) Different visual
styles representing semantic information [115] (image courtesy of
P. Rautek, c© 2007 IEEE).

user’s attention and emphasize important variables. Lie
et al. [123] propose additional guidelines for glyph-based
3D visualization with respect to the different stages of the
visualization pipeline. It should, for instance, be possible
to perceive each visual glyph property independently (or
to mentally reconstruct the depicted data values [121]).
The authors discuss further design aspects of glyph-
based 3D visualization such as depth perception and
visual cluttering (e.g., using halos to discriminate over-
lapping glyphs).

Since glyphs are typically not placed in a dense way,
the space between them can encode additional informa-
tion. Kirby et al. [124], for example, use concepts from
painting for visualizing 2D flow. They combine differ-
ent image layers with glyphs, elongated ellipses, and
color (see Fig. 6a). Treinish [125] visualizes multi-variate
weather data using color contouring on vertical slices
and isosurfaces that represent cloud boundaries. At user-
defined locations, the wind velocities are represented by
a set of arrow glyphs. Additional streamlines following
the wind direction are seeded at each arrow.

Multiple scalar fields can be fused in a visualization by
using 2D or 3D layering. Wong et al. [126], for example,
encode different climate variables by overlaying multiple
see-through layers using opacity modulation, filigree
graphics, or 2D height maps. Flow features such as
critical points or vortices are highlighted using enhanced
color maps (see Fig. 6b). Two-level volume rendering
[127], [128] considers segmentation information when
visualizing 3D medical data. Different rendering tech-
niques such as maximum intensity projection, direct
volume rendering, or non-photorealistic techniques are
combined, based on the segmentation. Viola et al. [116]
propose similar focus+context techniques, which inte-
grate dense as well as sparse rendering styles. Illustrative
visualizations such as cut-away and ghosted views can
thus be generated automatically. In later work, Rautek
et al. [115] propose semantic layers for illustrative vol-
ume rendering, where the mapping of data properties
to visual styles can be specified using natural domain
language. In Fig. 6c, for instance, contours represent
areas of high density; yellow and red highlight regions
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with low and very low distances to vessels, respectively.

5.2 Analysis in Multi-variate Data Visualization

Finding interesting structures in multi-variate data is a
typical challenge for computational analysis, especially
in cases of many variables. Such methods, however,
often neglect the semantic meaning of the independent
dimensions of space and time. Example methods are
aggregation techniques, clustering, regression and outlier
analysis [55]. Dimensionality reduction such as PCA or
MDS is often applied when analyzing multi-variate data.
The data are projected to a lower-dimensional space
while preserving their meaningful structures and rela-
tionships (see Sec. 3.2). Jänicke et al. [129], for instance,
transform multi-variate data onto a 2D point cloud,
where data items with similar characteristics are located
close to each other. The authors compute a tree where
the Euclidean distance between multi-variate data items
is minimal. The tree structure is then utilized when
transforming the data to 2D. Additional information
is encoded using color and point size, and interesting
structures can be selected via brushing.

Another analysis challenge with multi-variate data is
finding those attributes that represent the most impor-
tant data characteristics. The grand tour method [47], for
instance, automatically generates a sequence of orthog-
onal projections onto a 2D subspace, which can be used
in an animation. Seo and Shneiderman [130] introduce
the rank-by-feature framework, where low-dimensional
projections such as scatterplots or histograms are ranked
based on user-selected criteria (e.g., correlation or en-
tropy). A triangular matrix represents the possible com-
binations of data variables in a scatterplot and en-
codes the corresponding ranking score in color. This
supports the user to select interesting views on the
data. Scagnostics [131] are measures that characterize the
point distribution in 2D scatterplots and can be used to
detect anomalies in shape, density and trend. Tatu et
al. [132] recently propose further quality measures for
scatterplots and parallel coordinates that are utilized for
ranking these views. Quality metrics can also be used for
reordering axes in parallel coordinates in order to find
visual structures such as correlations or clusters [48]. In
this context, Ward [120] discusses measures for ordering
the data attributes that are represented by a glyph.

In order to deal with visual cluttering in parallel coor-
dinates, Johansson et al. [68] utilize clustering and high-
precision textures. The number of primitives per pixel
are mapped to the pixels’ luminance by applying user-
defined transfer functions. Each cluster is encoded in
color and local outliers are visually enhanced. Novotný
and Hauser [69] propose an interactive focus+context
visualization for parallel coordinates. The data between
each pair of adjacent axes is aggregated in a 2D binmap.
Clustering and outlier detection are then applied on the
aggregated data in order to show general data trends
while preserving outliers. Since these methods are ap-
plied in image space (2D binmaps) instead of the original
data space, the approach is suitable for interactively
rendering larger amounts of data.

user hypothesis

attributes
selection

x: a8
y: a9

65%

71%

x: a5
y: a8

x: a2
y: a4

x: a0
y: a1

fitness

x: a5
y: a8

x: a2
y: a4

x: a0
y: a1

(a)

(b)

(c)

Fig. 7. Combining visual analysis with machine learning [136]:
(a) The user specifies an initial hypothesis as a selection on at-
tributes a8 and a9. (b) A search algorithm finds alternative hypothe-
ses that explain the same feature but are described by selections on
different attributes. The best resulting hypothesis has 65% fitness,
where attributes a0 and a1 are very important (dark green). (c) The
fitness increases when the user deactivates selections (gray) on less
important attributes (images courtesy of R. Fuchs, c© 2009 IEEE).

Other methods for volume visualization highlight the
computed differences or correlations between multiple
data variables. Sauber et al. [133], for example, introduce
multifield-graphs that give an overview of the correla-
tion between different scalar fields. The user is guided
to interesting correlations, which can then be inspected
in detail using direct volume rendering. Woodring and
Shen [134] propose volume shaders to compare multiple
time-dependent scalar volumes by using consecutive
algebraic set operators as well as numerical or statis-
tical operators. For interaction and visualization of the
resulting volume tree they utilize image spreadsheets
(compare to Jankun-Kelly and Ma [19]).

5.3 Interactive Methods for Multi-variate Data

As discussed in section 3.1, multi-variate data are often
analyzed in coordinated multiple views. When combin-
ing brushing in attribute views with linked 3D volume
visualizations, the specified features can be explored in
their spatial context too [74], [76], [77]. In the following,
we discuss the combination of interactive feature speci-
fication with supervised machine learning.

Kniss et al. [114] propose transfer functions for speci-
fying multi-variate features in meteorological data. Inter-
esting data subsets can be selected both in volume and
transfer function space using a set of direct manipulation
widgets. Tzeng et al. [135] propose an intelligent painting
interface that supports the higher dimensional classifi-
cation of volume data. Regions can be marked directly
on sample slices in the volume space, and the data are
then classified automatically using a supervised machine
learning approach. The training data can then, for in-
stance, be used for classifying other data with similar
characteristics. Ma [91] discusses further applications of
machine learning and visualization such as flow feature
extraction and feature tracking. Fuchs et al. [136] com-
bine interactive feature specification via brushing with
machine learning. Using a heuristic search algorithm, the
most suitable hypotheses for a user-specified feature can
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be identified out of a large search space according to
different fitness criteria (see Fig. 7).

6 MULTI-MODAL DATA

Data stemming from different acquisition modalities are
common in many physical sciences including climate
research, geology, and astronomy [137]. A simulation
model can be validated, for instance, by comparing it to
the output of another model or measurement data [30].
While multi-variate scientific data are typically sampled
or computed for the same spatio-temporal locations, this
need not be the case with multi-modal data. Such data
can be given on various types of grids (e.g., 2D/3D,
unstructured or hybrid) with different time steps and/or
spatial resolutions. Accordingly, the different modalities
often need to be fused in the visualization, for instance,
by resampling them to a common grid [138]. In the
medical domain as well, data increasingly often stem
from different measurement techniques such as CT, MRI,
or ultrasound data. Combining such modalities in a vi-
sualization can account for the strengths and weaknesses
of the individual ones [139]. The different modalities
often need to be registered and normalized to each
other in order to make them comparable (see Ardeshir
Goshtasby [27] for an overview).

6.1 Representation of Multi-Modal Data

Typical challenges for multi-modal data are the ren-
dering and registration of multiple intersecting scalar
volumes, which are possibly sampled at different loca-
tions. Similar to multi-variate data, such data can be
fused at different stages of the visualization pipeline [23]:
1) during data filtering and visualization mapping, for
instance, by reducing the data to relevant features or by
resampling to a common grid; 2) during accumulation
in the rendering stage; or 3) in image stage, for example,
using layering techniques.

Multi-block flow visualization is an example where
simulations are performed on multiple grid types with
different resolutions [140]. When visualizing the data,
these blocks are commonly intermixed at the data level
by constructing a common grid. As a result, multi-variate
visualization techniques as described in section 5 can be
applied. We find, for instance, multi-variate rendering
approaches for non-uniform grids [141] or hybrid and
non-structured grids [81]. Treinish [138] discusses the
data fusion of scattered meteorological observations, for
example, by constructing a common grid using Delauney
triangulation or resampling to a regular grid. The same
author proposes a function-based data model [142] that
provides uniform access to different modalities. The
model adjusts to the data structure and the way data
are processed. Consequently, the same operations can
be applied to multi-modal data without resampling to
a common mesh or unnecessary interpolation.

Cai and Sakas [143] use the different data modalities
as parameters to a multi-volume illumination model (in
the visualization mapping stage). As an alternative, the

same authors combine color and opacity from differ-
ent volumes during accumulation, where each volume
has it’s own transfer function [143]. Similar to that,
Grimm et al. [144] fuse multiple intersecting volumes
during the rendering by using V-objects, which represent
different visual properties of the individual volumes
(e.g., illumination, transfer function, region of interest,
and transformation). The data are rendered efficiently
in software using multi-threading and a brick-wise ray
traversal scheme as well as mono-volume rendering for
non-intersecting areas. Plate et al. [145] present a frame-
work for rendering large, arbitrarily oriented volumes
using slice-based rendering on the graphics hardware.
Their approach supports out-of-core techniques and vol-
umes given at multiple resolutions. Lindholm et al. [146]
more recently introduce a region-based scene description
for GPU-based volume rendering. Using binary space
partitioning, the depth information of the intersecting
geometry is stored in a view-independent way and time-
consuming depth sorting can be avoided.

Beyer et al. [139] present a system for preoperative
planning of neurosurgical interventions. Similar to two-
level volume rendering [128], the authors render seg-
mented multi-modal data directly on the GPU. Burns
et al. [147] combine tracked 2D ultrasound data with
illustrative techniques for volume visualization such as
flexible cutaways and importance-driven shading. Con-
text information occluding the object of interest can thus
be removed and features can be enhanced (compare to
importance-driven rendering by Viola et al. [116]).

6.2 Analysis in Multi-Modal Data Visualization

Registration [27] is a typical first step when working with
multi-modal data (e.g., using mutual information [28]). A
common analysis task is the comparison of multiple data
modalities for similarities and differences [30]. According
to Verma and Pang [44], scientific data can be compared
at the image, data or feature level. Gleicher et al. [45]
proposes a complementary taxonomy for InfoVis. The
authors distinguish between methods that use juxtapo-
sition, overlay or explicit encoding of differences.

Comparison at the image level is the most frequent one.
It does not directly operate on the data but on 2D images
that result, for example, from a visualization method or
from experiments [148]. Examples include side-by-side
visualizations (with synchronized viewing conditions)
where the user has to mentally relate different images [9],
[19], [29], [61]. Other approaches overlay co-registered
images, for example, based on a checkerboard pattern
or using transparency. Alternatively, per-pixel differences
can be directly represent by subtracting the 2D represen-
tations from another [107]. For the latter, the selection
of an appropriate color map is highly important, for
instance, using a diverging map to discriminate positive
and negative differences [149]. Zhou et al. [148] present
a study of different comparison metrics that numerically
quantify image differences between experiments and
visualizations. It should be noted that image level com-
parison usually operates on 2D representations where
the intermediate information about how the images were
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(a) (b)

Fig. 8. Comparison of nested surfaces [154]: (a) Transparent sur-
faces, shadow-casting glyphs, coloring, and contouring are used for
comparison. (b) Corresponding points on the surfaces are connected
by glyphs (images courtesy of S. Busking).

created is lost. Deviations can, therefore, also result from
different visualization settings (e.g., transfer functions,
points-of-view, or lighting conditions) and need not nec-
essarily represent data differences [44].

Data level comparison utilizes the raw data as a start-
ing point and often incorporates intermediate informa-
tion from the rendering process [150]. Sahasrabudhe et
al. [151] propose methods for measuring the differences
between scalar datasets including spatial and perceptual
metrics. Kim et al. [152] propose metrics for data level
comparison of direct volume rendering and also incor-
porate intermediate rendering information in their com-
parison approach. Malik et al. [153] recently propose the
multi-image view that supports the comparison of series
of scans from the same specimen.3 Such approaches are
usually superior to pure image level comparison since
they include more information and flexibility.

Finally, feature level comparison is an extension of
data level comparison and is based on extracted fea-
tures of the data. For flow data, such features can be
shock waves, vortices, streamlines, or isosurfaces (see
the work of Verma and Pang [44] and Pagendarm and
Post [155], for instance). Features from different modal-
ities can be depicted as nested surfaces. Weigle and
Taylor II [156], for example, use coloring, transparent
textures, and shadow-casting glyphs for visually com-
paring two nested surfaces. Busking et al. [154] propose
an image-based implementation of this approach and
add contours where the surfaces intersect as well as local
distance cues (see Fig. 8).

6.3 Interactive Methods for Multi-Modal Data

Rendering techniques for multi-modal data often rely on
interaction, for example, specifying a transfer function
for each data modality which is then combined during
rendering [143], [144]. Another challenge with volume
rendering is finding a good viewpoint where features
are not occluded. This can be done interactively (e.g.,
by rotating the visualization or using clipping planes) or
computationally assisted. Viola et al. [49], for example,
utilize mutual information to automatically determine
the most expressive viewpoint for a feature, which can

3. To a certain degree, such dataset series resulting from multiple
scans can be considered as multi-run data.

be picked from a pre-defined list. The viewpoint then
smoothly changes to give a clear view on the object of
interest using a focus+context visualization [116].

7 MULTI-RUN SIMULATION DATA

The previous two sections discuss approaches for a
relatively small number of co-located volumes. For com-
paring such data, for instance, juxtaposed views or iso-
surfaces can be used [31]. However, the visual analysis
of a larger number of concurrent data volumes requires
more sophisticated methods. Such data commonly re-
sults from multi-run (or ensemble) simulations, which
are performed increasingly often in automotive engineer-
ing [32], [51] or climate research [12], [31].

Multi-run simulations are an important step in the
development of simulation models, where one aims to
identify model parameters that have the most influence
on the simulation output. In such a sensitivity analy-
sis [34], the values of certain model parameters are
changed systematically and multiple simulation runs are
computed, accordingly. In the resulting data, a distribu-
tion of values is given for the same data attribute at each
position in space and time (one value for each run). The
visualization of multi-run data is especially interesting
since it is an alternative approach for representing un-
certainty [38], [43]. General approaches for uncertainty
visualization are discussed by Pang et al. [157], Johnson
and Sanderson [158], and Griethe and Schumann [159].
MacEachren et al. [160], moreover, review approaches for
geospatial uncertainty visualization.

7.1 Representation of Multi-run Data

The representation of multi-run data is rather new to the
visualization community [33]. It is especially challeng-
ing since the data are often higher-dimensional, multi-
variate, and large at the same time [38]. A direct de-
piction of many co-located and time-varying volumes of
data is often not feasible. Accordingly, the distributions
of multi-run values need to be aggregated, for exam-
ple, by computing statistical summaries [33], [43]. The
resulting data can then be visualized using box plots
or glyphs, for example. Alternatively, InfoVis techniques
such as parallel coordinates or scatterplot matrices can
be combined with statistics [31], [161].

Box plots [162] encode important characteristics of data
distributions such as minimum and maximum values,
mean, median, and other quartile information. Kao et
al. [163], [164] extend this approach to 2D multi-run data.
In certain cases, the distribution can be represented ade-
quately by statistical parameters such as mean, standard
deviation, interquartile range, skewness or kurtosis. The
computed statistics are visualized on 2D surfaces using
colorcoding and bar glyphs. For other cases, the same au-
thors propose a shape descriptor approach. A 3D volume
is constructed where the data range is handled as a third
dimension and the probability density function (PDF) of
the multi-run data is used as voxel values. The peaks in
the PDF are then described by a set of shape descriptors
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Fig. 9. Glyph-based 3D visualization of multi-run data [37]: Both up-
per and lower shape represent quartile information by changing from
a star (small value), to a diamond, a circle, and a box representing
a large value. Glyph size encodes the interquartile range and color
shows median temperatures.

(e.g., number of peaks, height, width, and location),
which are displayed on orthogonal 2D slices [164].

Spaghetti plots [42] are utilized by meteorologists to
investigate multi-run data, where a contour line is visu-
alized for each run at a selected time step (resembling
a pile of spaghetti noodles). Sanyal et al. [165] combine
spaghetti plots with a ribbon- and glyph-based uncer-
tainty visualization. The uncertainty glyphs consist of a
number of concentric colored circles that represent the
standard deviation, interquartile range, and the width of
the 95% confidence interval. Potter et al. [35] present a
framework for analyzing multi-run data, which consists
of overview and statistical visualizations such as trend
charts or spaghetti plots. The same authors propose
another extension of box plots. The so-called summary
plot [43] includes additional statistics of the multi-run
data such as skewness, kurtosis and tailing information.
These plots, however, cannot be placed in a dense spatial
context. Kehrer et al. [37] depict aggregated properties of
multi-run data using 2D billboard glyphs that are based
on super ellipses (see Fig. 9). The glyphs are carefully
designed in order to be placed in a 3D context [123].
Using a focus+context visualization and brushing of
aggregated statistics, glyphs that encode certain data
characteristics can be interactively explored (see Sec. 7.2).

Chan et al. [166] augment 2D scatterplots by visu-
alizing sensitivity information, which they considered
similar to velocities in a flow field. Sensitivities are then
represented as tangent lines on the individual points in
the flow-based scatterplot. The assumed flow field can
also be visualized using streamlines, and data points can
be clustered by proximity to these lines. The proposed
approach allows the analyst, for instance, to correlate
changes in one variable with respect to another one.

7.2 Analysis in Multi-run Data Visualization

As mentioned earlier, statistical methods can be used
to reduce the data dimensionality. Kehrer et al. [36], for
example, integrate statistical moments (mean, variance,
skewness, and kurtosis) into the visual analysis of multi-
run data. Traditional and robust estimates of moments
as well as measures of outlyingness are computed. A
moment-based model for the visual analysis is proposed,
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Fig. 10. Relating aggregated and multi-run data of a climate simu-
lation [36], [37]: (a) Interesting statistical properties are brushed and
refined in the inset. (b) The corresponding multi-run distributions are
emphasized in a quantile plot.

which provides guidelines to the multitude of opportu-
nities during such an analysis. Traditional estimates of
moments can, for instance, be replaced by robust ones, or
the scale of a data attribute can be changed by applying a
normalization. For depicting the multi-run data, quantile
plots that are common in statistics are adapted to enable
a focus+context style (see Fig. 10b).

In the visual analysis, multi-run data and aggregated
properties are related via an interface [37], which trans-
fers selection information between the data parts.4 This
enables the analyst to work with both data representa-
tions simultaneously. Interesting multi-run distributions
can then be selected, for instance, by brushing certain
aggregated statistics (see Fig. 10a). For the investigated
cases with multi-run data and aggregated statistics, the
analysis usually starts at the aggregated level [36], [37].
Here, certain data characteristics can be specified via
brushing. The feature can then be refined and investi-
gated in detail in the related multi-run data. The analysis
can then go back and forth between the data parts, where
features are iteratively refined.

As an alternative, mathematical and procedural oper-
ators [33] can be applied, which transform the multi-run
data into a form where existing visualization techniques
are again applicable, for example, streamlines, isosur-
faces or pseudo-coloring. The multi-run distributions can
be compared against a reference distribution or a single
threshold value when drawing contour lines or isosur-
faces, for instance. This approach is very promising due
to its flexibility. However, the usage of the operators and
the interpretation of the resulting visualizations require
additional training and care from the user.

Bordoloi et al. [167] apply hierarchical clustering tech-
niques on multi-run data. Data can either be clustered
along the spatial dimensions by grouping locations
with similar statistical properties and probability den-
sity functions of multi-run values—this approach helps
to identifying spatial structures and patterns, which
may result from the simulated phenomenon. Alterna-
tively, the runs can be clustered base on their similarity.
Such an approach supports the comparison of differ-
ent groups of simulation outcomes, where each group

4. The proposed interface concept is also applicable to other
scenarios with heterogeneous scientific data such as multi-physics
simulations discussed in section 8.
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Fig. 11. Exploration of a multi-run simulation of a visual fire ef-
fect [168]: Each run is first split into similar time segments, which
are then clustered across the runs. In an overview visualization,
each row depicts one cluster with respect to a common time line.
The simulation runs are drawn as paths between the clusters (image
courtesy of S. Bruckner, c© 2010 IEEE).

can be represented [167]. In recent work, Bruckner and
Möller [168] present a result-driven exploration approach
for physically-based multi-run simulations. Each volu-
metric time sequence is first split into similar segments
over time and thereafter grouped across different runs
using a density-based clustering algorithm. This ap-
proach supports the user in identifying similar behavior
in different simulation runs (see Fig. 11).

Correa et al. [169] propose a framework for uncer-
tainty-aware visual analysis. Statistical methods such as
uncertainty modeling are incorporated as well as uncer-
tainty propagation and aggregation during data trans-
formations. Approaches for data transformation such as
regression, PCA, and k-means clustering are adopted in
order to account for uncertainty. A number of views
are presented that combine summarized and detailed
visualizations of uncertainty. Dependent on the analysis
task, uncertain data can be enhanced or de-emphasized.

7.3 Interactive Methods for Multi-run Data

A challenge with multi-run data is the relation of input to
output variables of a simulation and vice versa. Nocke et
al. [31] utilize coordinated multiple views for analyzing
a large number of runs of climate simulations. Statistical
aggregations are computed from the runs and visualized
using linked scatterplots, graphical tables, or parallel
coordinates. The sensitivity of the model to certain input
parameters can be explored via brushing, and the related
model runs can be compared in detail (compare to a
similar approach on injection systems simulations [32]).

Certain methods that were originally designed for
multi-dimensional data can be used for multi-run data
as well. HyperSlice [170], for example, represents a
higher dimensional function as a matrix of orthogonal
2D slices around a user-controlled n-dimensional focal
point. The Prosection Matrix [171] extends this concept
by projecting also the local neighborhood of the slices to
2D scatterplots. The approach supports also filtering via
brushing. HyperMoVal [51] builds upon these concepts
and enables the interactive visual validation of surrogate
models. Such models are based on statistical regression
and approximate the output of a more time-consuming
simulation. HyperMoVal utilizes 2D and 3D projections
of multi-run data around a user-controlled focal point.
Model predictions of variations of one input parame-
ter are represented as families of function graphs (see
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Fig. 12. Navigating input and output parameters of a multi-run
simulation [51], [52]: (a) Variations of an input parameter are indi-
cated with lines. (b) The corresponding changes in the simulation
output are predicted and shown as function graphs. (c) The local
neighborhood in three output parameters is mapped back to the
input parameters, which indicates the sensitivity of the simulation
with respect to its input parameters (images courtesy of H. Piringer
and W. Berger).

Fig. 12b). The predictions can then be compared to
known results of the multi-run simulation (shown as
points in the Figs. 12a and 12b). The approach supports,
for example, the identification of regions with bad fit.

Berger et al. [52] extend HyperMoVal for exploring
the continuous space of input and output variables of
the simulation. The local neighborhood around the focal
point in the input parameters is mapped to the output
domain using k-nearest neighbor estimators or linear
regression models. Since a direct mapping from output
to input parameters of a simulation is not possible, a
“spyhole” approach is proposed. In Figure 12c, the local
area around the focal point is shown where variations of
input parameters do not affect the predicted output by
more than a certain threshold. Also, the uncertainty of
the prediction can be visualized using box plots.

Matković et al. [41] visualize multi-run data as families
of data surfaces with respect to pairs of independent data
dimensions. Using multiple linked views and brushing,
the authors analyze projections and aggregations of the
data surfaces at different levels (e.g., a 1D profile or
single aggregated value per surface). The same authors
propose a visual steering approach [172] where new
simulation runs are triggered by interactively narrowing
down the control parameters in the visualization via
brushing. This approach realizes a tight combination of
interactive visualization and computational simulation.

In later work, Matković et al. [173] propose the sim-
ulation model view which is directly integrated in their
coordinated multiple views framework. The view repre-
sents the building blocks of the utilized simulation pro-
cess and model at three different levels of detail (using
a histogram, scatterplot or curve view). The approach
aims at bridging the gap between the simulation model
and resulting multi-run data. Unger and Schumann [174]
present a similar framework that facilitates the under-
standing of simulation processes at different levels. The
user can compare and simultaneously explore the un-
derlying data model, different parameter settings for the
simulation, as well as individual runs or aggregated
multi-run values.

We clearly see a lot of potential for future research on
multi-run data. This kind of data is gaining increasing
importance due to the technological developments in
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climate research, engineering, and other fields. Visualiza-
tion must deal with multi-run data that are also multi-
variate and spatio-temporal. It is not at all straightfor-
ward to visualize an overview of several hundred runs
of time-dependent 3D data. Advanced data abstraction
and aggregation techniques are required that are aware
of data trends and outliers.

8 MULTI-MODEL SIMULATION DATA

Data from multi-model simulations have been rarely
addressed in the visualization community so far. Such
simulations, however, are gaining importance in areas
such as multi-physics or climate research [11], [12]. In
the climate system, for instance, different compartments
such as ocean, ice, surface, and atmosphere are inter-
acting with each other. Ocean and atmosphere exchange
through thermal absorption, precipitation, and evapora-
tion, also ice and air are interacting. Accordingly, ocean
and atmosphere models are often coupled in the simula-
tion [12]. The models are often not computed on the same
types of grid, or for the same time steps. When analyzing
feedback between these models, statistical aggregates are
usually investigated. Fluid–structure interactions (FSIs),
to address another example, are interactions of a de-
formable or movable structure with an internal or sur-
rounding flow [11]. They are among the most important
and—with respect to both modeling and computational
issues—the most challenging multi-physics problems,
and therefore currently a hot topic in simulation research
itself. The variety of FSI occurrences is abundant and
ranges from bridges, flexible roofs, or off-shore platforms
to micropumps and injection systems, from parachutes
via airbags to blood flow in arteries or artificial heart
valves, to name just a few [11].

For visualization research it is very challenging to
generate a coherent representation from such data, for
instance, when one model is simulated on a 2D grid
and the other one on a 3D grid. How can different
attributes given in the different models be compared to
each other? How can data be represented, where there
are values missing (e.g., an attribute is simulated in
one model but not in the other, or the data are not
uniformly available for a spatial dimension). Also, how
can selections and features be communicated between
different models, especially when these are given on non-
overlapping grids or different time steps? One is, for ex-
ample, interested in the areas of an ocean model that are
influenced by adjacent atmospheric regions exhibiting
certain characteristics such as high temperatures. How
can such a feature from the atmosphere be propagated
to the ocean part?

Kehrer et al. [37] recently propose a concept that in-
tegrates and relates two parts of scientific data in the
visual analysis. The fractional degree-of-interest (DOI)
attribution of the data, resulting from smooth brush-
ing [80], is utilized as a common level of data ab-
straction between the related parts. As an example, a
fluid–structure interaction of warm water flow though
a cooler aluminum foam is investigated. Similar to the
simulation, an interface is created that relates individual
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Fig. 13. Visual analysis of heat transfer between the fluid and solid
part of a multi-physics simulation [37]: Both data parts are related via
an interface that enables a bidirectional transfer of features. Vortical
flow is selected via brushing. The feature is automatically transferred
to the solid part, where it is further analyzed and related to other
features.

grid cells between the two data parts (see Fig. 2). The
interface enables the bidirectional transfer of DOI in-
formation. For understanding flow characteristics such
as heat exchange, vortices are highly important. Vortical
regions are thus selected via brushing in the fluid part
of the data (see Fig. 13). The corresponding feature is
instantly transferred to the foam part via the interface.
Here, it can be related to other features specified in the
solid part. The interface enables the investigation of a
direct relation between turbulent flow around the foam
structure and a corresponding heating in the foam.

To the best of the authors’ knowledge, this work [37]
is the first step into the direction of visual analysis
of multi-model scenarios. Since the related simulation
are becoming increasingly popular in the application
domains, we see a great potential for future visualization
research here.

9 DISCUSSION AND OUTLOOK

The majority of the approaches discussed in this survey
specifically address one or two facets of scientific data.
What is often missing are general concepts for handling
the heterogeneity of multi-faceted data (e.g., multi-run
data are often spatio-temporal and multi-variate as well).
One possible solution are coordinated multiple views,
which combine and link well-known visualizations for
different kinds of data. In such a framework, for exam-
ple, function graphs can be used to analyze time-varying
data, volume rendering for spatial data, 2D scatterplots
or parallel coordinates for multi-variate data, or glyphs
and box plots for encoding summary statistics of multi-
run data. A challenge in this context is the relation of
multiple views, allowing the investigation of features
across data facets, datasets, as well as levels of data ab-
straction [9], [37], [74], [75], [115]. Context-preserving vi-
sual links [175], for example, interconnect related pieces
of information across views and applications.

Another challenge is the extraction of meaningful in-
formation from heterogeneous scientific data. Such data
can be fused on the data level, for example, by resam-
pling or by using a data model that provides unified
access to different modalities [142]. Another option is to
fuse multi-faceted data on the feature level, for example,
by exchanging selection information across different data
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parts [37], [75]. The data markups then represent the
first level of semantic abstraction, ranging from raw data
to knowledge [56]. This abstraction to the feature level
enables the joint integration of heterogeneous data parts.
Features can be exchanged between parts that are given
on different levels of aggregation (e.g., multi-run and
aggregated data) or on various types of grids [37]. Such
a semantic abstraction is especially useful, since domain
scientists usually think in application terms instead of
data terms (e.g., objects or phenomena).

One interesting observation from our study was that
many overview articles discuss approaches according
to the different stages in the visualization pipeline
(e.g., multi-variate data fusion [23], comparative visu-
alization [44], [45], or quality metrics [48]). Analyti-
cal methods can, for example, be applied before the
visualization mapping (in data space). Alternatively,
they can control the visualization mapping or measure
the quality of the resulting image [48]. Also, the user
can interactively control the settings at different stages
of the analysis pipeline [59]. Especially the combina-
tion of computational analysis and interactive visualiza-
tion methodology—as proposed in the visual analytics
agenda [4]—is a promising direction, and we expect to
see a lot of more interesting work in this area. Examples
are feature-based approaches that (semi)automatically
extract interesting patterns from the data [74], [75], [129].
Recently, May [176] presented a thoroughly structured
overview of different opportunities for integrating in-
teractive and computational means in visual analytics.
One important step in this context is the integration of
machine learning methods that can learn from previous
user input and data, and configure the parameters of the
visualization based on the acquired knowledge [56], [91].

As another observation, we see a gap between the
techniques used by domain scientists and the approaches
available from visualization research. Recent advances
in visualization are rarely used in application domains
such as climate research (compare to Nocke et al. [177]).
One reason for this may be that systems are complex
to use and can overwhelm the user with a multitude of
options and parameters. Also, it is not always obvious
how such methods integrate into the typical workflow
of the domain. A major challenge for future develop-
ments is thus to further bridge this gap, for example,
by including knowledge from domain experts when de-
signing visualization solutions [2]. Visualizations should
follow guidelines from perception research and human–
computer interaction [39], providing simple graphical
user interfaces and advanced visualizations [59].

In general, current approaches rarely address the het-
erogeneity of multi-faceted scientific data. We see here a
definite need for novel concepts and methods and thus
see it as a promising research direction in visualization.

10 CONCLUSIONS

The visualization and interactive visual analysis of multi-
faceted scientific data are gaining increased importance
in areas such as engineering, medicine or climate re-
search. This is due to the fact that computational power

increases rapidly, measurements are getting more accu-
rate and detailed, and multi-modal data are becoming
more common. Accordingly, also model and data sce-
narios are getting more complex. Data are often multi-
variate, spatio-temporal and stem from multi-modal,
multi-run, and/or multi-model scenarios. Visualization
has been well established to explore and analyze single
facets of such data and to communicate results from
data analysis. With respect to multi-faceted scientific
data, however, we see a variety of interesting challenges
that require advanced visualization technology. In this
survey, the related state of the art has been discussed. A
categorization of approaches has been proposed that is
based on common visualization, interaction and analysis
methods. What is largely missing are approaches that
address a multitude of facets of scientific data.

We identify, in particular, the visualization and analy-
sis of data stemming from multi-run simulations and in-
teracting simulation models (e.g., coupled climate mod-
els or multi-physics simulations) as rewarding directions
for future research, as well as multi-modal visualization.
A challenge is to jointly integrate larger amounts of
concurrent data volumes in the visual analysis, pos-
sibly given on different grids and/or with different
data dimensionality [37]. Another challenge is how to
investigate feedback between interacting compartments
of the simulation. For multi-variate and time-dependent
data, we can find a lot of related work that brings up
good solutions. The visualization and analysis of these
kinds of data belong to the top challenges in current
visualization research [2].
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and G. Melançon, “Visual analytics: Definition, process, and
challenges,” Information Visualization, ser. Lecture Notes in
Computer Science, 2008, vol. 4950, pp. 154–175.

[6] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Eds.,
Mastering the Information Age: Solving Problems with Visual
Analytics. Eurographics Assoc., 2010.



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, AUTHORS’ PERSONAL COPY 17

[7] B. Shneiderman, “The eyes have it: A task by data type
taxonomy for information visualizations,” Proc. IEEE Symp.
Visual Languages, pp. 336–343, 1996.

[8] C. North, N. Conklin, K. Indukuri, and V. Saini, “Visual-
ization schemas and a web-based architecture for custom
multiple-view visualization of multiple-table databases,” In-
formation Visualization, vol. 1, no. 3–4, pp. 211–228, 2002.

[9] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system
for query, analysis, and visualization of multidimensional
relational databases,” IEEE Trans. Visualization and Computer
Graphics, vol. 8, no. 1, pp. 52–65, 2002.

[10] M. Cammarano, X. Dong, B. Chan, J. Klingner, J. Talbot,
A. Halevy, and P. Hanrahan, “Visualization of heterogeneous
data,” IEEE Trans. Visualization and Computer Graphics, vol. 13,
no. 6, pp. 1200–1207, 2007.
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“Interactive visual analysis and exploration of injection sys-
tems simulations,” Proc. IEEE Visualization, pp. 391–398, 2005.

[33] A. Love, A. Pang, and D. Kao, “Visualizing spatial multivalue
data,” IEEE Computer Graphics and Applications, vol. 25, no. 3,
pp. 69–79, 2005.

[34] D. M. Hamby, “A review of techniques for parameter sen-
sitivity analysis of environmental models,” J. Environmental
Monitoring & Assessment, vol. 32, no. 2, pp. 135–154, 2004.

[35] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,
V. Pascucci, and C. Johnson, “Ensemble-Vis: a framework for
the statistical visualization of ensemble data,” Proc. IEEE Int’l.
Conf. on Data Mining Workshops, pp. 233–240, 2009.

[36] J. Kehrer, P. Filzmoser, and H. Hauser, “Brushing moments in
interactive visual analysis,” Computer Graphics Forum, vol. 29,
no. 3, pp. 813–822, 2010.

[37] J. Kehrer, P. Muigg, H. Doleisch, and H. Hauser, “Interactive
visual analysis of heterogeneous scientific data across an
interface,” IEEE Trans. Visualization and Computer Graphics,
vol. 17, no. 7, pp. 934–946, 2011.

[38] A. Wilson and K. Potter, “Toward visual analysis of ensemble
data sets,” Proc. Ultrascale Visualization Workshop, pp. 48–53,
2009.
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active visual steering – rapid visual prototyping of a common
rail injection system,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1699–1706, 2008.
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