
Evaluation of a Bricked Volume Layout for a Medical
Workstation based on Java

Peter Kohlmann†, Stefan Bruckner†, Armin Kanitsar‡, M. Eduard Gröller†
†Vienna University of Technology

Institute of Computer Graphics and Algorithms
Favoritenstrasse 9-11/E186

1040 Wien, Austria
{kohlmann | bruckner | groeller}@cg.tuwien.ac.at

‡AGFA
Diefenbachgasse 35
1150 Wien, Austria

armin.kanitsar@gwi-ag.com

ABSTRACT

Volumes acquired for medical examination purposes are constantly increasing in size. For this reason, the computer’s memory
is the limiting factor for visualizing the data. Bricking is a well-known concept used for rendering large data sets. The volume
data is subdivided into smaller blocks to achieve better memory utilization. Until now, the vast majority of medical workstations
use a linear volume layout. We implemented a bricked volume layout for such a workstation based on Java as required by our
collaborative company partner to evaluate different common access patterns to the volume data. For rendering, we were mainly
interested to see how the performance will differ from the traditional linear volume layout if we generate images of arbitrarily
oriented slices via Multi-Planar Reformatting (MPR). Furthermore, we tested access patterns which are crucial for segmentation
issues like a random access to data values and a simulated region growing. Our goal was to find out if it makes sense to change
the volume layout of a medical workstation to benefit from bricking. We were also interested to identify the tasks where
problems might occur if bricking is applied. Overall, our results show that it is feasible to use a bricked volume layout in the
stringent context of a medical workstation implemented in Java.

Keywords: Medical Visualization, Bricked Volume Layout, MPR, Medical Workstation.

1 INTRODUCTION

Usually, medical volume data sets are available as
stacks of two-dimensional images (slices). In a linear
volume layout these values are stored in a single
array. The rendering of enormously large data sets
becomes problematic with this storing approach. For
instance, the male data set of the National Library of
Medicine’s Visible Human Project [NLM] consists of
1871 axial anatomical images. Each is composed by
2048 x 1216 pixels with a color depth of 24 bit, which
amounts to about 14 GB. As this is considerably more
than the address space of a typical PC, the data set has
to be stored on hard disk and needs to be transferred
to main memory on demand. Because of limited
bandwidth these transfers are quite costly and result in
undesirable latency.
Bricking is a technique to subdivide the volume into
smaller parts to overcome the mentioned problem. A
single brick contains a fixed number of data values in
x-, y- and z-dimension. Accessing a certain data value

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press, Plzen, Czech
Republic

in a bricked volume is inevitably more costly than in a
linear volume layout. After it is determined in which
brick the value is located, its position inside this brick
has to be calculated. Additional computational effort
is necessary if interpolation and gradient calculation
come into play. For instance, if the interpolation at a
certain location needs data values from several bricks,
an intelligent structure to ensure fast access to the
according values is required. Solving this task becomes
especially difficult within a Java-based implementation
as required by our collaborating company partner.
There are efficient addressing solutions implemented
in C++ which require a lot of array accesses. An array
access is quite cheap in C++, but it is significantly
slower in Java because of costly boundary checks.
However, the implementation of a PACS (Picture
Archiving and Communications System) in Java has
several benefits. Java offers tools for a convenient
plug-in development. In addition, it provides platform
independence.
For the evaluation whether a bricked volume layout
is applicable for a medical workstation based on Java
we investigate some common access patterns to the
volume data. Important tasks of such a workstation
are efficient handling, manipulation and display of
images. As most radiologists still prefer to examine
two-dimensional slices, our approach focuses on a
visualization technique called Multi-Planar Reformat-
ting (MPR). MPR provides an arbitrary reformation of

a given two-dimensional image stack. Basically, a two-
dimensional plane is positioned and oriented inside the
three-dimensional volume and the interpolated data
values are displayed on this plane as shown in Figure 1.
The left image shows a three-dimensional view of the
data set and the slicing plane. In the right image the
corresponding MPR slice is presented.
In various PACSs it is possible to display medical data
by using three two-dimensional planes as shown in
Figure 2. These planes are aligned with the three major
axes to provide the axial, the sagittal and the coronal
view simultaneously.

Figure 1: To generate an MPR-slice, a plane is defined
which intersects the volume (left). Interpolated data
values are shown on this plane (right).

With a linear volume layout the time for computing
these different views varies according to the main data
alignment. As all views are displayed at the same time,
the slowest one is the performance bottleneck. For this
reason, it is important that our approach provides not
only a high, but also a rather constant frame rate for the
different views.

Figure 2: Axial, sagittal and coronal view of a CT
head data set. They are displayed simultaneously by
a PACS. In the lower right part of the display area an
overview image (scout view) is provided.

Segmentation is a very important task in medical vi-
sualization. Only if the access to the values of the data
set is possible in an adequate time it makes sense to
change the volume layout of a medical workstation.
Therefore, we compare the linear and the bricked vol-

ume layout in respect to important access patterns for
segmentation.
The remainder of this paper is structured as follows.
Section 2 provides an overview of the relevant previ-
ous work. In Section 3, our algorithms for the MPR
calculation are presented in more detail. We show the
different steps starting with the generation of the bricks
up to the final MPR image. A discussion of our results
concerning the performance of different access patterns
is provided in Section 4. Finally, Section 5 concludes
the paper and presents some ideas for future work.

2 RELATED WORK
Several approaches address bricking for ray casting.
Law and Yagel [LY96a] presented a distributed ray
tracing system. They identify coherency (data locality)
as a very important factor which highly influences
the performance. As their work employs an object
data-flow approach, objects which are once fetched
have to be fully processed before they are replaced
by other objects. To ensure multi-frame thrashless
ray casting, they divide the volume into equally sized
cells and advance a ray front to generate the image.
In addition, the screen is subdivided into a number of
stripes of equal width, which are distributed to different
available processors. Beside these stripes, each brick is
randomly assigned to a certain processor. A linked-list
data structure handles the information how the rays are
advanced through the cells.
Our work is also inspired by the approach of Grimm
et al. [GBKG04]. They focused on memory-efficient
CPU-based volume rendering and presented several
high-level optimizations for this purpose. As mini-
mization of memory usage is crucial for their approach,
several computations are performed on the fly. A
bricked volume layout is used along with refined data
addressing techniques to accelerate the on-the-fly
computations. Costly computations to address the data
values and performance-decreasing if-else statements
are avoided by using elaborated shift-operations in
addition to look-up tables. Efficient utilization of the
CPU like thread-level parallelism enables a significant
speedup compared to other techniques.
Approaches for interactive ray tracing based on brick-
ing which are optimized for distributed systems have
been presented by Parker et al. [PPL+99] and by
DeMarle et al. [DPH+03]. Guthe et al. [GWGS02]
accomplished an interactive walkthrough of large data
sets on standard PC hardware. They apply wavelet
filters to the subdivided (bricked) volume to get a
compression of the volume data. This representation
can be decompressed on-the-fly. Hardware texture
mapping is used for the rendering.
Weiskopf et al. [WWE04] presented a solution to
maintain constant frame rates in 3D texture-based
volume rendering. For direct volume visualization the

Figure 3: The MPR pipeline.

performance is highly view-dependent because of the
texture memory layout of current graphics hardware.
Using bricks with alternating orientations helps to
avoid this varying performance.
A rendering pipeline for real-time rendering of isosur-
faces was introduced by Hadwiger et al. [HSS+05].
With bricking and acceleration techniques like empty
space skipping, they achieve interactive frame rates for
large volumes which exceed the GPU texture memory.

3 BASIC ALGORITHMS
Most of the approaches mentioned in the previous sec-
tion are focused on volume ray casting. As many ra-
diologists prefer to examine two-dimensional slices we
decided to evaluate the performance of an MPR imple-
mentation based on the different volume layouts. Our
goal was to achieve an implementation with a high and
rather constant frame rate. In this section, the basic al-
gorithms for the generation of the bricks and the MPR
implementation based on a bricked volume layout are
presented.

3.1 Brick Generation
To benefit from an efficient data addressing, the brick
size has to be a power of two. Grimm et al. [GBKG04]
experimented with various sizes and came to the con-
clusion that 64 KB (32 x 32 x 32 * 16 bit) is an
appropriate size in their hardware setup. Law and
Yagel [LY96b] also showed that this size is a good
choice. If the bricks are smaller, this is helpful for
acceleration techniques such as empty-space skipping.
But as a drawback additional computational effort is
necessary to manage smaller bricks.
In our case a brick is quite a simple data structure with
only few attributes. It has a unique ID to reference the
brick, the min- and the max-value of the contained data
and the information if it is padded. Padding has to be
performed if a certain brick is not completely filled with
data values. This occurs if the number of data values is
not a multiple of the brick dimension (32) in one of the
volume dimensions. As we want to store several bricks
instead of the monolithic volume, an important ques-
tion is how the bricks are generated.

First of all, we consider from where the data is ex-
tracted. The DICOM (Digital Imaging and Commu-
nications in Medicine) format is an open standard for
medical images. It provides a container for image data
and meta information like parameters of the scanner
and patient information and it contains a single file for
every slice. These slices are loaded successively but
not necessarily in the correct order. If a file is read,
its data array is extracted and the values are written to
the corresponding brick arrays. A layer of bricks in
xy-dimension is called a slab. For a volume in which
each slice is recorded with a resolution of 512 x 512,
a slab is built by 256 (16 x 16) bricks. The total num-
ber of slabs corresponds to the number of bricks in the
z-direction. As soon as all the brick arrays for a single
slab are filled with data values a notification is sent out.
Then, the MPR renderer can start to generate part of the
image. With this approach, it is not necessary to wait
until the whole set of DICOM images is loaded to start
the rendering process.

3.2 MPR Computation
After the generation of the bricks we focus on an impor-
tant access pattern to medical volume data. In Figure 3
our MPR pipeline shows the steps which are necessary
to produce the final image. The presented approach is
based on a brick-wise resampling of the volume along
rays. At first, a brick rasterization is performed to iden-
tify the bricks which are intersected by the MPR plane.
In the next step, rays within the plane are cast to deter-
mine enter- and exit points where the rays hit the vol-
ume. Then, the list of intersected bricks is traversed
and trilinear interpolation is performed to calculate the
values at the sample positions along the rays. A ray is
propagated to the next brick as soon as it is completely
processed for the current brick.
To ensure high frame rates we avoid floating-point oper-
ations as much as possible. Therefore, several floating-
point variables are converted into a fix-point represen-
tation via bit shifting. With this approach it is possible
to perform the whole interpolation process and many
intersection tests exclusively based on fix-point arith-
metic. In the following sections, the steps of the MPR
pipeline will be described in detail.

3.2.1 Brick Rasterization

MPR visualizes the information which is resampled
on an arbitrarily oriented plane that intersects the vol-
ume. It is important to efficiently determine all the
bricks which have to be processed to render the result-
ing image. An efficient method to detect plane and
axis-aligned bounding box intersections, presented by
Möller and Haines [MH99], is used for these calcula-
tions.
At this point we do not need to know where exactly the
bricks are intersected. In a loop over all bricks, the rel-
evant ones are extracted. The used algorithm exploits
the fact that only a single diagonal of the box has to
be tested for intersection. It is the one which is most
closely aligned with the normal of the plane. In Fig-
ure 4 this is illustrated for the two-dimensional case.
The three gray squares represent bricks and the black
line is the two-dimensional version of the plane. The
thickened gray lines are the diagonals of the squares
which are most closely aligned with the plane’s normal
(black vector). It is sufficient to check if the black line
intersects these selected diagonals to determine if the
corresponding square is intersected.

Figure 4: Brick rasterization in the two-dimensional
case. Only the thickened diagonals of the squares (the
ones which are most closely aligned with the normal of
the plane) have to be checked for intersections with the
plane.

In the three-dimensional case we have to identify the
vertices of the diagonal of interest only for a single
brick. The diagonals of the other bricks which need
to be checked are calculated by adding the offset of the
specific brick in x-, y-, and z-direction. With this al-
gorithm the brick rasterization is performed very effi-
ciently.

3.2.2 Basic Ray Setup

This section describes the basic setup of the rays and
introduces some data structures. Two vectors and a
point are used to define the MPR plane as shown in Fig-
ure 5 (top). Position p defines the center of the plane.
The vectors u and v are orthogonal to each other and
span the plane. In Figure 5 (bottom) the mapping of this
plane to the image space is illustrated. A ray which is
lying within the MPR plane is cast through the volume

on each scan line. The pixels in image space are filled
by an equidistant sampling along each ray. In contrast
to ray casting, a ray is not utilized to gather the value for
a single pixel but to collect the values for a complete
scan line. To store some required information for re-
sampling, the rays are initially cast through the volume.
Each ray is an object with the following attributes:

• int enteringBrick

• int firstVolumeSample

• int lastVolumeSample

• int currentSamplePos

Figure 5: The point p and vectors u and v define the
MPR plane in object space (top). This plane is mapped
to the image space and rays are cast through the vol-
ume (bottom). The volume is resampled along these
rays.

Figure 6 illustrates the values which are stored by
these variables. We do a test if the ray intersects
the volume. If this is the case, there is a volume-
entry- and a volume-exit point. The ID of the first hit
brick is assigned to enteringBrick. As resampling is
performed along the ray, the first and the last of the
ray’s sample positions inside the volume are assigned
to f irstVolumeSample and lastVolumeSample. All the
sample positions of a ray which are outside the volume

are set to the background color. The current sample po-
sition currentSamplePos is initially set to the value of
f irstVolumeSample.

Figure 6: Two-dimensional illustration of a ray which is
initially cast through the volume.

In addition, two arrays are used to store brick-
relevant information:

• short[] brick_fromRay

• short[] brick_toRay

The size of these arrays corresponds to the total num-
ber of bricks. A loop over all rays is performed to deter-
mine the attributes of each ray. Each of these ray tests
results in an update of the two brick arrays. The first ray
which hits a certain brick is stored in brick_ f romRay
and the respective last one is written to brick_toRay.
This structure keeps track of all the rays which intersect
a certain brick. In Figure 7 this is shown for an example
brick. It is intersected by the rays 231 to 235. The ac-
cording entries in the brick_ f romRay and brick_toRay
arrays are set to 231 and 235.

Figure 7: The brick is intersected by a number of
rays. Two brick_ f romRay and brick_toRay arrays
keep track of this by storing the number of the first and
of the last ray.

3.2.3 Brick Prefetching

In the brick rasterization step we identified all the bricks
which are intersected by the defined plane. The bricks
are organized in a cache implementation and they can
be addressed with unique IDs. There is a function call
to fetch and to release a single brick. It is necessary to
minimize the number of function calls as much as pos-
sible to achieve optimal performance. Therefore, we

fetch all the bricks which are needed to calculate an
image before we start with the resampling. After one
image is calculated, all the bricks are released again to
ensure an efficient usage of the available memory.
The image-relevant bricks are those which were iden-
tified by the brick rasterization and all their neighbor-
ing bricks. The brick neighbors are needed for access
patterns to the data during resampling or the computa-
tion of gradients as described by Grimm [Gri05]. In
Figure 8 this is illustrated for the two-dimensional sce-
nario.

Figure 8: Subdivision of the sample positions inside a
brick in 2D for the access patterns during resampling
and gradient computation. For resampling the samples
can be divided into 4 subsets (left). To calculate gradi-
ents 9 subsets can be built (right).

The left image shows that the sample positions of a
brick can be divided into 4 subsets if resampling has to
be performed. This subdivision is based on the fact that
for a resampling operation either only samples from the
same brick suffice or (in 2D) samples from one or three
neighboring bricks are necessary. For the majority of
the sample positions the needed neighboring samples
are available inside the same brick. But for the sam-
ple positions on the top edge, the right edge and the
top-right corner, samples from neighboring bricks are
needed. In three dimensions an 8-neighborhood is used
for resampling. Figure 8 (right) shows the subdivision
of the sample positions for the gradient calculation. An
8-neighborhood is needed for two dimensions. This
leads to 26 neighbors which have to be addressed in
three dimensions.

3.2.4 Brick-Wise Processing

For performance reasons it is not sufficient to traverse
one ray after another. This is very inefficient because it
is likely that consecutive rays partially process the same
data. As the cache size is limited, the same data is read
from main memory several times and slows down the
image computation. It is necessary to process the vol-
ume data brick wise to benefit from the bricked memory
layout and to improve data locality. The bricks, which
were identified during the brick rasterization step, need

to be ordered in a front-to-back manner according to the
ray direction.
Afterwards, one brick after another is processed in the
determined order. For each brick, references to its
26 neighbors point to the according prefetched bricks.
Now, it is possible to look up the intersecting rays from
the brick_ f romRay and brick_toRay arrays for the cur-
rently active brick. A further loop is used to process this
list of rays. Depending on the three components of the
ray direction, a ray has to be tested with three sides of
the brick to determine how many ray samples are inside
the current brick. In a third loop the samples along the
ray are traversed within the brick. A brick is entirely
processed as soon as the contribution of all sample po-
sitions along its intersecting rays to the final image is
computed.
Grimm et al. [GBKG04] presented a very efficient way
to address the values within a brick. To facilitate tri-
linear interpolation they precompute the offsets for the
eight neighboring samples and store them in a look-up
table. With this approach they avoid to compute several
Boolean conditions in costly if-else constructs. These
look ups are on the one hand used to determine the brick
in which a certain sample position is located and on the
other hand to get the offset inside this brick. However,
they have an implementation in C++ where the access
of array elements is quite cheap. As the number of ar-
ray accesses in their approach is rather large for the in-
terpolation case, it is not applicable to our Java imple-
mentation. The high number of look ups would lead
to poor performance because of the array implementa-
tion of Java. For each access a boundary check is per-
formed, with the result that the performance drawback
compared with an array access in C++ is significant.
Depending on the sample position within a brick, we
can determine if the needed values for the trilinear in-
terpolation are entirely inside the brick or if they are
spread over neighboring bricks. To identify the in-
volved bricks we use a method presented by Grimm
et al. [GBKG04]. We assume to have the x-, y- and
z-position where the sample is located inside a brick.
Then it is possible to calculate the case of the location
inside the brick with the equation

case = 9*(((((x-1)&(b))|1)+1)>>5)
+ 3*(((((y-1)&(b))|1)+1)>>5)
+ (((((z-1)&(b))|1)+1)>>5),

where b is two times the brick dimension (32) mi-
nus 1 and >> 5 corresponds to a division by the
brick dimension. The case represents the subset of the
brick where the specific sample position is located as
shown in Figure 8 (right). Extended to three dimen-
sions there are 27 brick subsets. The case calculation
provides a value within the range [0,26]. This value
defines the location of the sample position inside the
active brick. With this information we know which

neighboring bricks are needed for the resampling
process. The case computation helps to avoid the
evaluation of a number of long Boolean statements
to determine the sample position inside the brick. A
switch/case construct is used to select the adequate
equation for the trilinear interpolation.

3.2.5 Ray Propagation

As soon as all the sample positions along a ray are pro-
cessed for the active brick, this ray is propagated to the
adjacent brick it enters as shown in Figure 9.

Figure 9: A ray is propagated to the adjacent brick
it enters after it is processed for the active brick. To
achieve this, the entries of the corresponding brick ar-
rays brick_ f romRay and brick_toRay are updated.

This has to be done because we have only registered
the rays at the bricks which they are entering first at
their way through the volume. We have already calcu-
lated the number of samples along the ray within the
active brick, the current sample position and the last
sample position of the ray which is inside the volume.
With this information we can determine the position of
the first sample along the ray which is outside the cur-
rent brick. This position is used to calculate the ID of
the next brick which is intersected by the current ray.
Afterwards, the ray is propagated by updating the two
arrays brick_ f romRay and brick_toRay and the current
sample position of the ray.

4 RESULTS
This section provides an overview of the results of the
presented implementation. At first, we will evaluate the
performance of the MPR computation for the bricked
volume layout versus the linear volume layout. Sec-
ondly, we will examine how the bricking influences
other important access patterns like the random access
to data values or a simulated region growing approach.
The PC for the performance tests is configured with an
AMD Athlon 64 Dual Core Processor 4400+, 2 GB
of main memory and an NVIDIA GeForce 7800 GTX
graphics card with 256 MB of internal memory. On the

software side, the used Java version is the Java Runtime
Environment Version 5.0 Update 6.

4.1 MPR Computation
To compare the performance of an MPR implementa-
tion based on a linear volume layout with our imple-
mentation we measured the time to calculate a single
image. The specifications of the CT data set we used
for these tests are:

• Resolution: 512 x 512 x 333
• Spacing: 0.40/0.40/0.90 mm

We measured the time for the computation of a sin-
gle image for the cases where the slices are parallel
to the xy-plane (coronal), the xz-plane (axial) and the
yz-plane (sagittal). Additionally, the performance for
the computation of an arbitrarily orientated slice is of
interest. For the axial, sagittal and coronal test case
the plane is moved through the volume and the aver-
aged time per slice is calculated. In the case of the arbi-
trarily oriented slice, a plane, which is spanned by two
randomly generated vectors that are orthogonal to each
other, is defined within the volume. The directions of
these vectors are changed in a loop and the averaged
time is taken as the result. The size of the output im-
ages is 512 pixels in height and width. In Figure 10 the
results of these tests are listed.

Figure 10: The averaged time in milliseconds which is
needed to compute one MPR image for the axial, the
sagittal, the coronal and the random case.

Whereas we have a performance loss in the axial and
the coronal case of about 30 %, the sagittal case is ac-
celerated by about 30 %. In the case of the randomly
oriented plane the loss is about 16 %. This rather high
performance gap between the axial and coronal versus
the sagittal case using a linear volume layout is caused
by different memory access patterns. The CT scanner
that recorded the used data set generated primary im-
ages which were axially aligned. Thus, the cache hit
ratio for the calculation of an axial slice is very good in
contrast to the sagittal case. The utilization of a bricked
volume layout offers a much better data locality.

4.2 Random Access
The worst case scenario to access the data values con-
cerning data locality is a random access. We compared

the time to access 512 x 512 values which are randomly
distributed within the volume. The needed time for
this access pattern is 21.4 ms in the monolithic versus
41.4 ms in the bricked case. For a bricked volume lay-
out more address computations have to be performed to
get a certain value. We assume that we have three ran-
dom values x, y and z, the number of values per data di-
mension (xValues, yValues, zValues) and the array with
all the data values (data). For a monolithic volume lay-
out it is easy to access the value through

val = data[z*xValues*yValues
+ y*xValues + x];

Compared to this, the following effort is necessary
to access one value in a bricked volume layout. We
know the number of bricks in the three dimensions
(xBricks, yBricks, zBricks). At first, the number of the
brick (brickNum) which contains the sample position
has to be calculated.

int brickNumX = x >> 5;
int brickNumY = y >> 5;
int brickNumZ = z >> 5;

int brickNum = brickNumX
+ brickNumY*xBricks
+ brickNumZ*xBricks*yBricks;

After this, it is necessary to calculate the position in-
side the active brick (posInBrick) to access the value.

int xPosBrick = x%32;
int yPosBrick = y%32;
int zPosBrick = z%32;

int posInBrick = xPosBrick
+ (yPosBrick << 5)
+ (zPosBrick << 10);

val = bricks[brickNum][posInBrick];

The increased effort for this hierarchical address
computation compared to the simple calculation for the
linear volume layout causes the measured performance
difference of a factor two.

4.3 Spherical Access
The last access pattern we evaluated is a spherical ac-
cess. We used a parameterized sphere to simulate re-
gion growing which is a popular segmentation algo-
rithm to identify homogeneous areas inside the volume.
Therefore, the center of a sphere is randomly placed
inside the volume, with the constraint that the whole
sphere fits into the volume. For the test volume with
resolution 512 x 512 x 333, we measured the time to
access 512 x 512 data values on the parameterized sur-
face of the sphere. To simulate region growing, the ra-
dius of the sphere is varied between 5 and 150. With a

linear volume layout the access times are quite stable.
They increase from 10.5 ms (radius 5) to 13.6 ms (ra-
dius 150). The reason for this is the worse cache hit
ratio if the values are more widespread within the vol-
ume. With bricking we have a constant access time of
15.5 ms in the case that all the bricks are prefetched.
But this strategy simulates a monolithic volume and
counteracts the benefit of bricking. In another scenario,
only the brick which holds the currently needed value
is fetched. One optimization ensures that no brick is
fetched if consecutive values are inside the same brick.
The needed time for the access of all the values takes
32 ms for a sphere with the radius 5 and increases up to
260 ms with a radius of 150.

5 CONCLUSIONS AND FUTURE
WORK

We have presented an implementation of a bricked
volume layout and evaluated different access patterns
to medical volume data. Our overall goal was to inves-
tigate the question if bricking is a good choice for a
medical workstation based on Java. The previous work
was almost exclusively based on ray casting. As many
radiologists prefer the examination of two-dimensional
slices, we focused on an MPR implementation. Com-
pared to a linear volume layout we achieved a very
good performance for this access pattern. Many PACSs
divide the screen into different sections to display MPR
images. Because of this splitting, the axial, the sagittal
and the coronal view can be displayed simultaneously.
As the computation of the different views can be
easily parallelized if a machine with several CPUs is
available, the view which needs the most time to be
computed is the performance bottleneck. Provided that
this parallelization is done, we can compare the frame
rates of the implementation based on a linear volume
layout with the ones which are based on the bricked
volume layout. Therefore, it is enough to compare the
frame rates of the according slowest views - the sagittal
ones. In this case we have an improvement for the
bricked volume layout from 40 to 57 fps or 42.5 %.
Beside this acceleration, it can be seen that the frame
rates for the different views (axial: 76 fps, sagit-
tal: 40 fps, coronal: 76 fps) are varying quite a lot using
a linear volume layout. With the bricked volume layout
we achieve almost constant frame rates for these views
because of a better data locality. Another important
point is, that the benefits of the bricked layout will
be more pronounced if the data set is large enough so
that it does not fit into the computer’s main memory
anymore.
The performance for the other access patterns is not
yet fully satisfying. Random access to the data values
takes about twice the time when bricking is used. For
the spherical access the radius of the sphere is crucial
for the performance. We are sure that optimizations

by taking into account and prefetching only affected
bricks improve the performance significantly. For
instance, the sphere can be subdivided and the bricks
which contain the surface of one part can be prefetched
and fully processed before moving to the next part.
Overall, we can recommend the application of a
bricked volume layout to medical workstations based
on Java. Future work needs to be done for different
segmentation algorithms like watershed or edge-based
techniques. Furthermore tracking algorithms and the
masking of certain areas of the volume have to be
adapted to ensure good performance for the bricked
volume layout.

ACKNOWLEDGMENTS
The work presented in this paper has been funded by
AGFA in the scope of the DiagVis project. We would
like to thank Rainer Wegenkittl and Lukas Mroz of
AGFA Wien for their collaboration and for providing
different CT data sets.

REFERENCES
[DPH+03] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and

C. Hansen. Distributed interactive ray tracing for large
volume visualization. In Proceedings of IEEE Sym-
posium on Parallel and Large-Data Visualization and
Graphics, pages 87–94, 2003.

[GBKG04] S. Grimm, S. Bruckner, A. Kanitsar, and E. Gröller. A
refined data addressing and processing scheme to ac-
celerate volume raycasting. Computers and Graphics,
28(5):719–729, 2004.

[Gri05] S. Grimm. Real-Time Mono- and Multi-Volume Render-
ing of Large Medical Datasets on Standard PC Hard-
ware. PhD thesis, Vienna University of Technology,
2005.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interac-
tive rendering of large volume data sets. In Proceedings
of IEEE Visualization, pages 53–60, 2002.

[HSS+05] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and
M. Gross. Real-time ray-casting and advanced shading
of discrete isosurfaces. In Proceedings of Eurographics
2005, pages 303–312, 2005.

[LY96a] A. Law and R. Yagel. Multi-frame thrashless ray casting
with advancing ray-front. In Proceedings of Graphics
Interfaces, pages 70–77, 1996.

[LY96b] A. Law and R. Yagel. An optimal ray traversal scheme
for visualizing colossal medical volumes. In Proceed-
ings of Visualization in Biomedical Computing, pages
33–43, 1996.

[MH99] T. Möller and E. Haines. Real-Time Rendering. AK
Peters, Ltd., Natick, MA, 1999.

[NLM] The National Library of Medicine. The Vis-
ible Human Project. Available online at
http://www.nlm.nih.gov/research/visible/.

[PPL+99] S. Parker, M. Parker, Y. Livant, P.-P. Sloan, C. Hansen,
and P. Shirley. Interactive ray tracing for volume visual-
ization. IEEE Transactions on Visualization and Com-
puter Graphics, 5(3):238–250, 1999.

[WWE04] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining con-
stant frame rates in 3D texture-based volume rendering.
In Proceedings of IEEE Computer Graphics Interna-
tional, pages 604–607, 2004.

