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A Fractional Cartesian Composition Model
for Semi-spatial Comparative Visualization Design

Ivan Kolesár, Stefan Bruckner, Ivan Viola, and Helwig Hauser

Abstract—The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this
paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by
partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the
data as much as possible—even when many ensemble members should be jointly studied using comparative visualization. In our
model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the
automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify
our approach in the context of several application examples from different domains in order to demonstrate its generality within the
class of comparative visualization problems for spatial data ensembles.

Index Terms—Visualization Models, Integrating Spatial and Non-Spatial Data Visualization, Design Methodologies

1 INTRODUCTION

With the continued improvement of data acquisition technology, both
in terms of measurements as well as numerical simulation, we see a
new trend towards studies of large and multi-faceted data ensembles.
Frequently, such ensemble studies also focus on spatial aspects of the
data, for example, cohort studies in medicine that are based on popu-
lation screening or parametric ensemble studies that are based on nu-
merical simulation in engineering. Such studies are intrinsically chal-
lenging, not only because of large data volumes, but in particular also
because of the multi-faceted character of the study, including multi-
dimensionality, data heterogeneity, multi-modality, etc. [17].

Recently, visualization research has picked up this challenge of sup-
porting the study of entire data ensembles (as compared to the more
traditional challenge of visualizing individual datasets) and first results
are available also for the specific challenge of visualizing spatial data
ensembles [4, 19]. With spatial data, we denote all those cases, where
certain spatial aspects of the data are central to the visualization ques-
tion, for example, the 3D anatomy of the screened individuals or the
2D flow structures that are simulated by computational fluid dynam-
ics. Naturally, when visualizing ensembles—and in particular, when
studying spatial data ensembles—, the comparative visualization of
ensemble members becomes a central and non-trivial challenge, no-
tably when multi-dimensional ensembles are studied or many ensem-
ble members should be compared.

A central theme in comparative visualization is to enable the user
to visually relate two or more ensemble members to each other, often
also in a structured form [11], and the study of intra-ensemble vari-
ability is also central to many cases of visual parameter space anal-
ysis [31]. In this paper, we address the particular challenge of inte-
grating spatial and non-spatial data in the comparative visualization of
multi-dimensional ensembles, where the user is interested in preserv-
ing selected spatial aspects of the data as much as possible, while still
comparing multiple ensemble members in one visualization.

The key question of interest here—and a central question in much
of the related work, also—is the following: Given that the user is inter-
ested in a spatial visualization of the data, what is an optimal tradeoff
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between spatial abstraction on the one hand (in order to visualize mul-
tiple ensemble members together) and preserving the data spatiality on
the other hand (and thus limiting the number of members to compare).
See Fig. 1 for an illustration of this abstraction–composition interplay.
A well-chosen compromise is obviously needed, since the visualiza-
tion space—2D or 3D, usually—is limited. Enabling the partial ab-
straction of data spatiality, for example, through a simple 3D→2D pro-
jection, opens up for the semi-spatial comparison of multiple ensemble
members in a joint visualization space. The amount of abstraction is
clearly a critical parameter in order to optimally exploit the potential
benefit of comparative visualization.

In this paper, we now present a formal model for the design of ac-
cording comparative visualization solutions in the context of spatial
data ensembles. Accordingly, we are able to streamline the process
of visualization design. Only a minimal set of visualization parame-
ters is chosen by the user—the remaining degrees of freedom are then
optimized automatically, based on the new model.

According to Munzner [26], visualization design is done on four
layers: domain characterization, data and task abstraction, design-
ing the visual encoding and interaction, and implementation. Each
of these stages carries risks and costs. According to Van Wijk [34],
it is of greatest importance to limit the initial costs of visualization
design as much as possible, especially in the situation of visual-
ization solutions for experts. Consequently, automatic visualization
design, or at least computationally-assisted visualization design, is
one important challenge in visualization research—already for many
years [24, 40, 36, 30].

Fig. 1. Partial spatial abstraction—from 3D to slabs (21⁄2D)—enables the
composition of a comparative visualization (here of three simulations of
a model of polymerization): the more spatial abstraction is done, the
more visualization space is available for the comparison (at the cost of
a reduced preservation of the spatiality of the data).
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Working out formal models for visualization design helps to enable
a structured approach as several recent works document [26, 31, 18, 8].
Thus, our new model is predominantly a contribution to (a) formal-
izing the tradeoff between spatial abstraction and preservation and
(b) enabling an optimization-assisted design of comparative visual-
ization of spatial data ensembles. The formal model also helps with
relating visualization solutions to each other, to possibly map them to
each other, and to discuss them in terms of costs and benefits.

2 RELATED WORK

In the following, we discuss a selection of related work that addresses
visualization design, comparative visualization, and, in particular, the
comparative visualization based on spatial abstraction.

2.1 Visualization Models and Design

Visualization design is the process of finding a (good) solution in the
space of possible visualizations. Usually, it is focused on a particular
problem domain—general-purpose visualization is only reasonable for
comparably simple tasks [26]. In our case, we focus on the case of
comparative visualization of spatial data ensembles.

In the case of non-spatial data visualization, important pioneering
work was done already in the mid-1980s by Mackinlay for relational
data [24]. A few years ago, Wills and Wilkinson presented a new sys-
tem for the automatic design of information visualization [40]. Both
works emphasize the importance of the visual expressiveness, and ar-
gue for the automatic design of the visualization, if possible. Scien-
tifically acquired knowledge about the effectiveness of certain visual
encodings can be used to optimize visualization design, at least par-
tially. An optimal visualization, however, also depends on the user
(visualization skills, previous knowledge, as well as the user’s task and
interest), which is much harder to capture computationally. Therefore,
alternative approaches are also pursued that assist the user in the visu-
alization design, instead of fully automating it.

Accordingly, recommendation models for information visualization
have been suggested, for example, based on semantic knowledge about
the data [36], where the additional information about the data helps in
generating a suitable visualization, or based on a probabilistic sam-
pling of a tightly constrained design space [29], helping with the col-
oring or spatial layout of the visualization. For the case of spatial
data visualization, in particular when considering the partial spatial
abstraction to compose a comparative visualization, no corresponding
solution is available yet.

To compare and evaluate visualization designs quantitatively, for-
malization is required. In related work we find predominantly two
types of formalization: categorical and algebraic. An example of
categorical formalization is the conceptual framework of parameter
space visualization by Sedlmair et al. [31]. An example for an alge-
braic formalization is the work on product plots by Wickham and Hof-
mann [39]. More recently, a similar approach was pursued to address
visualization in general by Kindlmann and Scheidegger [18], where a
formal mapping between the data and the visualization, between dif-
ferent types of data representation, and between different visualization
mappings is described. This work provides a great basis for the analy-
sis and evaluation of visualization in general.

With respect to the question of optimally preserving data properties
in the visualization and consequently automating the according visu-
alization design, the recent work by Demiralp et al. [8] is very inter-
esting. They demonstrate, how distance-preserving visualization can
be automated, based on crowd-sourced data, and show further, how
the notion of visual product spaces assists the estimation of optimal
visualization also beyond the acquired data. Also related, we see ap-
proaches that assist visualization design by optimizing formal quality
measures (mostly in information visualization, however). One such
example is the automatic search for an optimal dimension reduction
in parallel coordinates by Johansson and Johansson [15]. However, in
all related work that we reviewed, we could not find a solution that
addressed the (partial) spatial abstraction in order to enable the com-
position of a comparative visualization, however.

2.2 Comparative Visualization

To compare the individual members of a (spatial) data ensemble, com-
parative visualization is obviously a natural solution. Most generally,
comparative visualization was studied in the context of information
visualization by Gleicher et al. [11]. In their comprehensive and thor-
ough survey, three basic layouts of comparative visualization are an-
alyzed and exemplified: juxtaposition, superposition, and explicit en-
coding. Even though this study is primarily focused on non-spatial
data visualization, we still find their categorization general enough to
also help with the comparative visualization of spatial data ensembles,
and thus incorporate their formalism in our model, as well.

Related to the notion of comparative visualization is also the one
of composition views [14]. This design model describes strategies to
combine visual representations in the same geometrical space, in par-
ticular juxtaposition, i.e., placing visualizations side-by-side, super-
imposition, i.e., overlaying visualizations, overloading, i.e., utilizing
the space of one visualization for another, and nesting, i.e., nesting the
content of one visualization inside another. The first two categories
are similar to the one by Gleicher et al. [11] and we adopted them in
our model. The latter two, however, seem less suitable for our type
of comparative visualization, in particular, when considering a larger
number of ensemble members for one visualization.

2.3 Comparative Visualization using Spatial Abstraction

Closely related to our work, a few interesting studies have been pub-
lished recently, based on both comparative visualization as well as on
spatial abstraction. Klemm et al. [19] demonstrated visual analytics of
rich epidemiological data related to back problems from a large cohort
study in Germany. Krekel et al. [22] used spatial abstraction and su-
perposition to study limb movements with comparative visualization.
Waser et al. [38] present an advanced system that enables the visual
analysis of rich simulation ensembles, helping, for example, with the
planning of how to meet different types of flooding scenarios. Alabi
et al. [1] presented a comparative visualization of surface ensembles,
where a limited number of surfaces are cut into stripes and put onto
each other. While spatial visualization is central to these examples of
comparative ensemble visualization, and we also think that it would
be meaningful to analyze them in terms of our model, the notion of
spatial abstraction is still not addressed as explicitly as in our work.

Closest related to our work, are solutions which focus on the (par-
tial) spatial abstraction of ensemble members for an effective compar-
ative visualization. Selected examples can be found in medical visual-
ization, for example, for the comparative visualization of arterial blood
flow [4], where the human aorta is virtually straightened to enable an
effective side-by-side visualization. Through a careful (partial) spatial
abstraction, the traditional 3D frame of human anatomy is transformed
into the comparative visualization space, where then one axis corre-
sponds to the length of the aorta and the other axis is “freed up” for
the comparative visualization of the blood flow at different time steps.

Also in medical visualization, Termeer et al. [33] have transformed
the shape of the heart from 3D to 2D, encoding the coronary arter-
ies and their respective territories. The deformation enables the visual
encoding of the spatial blood supply information, and also the com-
parative visualization of blood supply from the individual coronaries.
Slices are stacked on top of each other, creating a volumetric bulls
eye visualization [32], helping to understand the spatial correlation
between the supply of different coronaries in different sections of the
heart. Similarly, Köhler et al. [20] have abstracted the aortic flow to
a circular plot to compare the blood flow between different patients.
Yet another example is curve planar reformation [37, 16], where the
central curves of anatomical structures are aligned to enable the com-
parison of different structures. Also related, Eikeland [9] combines
different types of spatial abstraction for multi-volume visualization.

The idea of using spatial deformations to facilitate an effective com-
parative visualization was also used for flow visualization [35, 13] and
the visualization of geoscientific data [23]. For volumetric data, Busk-
ing et al. [6] have defined deformations for direct focus+context visu-
alization, while (or even though) showing only one dataset at a time.

Fig. 2. Optimization-assisted design of comparative visualization—the
user defines, which spatial data characteristics are important (CH) and
sets central parameters: the dimensionality of the visualization (d), num-
ber of ensemble parameters to explore (de), and the class of compar-
ative visualization to choose from (cv); an automatic optimization step
completes the visualization design, which then is evaluated by the user.

All these specific examples demonstrate that the design of compara-
tive visualization for spatial data ensembles is a general challenge that
spans a variety of application domains. A formal model that can lead
to a streamlined design process is therefore considered a potentially
valuable contribution.

3 THE MODEL

In order to introduce our model, we first specify our context, i.e., the
comparative visualization of spatial data ensembles, and illustrate this
setting with a synthetic example in order to support presentation of the
formal explanation of our model.

Focus: We assume that a user is interested in some phenomenon
or artifact that is available to the user in form of an ensemble dataset.
We do not see any major restriction with respect to the type of en-
semble data and address both measured ensembles as well as com-
puted ensembles, for example, from cohort studies based on popula-
tion screening or from numerical simulation. Such an ensemble could
be a parametric ensemble, for instance, based on the structured varia-
tion of simulation parameters, or a stochastic ensemble, generated by
the repeated simulation of a stochastic model. Other types of ensem-
bles are possible as well. We also assume that the user is interested in
certain non-trivial spatial characteristics of the phenomenon/artifact,
for example the shape of the ensemble members—if this would not
be the case (as in many cases of information visualization, for exam-
ple), the complete abstraction of all data spatiality likely would lead
to an effective visualization, for example, in a scatterplot. Accord-
ingly, we focus on use cases, where the user is interested in preserving
as much data spatiality as possible, while still composing an effective
comparative visualization and enables the swift and flexible study of
rich spatial data ensembles.

Illustrative example: To complement the formal description of
our model, we introduce a hypothetical example as an illustration:
Imagine a user with interest in ivy-covered walls and assume that an
ensemble dataset is available, which contains a two-parameter ensem-
ble of simulated, ivy-covered walls, where one parameter encodes the
ivy’s likelihood to branch, while the other parameter encodes the ivy’s
age (time of growth). The user judges ivy-covered walls in terms of
certain spatial characteristics, including left–right symmetry, the over-
all coverage of the wall, and the number of wall spots, which are not
covered by ivy. The ensemble contains 10×10 spatially-detailed ivy-
models so that some spatial abstraction is needed to compose an infor-
mative comparative visualization on the screen. The very left of Fig. 5
and the top row of Fig. 6 show selected examples from this ensemble.

With our work, we address the situation, where partial automation
is preferred over completely automatic optimization—we assume that
the user has a few preferences that are provided as input to the design
process. We assume, however, that the user is not interested in techni-
cal particularities of the visualization design, relating to those parts of
the process, where optimization is exploited, accordingly. In the fol-
lowing, we first explain how the user is part of our model, before we
then explain our model and the according visualization design process.

Fig. 3. Model overview—above the dashed line, we show the user-side
of our model (a certain ensemble P is considered, together with se-
lected spatial characteristics CH, as well as user-chosen parameters)
and relate it to the formal model: an ensemble member p is repre-
sented (rep) and a characteristic ch is measured by a corresponding
measurement function (m). The visualization is composed of (partially)
abstracted member representations, assisted by an optimization com-
ponent, choosing the optimal abstraction.

3.1 The User’s Role

In order to capture the entire design process, we keep the user centrally
in the picture—after all, it’s the user, who initiates the process, based
on data and a task, before then steering it to a satisfying visualization.

We assume that the ensemble dataset P is given as an n-parameter
set of ensemble members pi, which are represented in the data in a
certain form rep(pi), for example as a geometric model or as image
data. In the synthetic ivy-example, n is 2 (branching-likelihood & ivy-
age) and rep(pi) is a geometric tree-model with branches and leaves.

Based on our exchange with collaborators from different domains,
we assume that the user wishes to choose which type of comparative
visualization is designed (a juxtaposition, superposition, or a combi-
nation of them)—accordingly, we enable the user to choose this type-
parameter cv as one of { juxtaposition, superposition, hybrid}. We
note that the choice of cv also could be optimized, given that the user
is agnostic concerning the type of the comparative visualization.

Depending on the complexity of ensemble P (in terms of its dimen-
sionality n), more or less complex visualization designs are possible.
The user could prefer to examine the intra-ensemble variability with
respect to individual ensemble-parameters, for example, one by one.
Alternatively, the user could be interested in a visualization setup that
compares the ensemble members with respect to several parameters at
once. We see this question closely related to the user’s task and thus
enable the user to provide this input as another parameter, de, i.e., the
number of ensemble parameters to be varied.

Thirdly, we also leave it to the user to choose the target dimen-
sionality of the visualization, i.e., 2D or 3D (d). In principle, it can be
argued that 3D visualization offers more space for better accommodat-
ing ensemble members, in particular when many are to be compared.
3D visualization, however, comes at the cost of visual comparisons
that are more difficult to interact with and to interpret. It seems non-
trivial (while not impossible) to automatically measure this additional
cost and thus enable an automatic optimization of this parameter, also.

In our illustrative example, the user could experiment with a few,
semantically meaningful settings that lead to different comparative
visualization solutions. Choosing a juxtaposition (cv) of ivy time-
sequences (de) in 2D (d), for example, would require a certain spatial
abstraction to enable the accommodation of multiple ensemble mem-
bers side-by-side, whereas the same specification in 3D (d) would lead
to a composition of non-distorted ensemble members (behind each
other) at the cost of a more difficult interaction and interpretation.
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Working out formal models for visualization design helps to enable
a structured approach as several recent works document [26, 31, 18, 8].
Thus, our new model is predominantly a contribution to (a) formal-
izing the tradeoff between spatial abstraction and preservation and
(b) enabling an optimization-assisted design of comparative visual-
ization of spatial data ensembles. The formal model also helps with
relating visualization solutions to each other, to possibly map them to
each other, and to discuss them in terms of costs and benefits.

2 RELATED WORK

In the following, we discuss a selection of related work that addresses
visualization design, comparative visualization, and, in particular, the
comparative visualization based on spatial abstraction.

2.1 Visualization Models and Design

Visualization design is the process of finding a (good) solution in the
space of possible visualizations. Usually, it is focused on a particular
problem domain—general-purpose visualization is only reasonable for
comparably simple tasks [26]. In our case, we focus on the case of
comparative visualization of spatial data ensembles.

In the case of non-spatial data visualization, important pioneering
work was done already in the mid-1980s by Mackinlay for relational
data [24]. A few years ago, Wills and Wilkinson presented a new sys-
tem for the automatic design of information visualization [40]. Both
works emphasize the importance of the visual expressiveness, and ar-
gue for the automatic design of the visualization, if possible. Scien-
tifically acquired knowledge about the effectiveness of certain visual
encodings can be used to optimize visualization design, at least par-
tially. An optimal visualization, however, also depends on the user
(visualization skills, previous knowledge, as well as the user’s task and
interest), which is much harder to capture computationally. Therefore,
alternative approaches are also pursued that assist the user in the visu-
alization design, instead of fully automating it.

Accordingly, recommendation models for information visualization
have been suggested, for example, based on semantic knowledge about
the data [36], where the additional information about the data helps in
generating a suitable visualization, or based on a probabilistic sam-
pling of a tightly constrained design space [29], helping with the col-
oring or spatial layout of the visualization. For the case of spatial
data visualization, in particular when considering the partial spatial
abstraction to compose a comparative visualization, no corresponding
solution is available yet.

To compare and evaluate visualization designs quantitatively, for-
malization is required. In related work we find predominantly two
types of formalization: categorical and algebraic. An example of
categorical formalization is the conceptual framework of parameter
space visualization by Sedlmair et al. [31]. An example for an alge-
braic formalization is the work on product plots by Wickham and Hof-
mann [39]. More recently, a similar approach was pursued to address
visualization in general by Kindlmann and Scheidegger [18], where a
formal mapping between the data and the visualization, between dif-
ferent types of data representation, and between different visualization
mappings is described. This work provides a great basis for the analy-
sis and evaluation of visualization in general.

With respect to the question of optimally preserving data properties
in the visualization and consequently automating the according visu-
alization design, the recent work by Demiralp et al. [8] is very inter-
esting. They demonstrate, how distance-preserving visualization can
be automated, based on crowd-sourced data, and show further, how
the notion of visual product spaces assists the estimation of optimal
visualization also beyond the acquired data. Also related, we see ap-
proaches that assist visualization design by optimizing formal quality
measures (mostly in information visualization, however). One such
example is the automatic search for an optimal dimension reduction
in parallel coordinates by Johansson and Johansson [15]. However, in
all related work that we reviewed, we could not find a solution that
addressed the (partial) spatial abstraction in order to enable the com-
position of a comparative visualization, however.

2.2 Comparative Visualization

To compare the individual members of a (spatial) data ensemble, com-
parative visualization is obviously a natural solution. Most generally,
comparative visualization was studied in the context of information
visualization by Gleicher et al. [11]. In their comprehensive and thor-
ough survey, three basic layouts of comparative visualization are an-
alyzed and exemplified: juxtaposition, superposition, and explicit en-
coding. Even though this study is primarily focused on non-spatial
data visualization, we still find their categorization general enough to
also help with the comparative visualization of spatial data ensembles,
and thus incorporate their formalism in our model, as well.

Related to the notion of comparative visualization is also the one
of composition views [14]. This design model describes strategies to
combine visual representations in the same geometrical space, in par-
ticular juxtaposition, i.e., placing visualizations side-by-side, super-
imposition, i.e., overlaying visualizations, overloading, i.e., utilizing
the space of one visualization for another, and nesting, i.e., nesting the
content of one visualization inside another. The first two categories
are similar to the one by Gleicher et al. [11] and we adopted them in
our model. The latter two, however, seem less suitable for our type
of comparative visualization, in particular, when considering a larger
number of ensemble members for one visualization.

2.3 Comparative Visualization using Spatial Abstraction

Closely related to our work, a few interesting studies have been pub-
lished recently, based on both comparative visualization as well as on
spatial abstraction. Klemm et al. [19] demonstrated visual analytics of
rich epidemiological data related to back problems from a large cohort
study in Germany. Krekel et al. [22] used spatial abstraction and su-
perposition to study limb movements with comparative visualization.
Waser et al. [38] present an advanced system that enables the visual
analysis of rich simulation ensembles, helping, for example, with the
planning of how to meet different types of flooding scenarios. Alabi
et al. [1] presented a comparative visualization of surface ensembles,
where a limited number of surfaces are cut into stripes and put onto
each other. While spatial visualization is central to these examples of
comparative ensemble visualization, and we also think that it would
be meaningful to analyze them in terms of our model, the notion of
spatial abstraction is still not addressed as explicitly as in our work.

Closest related to our work, are solutions which focus on the (par-
tial) spatial abstraction of ensemble members for an effective compar-
ative visualization. Selected examples can be found in medical visual-
ization, for example, for the comparative visualization of arterial blood
flow [4], where the human aorta is virtually straightened to enable an
effective side-by-side visualization. Through a careful (partial) spatial
abstraction, the traditional 3D frame of human anatomy is transformed
into the comparative visualization space, where then one axis corre-
sponds to the length of the aorta and the other axis is “freed up” for
the comparative visualization of the blood flow at different time steps.

Also in medical visualization, Termeer et al. [33] have transformed
the shape of the heart from 3D to 2D, encoding the coronary arter-
ies and their respective territories. The deformation enables the visual
encoding of the spatial blood supply information, and also the com-
parative visualization of blood supply from the individual coronaries.
Slices are stacked on top of each other, creating a volumetric bulls
eye visualization [32], helping to understand the spatial correlation
between the supply of different coronaries in different sections of the
heart. Similarly, Köhler et al. [20] have abstracted the aortic flow to
a circular plot to compare the blood flow between different patients.
Yet another example is curve planar reformation [37, 16], where the
central curves of anatomical structures are aligned to enable the com-
parison of different structures. Also related, Eikeland [9] combines
different types of spatial abstraction for multi-volume visualization.

The idea of using spatial deformations to facilitate an effective com-
parative visualization was also used for flow visualization [35, 13] and
the visualization of geoscientific data [23]. For volumetric data, Busk-
ing et al. [6] have defined deformations for direct focus+context visu-
alization, while (or even though) showing only one dataset at a time.

Fig. 2. Optimization-assisted design of comparative visualization—the
user defines, which spatial data characteristics are important (CH) and
sets central parameters: the dimensionality of the visualization (d), num-
ber of ensemble parameters to explore (de), and the class of compar-
ative visualization to choose from (cv); an automatic optimization step
completes the visualization design, which then is evaluated by the user.

All these specific examples demonstrate that the design of compara-
tive visualization for spatial data ensembles is a general challenge that
spans a variety of application domains. A formal model that can lead
to a streamlined design process is therefore considered a potentially
valuable contribution.

3 THE MODEL

In order to introduce our model, we first specify our context, i.e., the
comparative visualization of spatial data ensembles, and illustrate this
setting with a synthetic example in order to support presentation of the
formal explanation of our model.

Focus: We assume that a user is interested in some phenomenon
or artifact that is available to the user in form of an ensemble dataset.
We do not see any major restriction with respect to the type of en-
semble data and address both measured ensembles as well as com-
puted ensembles, for example, from cohort studies based on popula-
tion screening or from numerical simulation. Such an ensemble could
be a parametric ensemble, for instance, based on the structured varia-
tion of simulation parameters, or a stochastic ensemble, generated by
the repeated simulation of a stochastic model. Other types of ensem-
bles are possible as well. We also assume that the user is interested in
certain non-trivial spatial characteristics of the phenomenon/artifact,
for example the shape of the ensemble members—if this would not
be the case (as in many cases of information visualization, for exam-
ple), the complete abstraction of all data spatiality likely would lead
to an effective visualization, for example, in a scatterplot. Accord-
ingly, we focus on use cases, where the user is interested in preserving
as much data spatiality as possible, while still composing an effective
comparative visualization and enables the swift and flexible study of
rich spatial data ensembles.

Illustrative example: To complement the formal description of
our model, we introduce a hypothetical example as an illustration:
Imagine a user with interest in ivy-covered walls and assume that an
ensemble dataset is available, which contains a two-parameter ensem-
ble of simulated, ivy-covered walls, where one parameter encodes the
ivy’s likelihood to branch, while the other parameter encodes the ivy’s
age (time of growth). The user judges ivy-covered walls in terms of
certain spatial characteristics, including left–right symmetry, the over-
all coverage of the wall, and the number of wall spots, which are not
covered by ivy. The ensemble contains 10×10 spatially-detailed ivy-
models so that some spatial abstraction is needed to compose an infor-
mative comparative visualization on the screen. The very left of Fig. 5
and the top row of Fig. 6 show selected examples from this ensemble.

With our work, we address the situation, where partial automation
is preferred over completely automatic optimization—we assume that
the user has a few preferences that are provided as input to the design
process. We assume, however, that the user is not interested in techni-
cal particularities of the visualization design, relating to those parts of
the process, where optimization is exploited, accordingly. In the fol-
lowing, we first explain how the user is part of our model, before we
then explain our model and the according visualization design process.

Fig. 3. Model overview—above the dashed line, we show the user-side
of our model (a certain ensemble P is considered, together with se-
lected spatial characteristics CH, as well as user-chosen parameters)
and relate it to the formal model: an ensemble member p is repre-
sented (rep) and a characteristic ch is measured by a corresponding
measurement function (m). The visualization is composed of (partially)
abstracted member representations, assisted by an optimization com-
ponent, choosing the optimal abstraction.

3.1 The User’s Role

In order to capture the entire design process, we keep the user centrally
in the picture—after all, it’s the user, who initiates the process, based
on data and a task, before then steering it to a satisfying visualization.

We assume that the ensemble dataset P is given as an n-parameter
set of ensemble members pi, which are represented in the data in a
certain form rep(pi), for example as a geometric model or as image
data. In the synthetic ivy-example, n is 2 (branching-likelihood & ivy-
age) and rep(pi) is a geometric tree-model with branches and leaves.

Based on our exchange with collaborators from different domains,
we assume that the user wishes to choose which type of comparative
visualization is designed (a juxtaposition, superposition, or a combi-
nation of them)—accordingly, we enable the user to choose this type-
parameter cv as one of { juxtaposition, superposition, hybrid}. We
note that the choice of cv also could be optimized, given that the user
is agnostic concerning the type of the comparative visualization.

Depending on the complexity of ensemble P (in terms of its dimen-
sionality n), more or less complex visualization designs are possible.
The user could prefer to examine the intra-ensemble variability with
respect to individual ensemble-parameters, for example, one by one.
Alternatively, the user could be interested in a visualization setup that
compares the ensemble members with respect to several parameters at
once. We see this question closely related to the user’s task and thus
enable the user to provide this input as another parameter, de, i.e., the
number of ensemble parameters to be varied.

Thirdly, we also leave it to the user to choose the target dimen-
sionality of the visualization, i.e., 2D or 3D (d). In principle, it can be
argued that 3D visualization offers more space for better accommodat-
ing ensemble members, in particular when many are to be compared.
3D visualization, however, comes at the cost of visual comparisons
that are more difficult to interact with and to interpret. It seems non-
trivial (while not impossible) to automatically measure this additional
cost and thus enable an automatic optimization of this parameter, also.

In our illustrative example, the user could experiment with a few,
semantically meaningful settings that lead to different comparative
visualization solutions. Choosing a juxtaposition (cv) of ivy time-
sequences (de) in 2D (d), for example, would require a certain spatial
abstraction to enable the accommodation of multiple ensemble mem-
bers side-by-side, whereas the same specification in 3D (d) would lead
to a composition of non-distorted ensemble members (behind each
other) at the cost of a more difficult interaction and interpretation.
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3.2 A Cartesian Composition Model

Any type of comparative visualization (juxtaposition, superposition,
or a combination) competes about a joint resource in terms of the vi-
sualization space in which it is constructed, bringing together mul-
tiple ensemble members. Overlaying them in the same space (by
superposition) leads to a competition about color and opacity. Us-
ing semi-transparent representations, for example, allows to visually
compare a certain number of them. The scalability of superposition,
however, is limited and more than one ensemble parameter rarely ever
be successfully varied through this mechanism. The side-by-side ar-
rangement of ensemble members for the comparative visualization
of intra-ensemble variability, on the other hand, leads to a competi-
tion about the joint visualization space itself (both in terms of extent
and dimensionality)—the more ensemble members come together, the
more they get confined in terms of the space that they can claim. To fit
them into accordingly confined parts of the visualization space, spatial
abstraction mechanisms are used, including simple orthographic pro-
jections (for example from 3D to 2D) or more advanced deformation
procedures (for example the straightening of certain structures).

Depending on the number of ensemble members to be shown (per
ensemble parameter to be varied)—10 in the ivy-example for both
branching-likelihood and ivy-age—a discrete (for small numbers) or
near-continuous decomposition of the visualization space is reason-
able, leading to a potentially fractional decomposition of the visual-
ization space dimensionality: The 2D visualization space could be de-
composed, for example, into a juxtaposed set of narrow stripes (for
a low-number, one-parameter study), into a 2D grid of patches (for
a two-parameter study—both variations of low cardinality), or into a
dense set of lines (for a high-number, one-parameter study).

The number of all possible decomposition types is limited and well
organized—see Fig. 4 for an illustration of all possible decomposition
types for a 3D visualization. Which decomposition actually leads to
the best result for the user, is difficult to predict automatically, and we
assume that the user provides this choice as a parameter.

In the following, we now describe the entire model formally (as
a basis for then describing the actual design process). An graphical
overview of our framework is provided as Fig. 3.

3.3 Formal Model Description

In abstract terms, we define a comparative visualization v(P) of a
spatial data ensemble P as a visual composition cv of (partially) ab-
stracted spatial representations a(rep(p)) of the ensemble members p
that should be compared:

v(P) = cv({a(rep(p)), p ∈ P}) (1)

Abstraction procedure a(.) takes the representation of ensemble mem-
bers rep(p) as input and transforms it so that a(rep(p)) is of an extent
and a dimensionality which is suitable for composition through func-
tion cv(.), leading to the desired comparative visualization. To gener-
ate the top row of Fig. 6, for example, function a(.) would amount to
a simple, isotropic scaling, and function cv(.) would be juxtaposition.

We have worked out our model for three types of composition (cv):

• Juxtaposition: side-by-side comparison.

• Superposition: members share the same space.

• Hybrid: a combination of juxtaposition and superposition,
for example side-by-side comparison of element stacks.

According to Gleicher et al. [11], also the explicit encoding of differ-
ences between ensemble members may be supported. Even though we
have not implemented this option in our framework, we envision that
integrating explicit coding as another option for cv should be doable.

Juxtaposition places the objects next to each other in the available
visual space. This approach relies on the viewer’s memory to visualize
the differences and similarities between objects. Such an approach is

Fig. 4. Overview of decomposition opportunities for a 3D visualization
space, where parts are devoted to spatial data aspects (s), while oth-
ers (ns) are devoted to non-spatial aspects. Each dimension can be
decomposed discretely (in the case of few items) or (near-)continuously
(for many), amounting to a fractional, Cartesian composition model for
comparative visualization based on juxtaposition.

well-suited to see patterns between visual objects and to explore rela-
tions among multiple data dimensions [14]. Comparing distant parts
of the visualization, however, is challenging in such a comparison.

Superposition places two or more objects on top of each other in
the same space. This approach is used to highlight spatial relations
between the compared objects, but suffers substantially, when a larger
number of objects are to be compared. The simplest solution, i.e.,
making the images semi-transparent has also issues with cluttering and
scaling beyond only few objects to compare [11]. To overcome this
problem, additional visualization encodings are required, for example
coloring of different ensemble members (see Fig. 5).

The combination of juxtaposition and superposition is common in
creating comparisons [11], for example, superposition in one dimen-
sion and juxtaposition in all others. Also this approach should be used
with care. On the one hand, it enables to explore patterns and spatial
relations between multiple members. On the other hand, it is more
complex and can be challenging to read.

Other types of composition (of 2D representations) can lead to yet
different visualization designs. Stacking explicit encodings of differ-
ences, for example, can lead to a comparative visualization in the style
of certain video visualization solutions [7] or other existing visualiza-
tion design [41].

Fig. 5. Example for a particular abstraction a(.) that supports the visual study of a particular spatial characteristic (here holes in the ivy-coverage)
through superposition. The original structure (very left) is deformed such that “holes” in the ivy-coverage are snapped to a given grid (orange rings).
Three options for a comparative visualization are shown to the right: one without any additional visual encoding (hard to appreciate), one where
color differentiates ensemble members, and one with additional transparency (on the very right), where the holes can be interpreted.

A key ingredient to our comparative visualization model is the ab-
straction function a(.) and the optimal choice of this function has a
substantial influence on the effectiveness of the resulting visualiza-
tion. In our model, we suggest to choose this abstraction function a
from a set of available functions A (A could be discrete or continuous)
in order to minimize a residual function (error measurement ea,ch) that
evaluates, how well a particular abstraction a is capable of preserving
the spatial characteristics of interest ch as selected by the user:

a : argmin
a∈A

ea,ch (2)

Given a suitable residual function (described below), we can use opti-
mization in this step to automatically select an abstraction a that pre-
serves the data spatiality of interest best, while still confining the en-
semble member representations to the available space in the compar-
ative visualization. In order to compute to which degree a certain ab-
straction does preserve spatial characteristics of interest best-possibly,
we refer to measurement functions m(.) that provide a quantitative
evaluation as illustrated also in Fig. 3, both for the original represen-
tation rep(p) as well as for the abstracted representation a(rep(p)):

ea,ch = mch(rep(p))−mch(a(rep(p))) (3)

Measurement function mch(.) results in a quantitative evaluation of
spatial characteristic ch that enables to assess to which degree an ab-
straction preserves the respective data characterstic. In the ivy-case,
for example, we measure the spatial characteristic “wall coverage” by
computing the fractal dimension of the ivy tree—the closer to 2, the
better the coverage. Another example would be the mean area expo-
nent for 2D tree structures as defined by McGuffin and Robet [25] in
order to measure space-efficiency in hierarchical data visualization.

Reducing the dimensionality and/or the extent of member repre-
sentations usually leads to a measurable reduction in terms of mch-
values—if a(.) is the identity map, however, ea,ch equals 0, of course.
Projecting a 3D ivy model into 2D, for example, would compromise
the thickness of the ivy-cover, but not the areal coverage across the
wall. A more radical abstraction will usually correspond to a larger
reduction in terms of mch-values, meaning that we can select the best-
possible abstraction by minimizing ea,ch.

By abstraction, in general, we mean a process that confines the spa-
tial representation in terms of dimensionality and/or extent in order to
make visualization space available for the composition of the compar-
ative visualization. The available abstraction functions play a critical
role in our model. We identified at least four types:

• Projection: simple orthographic projections, for example from
3D to 2D, are straight-forward and clearly useful for dimension
reduction—projections are comparably easy to interpret and pre-
serve certain spatial characteristics without special solutions.

• Global deformations, usually simple: global transformations (for
example isotropic scaling) that are usually straight-forward to
calculate—abstractions of this type are useful for confining the
extent of representations, while still being well-behaved and esay
to interpret (see also the survey by Gain and Bechmann [10]).

• Piece-wise deformations, often more complex: advanced abstrac-
tion mechanisms that enable a semantically meaningful, but of-
ten also complex transformation, for example, through straight-
ening and/or flattening approaches [3, 23].

• Combinations: additionally, approaches from the above men-
tioned classes can also be combined, for example, through the
iterative application of several of them—an example would be an
orthographic projection, followed by isotropic scaling (Fig. 4).

Providing an appropriate set of available abstractions is crucial for the
potential success of an optimization based on this model, as well as the
opportunity to formulate quantitative measurement functions to cap-
ture the spatial characteristics of interest. Further, it is common that
not only one spatial characteristic is of interest for the user. In this
case, the residual function e (to be minimized) can be formulated as a
weighted sum of the residual functions per characteristic:

e = ∑wch ea,ch (4)

The weights wch can be used to balance the individual per-
characteristic residuals ea,ch, before the optimization.

3.4 Model-based Visualization Design

For one instance of designing a comparative visualization according
to the above described model, we assume that the spatial ensemble
dataset is given (encompassing the spatial representations of the en-
semble members, for example, in the form of a mesh, image, or vol-
ume), as well as the corresponding user interests (in terms of spatial
characteristics and the according measurement functions).

As a first step, reference values are computed (for the efficient com-
putation of residuals, subsequently) by applying the chosen measure-
ment functions to the given data ensemble (no abstraction). It is suffi-
cient to evaluate the measurement function on a representative selec-
tion of ensemble members. This becomes relevant, if the ensemble is
large and/or if the measurement functions are costly to evaluate.

The next step is that the user chooses the type of comparative visu-
alization cv to use and the parameters de that should be varied. This
leads to a set of possible layout candidates for the comparative visual-
ization (a subset of what is illustrated in Fig. 4).

To accommodate the ensemble members in the comparative visual-
ization according to the chosen composition, an appropriate abstrac-
tion is needed per ensemble member. For abstraction functions a ∈ A,
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3.2 A Cartesian Composition Model

Any type of comparative visualization (juxtaposition, superposition,
or a combination) competes about a joint resource in terms of the vi-
sualization space in which it is constructed, bringing together mul-
tiple ensemble members. Overlaying them in the same space (by
superposition) leads to a competition about color and opacity. Us-
ing semi-transparent representations, for example, allows to visually
compare a certain number of them. The scalability of superposition,
however, is limited and more than one ensemble parameter rarely ever
be successfully varied through this mechanism. The side-by-side ar-
rangement of ensemble members for the comparative visualization
of intra-ensemble variability, on the other hand, leads to a competi-
tion about the joint visualization space itself (both in terms of extent
and dimensionality)—the more ensemble members come together, the
more they get confined in terms of the space that they can claim. To fit
them into accordingly confined parts of the visualization space, spatial
abstraction mechanisms are used, including simple orthographic pro-
jections (for example from 3D to 2D) or more advanced deformation
procedures (for example the straightening of certain structures).

Depending on the number of ensemble members to be shown (per
ensemble parameter to be varied)—10 in the ivy-example for both
branching-likelihood and ivy-age—a discrete (for small numbers) or
near-continuous decomposition of the visualization space is reason-
able, leading to a potentially fractional decomposition of the visual-
ization space dimensionality: The 2D visualization space could be de-
composed, for example, into a juxtaposed set of narrow stripes (for
a low-number, one-parameter study), into a 2D grid of patches (for
a two-parameter study—both variations of low cardinality), or into a
dense set of lines (for a high-number, one-parameter study).

The number of all possible decomposition types is limited and well
organized—see Fig. 4 for an illustration of all possible decomposition
types for a 3D visualization. Which decomposition actually leads to
the best result for the user, is difficult to predict automatically, and we
assume that the user provides this choice as a parameter.

In the following, we now describe the entire model formally (as
a basis for then describing the actual design process). An graphical
overview of our framework is provided as Fig. 3.

3.3 Formal Model Description

In abstract terms, we define a comparative visualization v(P) of a
spatial data ensemble P as a visual composition cv of (partially) ab-
stracted spatial representations a(rep(p)) of the ensemble members p
that should be compared:

v(P) = cv({a(rep(p)), p ∈ P}) (1)

Abstraction procedure a(.) takes the representation of ensemble mem-
bers rep(p) as input and transforms it so that a(rep(p)) is of an extent
and a dimensionality which is suitable for composition through func-
tion cv(.), leading to the desired comparative visualization. To gener-
ate the top row of Fig. 6, for example, function a(.) would amount to
a simple, isotropic scaling, and function cv(.) would be juxtaposition.

We have worked out our model for three types of composition (cv):

• Juxtaposition: side-by-side comparison.

• Superposition: members share the same space.

• Hybrid: a combination of juxtaposition and superposition,
for example side-by-side comparison of element stacks.

According to Gleicher et al. [11], also the explicit encoding of differ-
ences between ensemble members may be supported. Even though we
have not implemented this option in our framework, we envision that
integrating explicit coding as another option for cv should be doable.

Juxtaposition places the objects next to each other in the available
visual space. This approach relies on the viewer’s memory to visualize
the differences and similarities between objects. Such an approach is

Fig. 4. Overview of decomposition opportunities for a 3D visualization
space, where parts are devoted to spatial data aspects (s), while oth-
ers (ns) are devoted to non-spatial aspects. Each dimension can be
decomposed discretely (in the case of few items) or (near-)continuously
(for many), amounting to a fractional, Cartesian composition model for
comparative visualization based on juxtaposition.

well-suited to see patterns between visual objects and to explore rela-
tions among multiple data dimensions [14]. Comparing distant parts
of the visualization, however, is challenging in such a comparison.

Superposition places two or more objects on top of each other in
the same space. This approach is used to highlight spatial relations
between the compared objects, but suffers substantially, when a larger
number of objects are to be compared. The simplest solution, i.e.,
making the images semi-transparent has also issues with cluttering and
scaling beyond only few objects to compare [11]. To overcome this
problem, additional visualization encodings are required, for example
coloring of different ensemble members (see Fig. 5).

The combination of juxtaposition and superposition is common in
creating comparisons [11], for example, superposition in one dimen-
sion and juxtaposition in all others. Also this approach should be used
with care. On the one hand, it enables to explore patterns and spatial
relations between multiple members. On the other hand, it is more
complex and can be challenging to read.

Other types of composition (of 2D representations) can lead to yet
different visualization designs. Stacking explicit encodings of differ-
ences, for example, can lead to a comparative visualization in the style
of certain video visualization solutions [7] or other existing visualiza-
tion design [41].

Fig. 5. Example for a particular abstraction a(.) that supports the visual study of a particular spatial characteristic (here holes in the ivy-coverage)
through superposition. The original structure (very left) is deformed such that “holes” in the ivy-coverage are snapped to a given grid (orange rings).
Three options for a comparative visualization are shown to the right: one without any additional visual encoding (hard to appreciate), one where
color differentiates ensemble members, and one with additional transparency (on the very right), where the holes can be interpreted.

A key ingredient to our comparative visualization model is the ab-
straction function a(.) and the optimal choice of this function has a
substantial influence on the effectiveness of the resulting visualiza-
tion. In our model, we suggest to choose this abstraction function a
from a set of available functions A (A could be discrete or continuous)
in order to minimize a residual function (error measurement ea,ch) that
evaluates, how well a particular abstraction a is capable of preserving
the spatial characteristics of interest ch as selected by the user:

a : argmin
a∈A

ea,ch (2)

Given a suitable residual function (described below), we can use opti-
mization in this step to automatically select an abstraction a that pre-
serves the data spatiality of interest best, while still confining the en-
semble member representations to the available space in the compar-
ative visualization. In order to compute to which degree a certain ab-
straction does preserve spatial characteristics of interest best-possibly,
we refer to measurement functions m(.) that provide a quantitative
evaluation as illustrated also in Fig. 3, both for the original represen-
tation rep(p) as well as for the abstracted representation a(rep(p)):

ea,ch = mch(rep(p))−mch(a(rep(p))) (3)

Measurement function mch(.) results in a quantitative evaluation of
spatial characteristic ch that enables to assess to which degree an ab-
straction preserves the respective data characterstic. In the ivy-case,
for example, we measure the spatial characteristic “wall coverage” by
computing the fractal dimension of the ivy tree—the closer to 2, the
better the coverage. Another example would be the mean area expo-
nent for 2D tree structures as defined by McGuffin and Robet [25] in
order to measure space-efficiency in hierarchical data visualization.

Reducing the dimensionality and/or the extent of member repre-
sentations usually leads to a measurable reduction in terms of mch-
values—if a(.) is the identity map, however, ea,ch equals 0, of course.
Projecting a 3D ivy model into 2D, for example, would compromise
the thickness of the ivy-cover, but not the areal coverage across the
wall. A more radical abstraction will usually correspond to a larger
reduction in terms of mch-values, meaning that we can select the best-
possible abstraction by minimizing ea,ch.

By abstraction, in general, we mean a process that confines the spa-
tial representation in terms of dimensionality and/or extent in order to
make visualization space available for the composition of the compar-
ative visualization. The available abstraction functions play a critical
role in our model. We identified at least four types:

• Projection: simple orthographic projections, for example from
3D to 2D, are straight-forward and clearly useful for dimension
reduction—projections are comparably easy to interpret and pre-
serve certain spatial characteristics without special solutions.

• Global deformations, usually simple: global transformations (for
example isotropic scaling) that are usually straight-forward to
calculate—abstractions of this type are useful for confining the
extent of representations, while still being well-behaved and esay
to interpret (see also the survey by Gain and Bechmann [10]).

• Piece-wise deformations, often more complex: advanced abstrac-
tion mechanisms that enable a semantically meaningful, but of-
ten also complex transformation, for example, through straight-
ening and/or flattening approaches [3, 23].

• Combinations: additionally, approaches from the above men-
tioned classes can also be combined, for example, through the
iterative application of several of them—an example would be an
orthographic projection, followed by isotropic scaling (Fig. 4).

Providing an appropriate set of available abstractions is crucial for the
potential success of an optimization based on this model, as well as the
opportunity to formulate quantitative measurement functions to cap-
ture the spatial characteristics of interest. Further, it is common that
not only one spatial characteristic is of interest for the user. In this
case, the residual function e (to be minimized) can be formulated as a
weighted sum of the residual functions per characteristic:

e = ∑wch ea,ch (4)

The weights wch can be used to balance the individual per-
characteristic residuals ea,ch, before the optimization.

3.4 Model-based Visualization Design

For one instance of designing a comparative visualization according
to the above described model, we assume that the spatial ensemble
dataset is given (encompassing the spatial representations of the en-
semble members, for example, in the form of a mesh, image, or vol-
ume), as well as the corresponding user interests (in terms of spatial
characteristics and the according measurement functions).

As a first step, reference values are computed (for the efficient com-
putation of residuals, subsequently) by applying the chosen measure-
ment functions to the given data ensemble (no abstraction). It is suffi-
cient to evaluate the measurement function on a representative selec-
tion of ensemble members. This becomes relevant, if the ensemble is
large and/or if the measurement functions are costly to evaluate.

The next step is that the user chooses the type of comparative visu-
alization cv to use and the parameters de that should be varied. This
leads to a set of possible layout candidates for the comparative visual-
ization (a subset of what is illustrated in Fig. 4).

To accommodate the ensemble members in the comparative visual-
ization according to the chosen composition, an appropriate abstrac-
tion is needed per ensemble member. For abstraction functions a ∈ A,
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Fig. 6. Three examples of comparative visualization, based on different
abstractions (1st row: isotropic scaling; 2nd row: anisotropic scaling)—
while the representations are fitted to the available space, the branching
structure is difficult to compare. An alternative abstraction is used in the
3rd row that optimizes the preservation of the length of branches and
the overall branching structure.

the residual ea,ch, i.e., the evaluation of the corresponding measure-
ment function minus the previously computed reference value, is com-
puted (or e in the case of multiple characteristics of interest). This
drives the optimization in order to choose one a with minial resid-
ual. Depending on the size of A, this optimization can be very simple
(evaluate the residual for all a∈A and choose the one with the smallest
residual). In the case of a larger set A (for example, when consider-
ing parameterized abstraction functions) or even a continuous set A,
an appropriate iteration-based minimization algorithm (for example, a
conjugate-gradient-based method) can be used.

Eventually, the ensemble members are abstracted to a(rep(p)) and
composed into the comparative visualization according to cv. The user
evaluates the visualization v(P) then and iterates, changing parame-
ters, i.e., d, cv, or de, or concludes, if satisfied (Fig. 2).

4 DEMONSTRATION EXAMPLES

To demonstrate the power and utility of our model, we show three
illustrative examples. First, we further detail our ivy example as an in-
stance of a 2D dataset with two ensemble parameters (Sect. 4.1). Our
focus here is to show the iterative analysis process and to demonstrate
the preservation of selected spatial characteristics. The second exam-
ple demonstrates the power of spatial reduction for the comparative
visualization of 3D data (Sect. 4.2). The third example relates to the
domain of city-planning, for example, for game design: we show a
hybrid composition solution for exploring a 3D ensemble (Sect. 4.3).
For each example, we discuss the spatial characteristics of interest, i.e.,
the features that should be preserved under abstraction and their cor-
responding measurement functions (the quantitative measure used to
capture the characteristic), as well as the chosen abstraction and then
depict and discuss the resulting visualizations.

4.1 Wall-covering Ivy

We synthesized an ensemble as an open L-System [27], simulating the
effect of varied parameters (environmental, genetic, . . . ) on the growth
of ivy on a planar wall. We have modeled the branching probability,
nutrition flow, and segment length, as well as the available space in

the environment and the light level as parameters. As an initial simple
example, we focus on a subset of this ensemble, which consists of ivy
plants growing over time with different branching probabilities. Our
goal is to study the shape variability in the ensemble, in particular
with respect to the differences in branching probability. In total, the
visualized ensemble subset has 10×10 members.

The individual ivy instances p of the ensemble Pivy are represented
as meshes, with an explicit encoding of the tree structure g. To exem-
plify the core principle of our model, we consider three spatial charac-
teristics, together with the corresponding measurement functions:

1. coverage, indicating the fraction of space covered by the plant,
with the measurement function mcov that estimates the fractal
dimension of the plant by the box-counting method [2].

2. numbers of holes, capturing how “complete” the coverage is,
with the measurement function mnoh, counting the number of
connected of closed regions inside the ivy structure.

3. symmetry, characterizing how “balanced” the plant is, with func-
tion msym, quantifying the difference in coverage between the left
and right branches, computed in a hierarchical manner.

To demonstrate the selection of an optimal abstraction, we provided a
small set of comparably simple abstractions, which have distinct be-
havior with respect to the preservation of spatial characteristics:

1. 1D-scale, i.e., a straight-forward scaling of one spatial dimen-
sion (x or y), denoted as ascX ,ascY , leaving most of the geometri-
cal characteristics intact. Other characteristics, including branch
lengths, for example, are not preserved.

2. squeeze, asqu, a more complex abstraction that focuses on the
properties of the branches, preserving the length of the branches,
the branching hierarchy, and the coverage. Branches are straight-
ened and rotated towards the main stem, minimizing overlap.
This abstraction is inspired by reformation techniques for blood
vessel visualization [16].

3. hole-snap, ahsn, aims at supporting the comparison of holes.
Here, we overlay a coarse grid over the ivy mesh and move all
holes to coincide with the closest grid vertex. The results of this
abstraction are shown in Fig. 5.

Demonstration: We show results for different parameters and sets of
characteristics, starting with a case where the aim is to preserve cover-
age and branch length, using the model parameters cv = juxtaposition
and de = 1. Based on these parameters, the ensemble members are put
side-by-side. To fit the individual ensemble members into the available
screen space, their spatial extent must be confined and abstraction asqu
is automatically chosen (see Fig. 6, bottom row), since it has a smaller
error for branching and coverage when compared to scaling. As shown
in the figure, we get a clear depiction of all individual substructures,
including leaves and segments. If, on the other hand, our focus is on
the preservation of holes, the resulting composition presents us with a
side-by-side view using scaling as abstraction (see Fig. 6, middle row),
because the squeeze abstraction changes the topology of branches and
therefore affects the number of holes. For comparison, the top-most
row of Fig. 6 shows the result if only uniform scaling is permitted.

Interestingly, if we aim to preserve coverage and set the ensemble
parameter dimension to two, the proposed composition is also a side-
by-side layout, using scaling as abstraction. This is also demonstrated
in the supplemental video. If a superposition or a hybrid type of com-
parative visualization is desired, ahsn is chosen, as it delivers the best
results in this case and there is no need for reducing the dimensionality
as shown in Fig. 5.

4.2 PARP Polymerization

Our second illustrative example demonstrates how our model supports
dimension reduction. We visualize a dataset from the interactive sim-
ulation of emergence in polymerization [21]. In this earlier work, we

Fig. 7. Two examples of PARP compositions: a default solution (isotropic scaling, top row), a solution based on an abstraction that carefully bends
the polymer into a narrow slab (bottom row). While the geometry of the molecule is distorted a bit in the lower example, certain spatial properties,
including the length of the branches and the overall branching structure, are preserved in a better way.

have presented an illustrative modeling approach to generate interac-
tive simulations of polymer growth inside an environment filled with
molecules and monomers, i.e., the basic building blocks of polymers.
Polymers grow as either linear or branched structures and they are rep-
resented as strings of symbols, representing the monomers and their
respective parameters. The process of polymerization varies based
on the parameters of the simulation such as the concentration of the
molecules, the branching probability of the polymer, and the duration
of the polymerization process. In our dataset we have 41 polymers
created with different branching probabilities. The polymers are rep-
resented as meshes, augmented by a tree structure which encodes the
relationships between the monomers.

The only variable that is changed in our ensemble is the branching
probability, which is linearly increasing from 5% to 50%, determin-
ing the probability of a newly connecting monomer to form a new
branch. The properties of polymers, as for proteins in general, are
highly dependent on their structure. It is therefore relevant to explore
their topological and geometrical properties. For the purpose of our
demonstration, we use a set of simple properties which influences the
elasticity of the molecule. The characteristics of interest are

1. The average angle between neighboring monomers, mAA.

2. The maximum length of the structure mMLen, i.e., the maximum
distance between the start monomer and all end monomers.

3. The space filling factor mSF , computed as a ratio between the
volume of the structure bounding box and the accumulated vol-
umes of the monomer bounding boxes.

We consider the following abstractions:

1. ascale is the same as in the ivy example (in 3D—it is either uni-
form for all 3 axes, non-uniform for each axis, or a the combina-
tion of the two).

2. aslab is a deformation which only rotates the branches in order to
put the structure into one narrow slab, similar to ACPR [16], with
the difference, that we are not working with the vessel segments,
but polymer branch segments. This abstraction is an example
for reducing 3D structures into slabs (thick slices). This can be
helpful if the secondary structures of a polymers, e.g., the alpha
helices, should be preserved.

Demonstration: Since this ensemble is a set with one dimension to
explore, possible types of comparative visualization are juxtaposition
or superposition. Using juxtaposition (in 2D) will put the structures

side-by-side and thereby reduce two dimensions. Superposition, on
the other hand, will stack the structures, reducing only one dimension.
Using our method the user can more clearly explore the branching and
space-filling characteristics. This example also shows the power of
combinations in the abstraction mechanism. In Fig. 7, we can see that
the avilable visualization space is insufficient for placing 10 polymer
structures side-by-side. This can be solved, by default, with a trivial,
isotropic scale (Fig. 7, top row), but the visibility of branch lengths
and the overall branching hierarchy is compromised in this case. Al-
ternatively, aslab, where all branches are rotated into one slab, shows
the structure of polymer branches, their lengths, and also preserves the
hierarchy in a better way (bottom row).

4.3 Parameterized Cities

As a third example, we study a three-dimensional ensemble with two
spatial dimensions (variations of a modeled 2D city layout) to demon-
strate the simultaneous exploration of multiple ensemble dimensions.
The dataset is an ensemble of city street networks with model param-
eters that specify the density of the city population and its coverage.
The networks are generated by the method by Parish and Müller [28].
This method comes with several parameters such as the overall pop-

Fig. 8. Illustration of the abstraction used in Fig. 9. Given a certain
street network (left), we identify the centers in the network (indicated by
color) and represent them as disks—sized according to how many street
crossing (colored on the left) belong to the center. Further, we count all
street connections between centers and encode this in the width of the
edges between the disks (right).
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Fig. 6. Three examples of comparative visualization, based on different
abstractions (1st row: isotropic scaling; 2nd row: anisotropic scaling)—
while the representations are fitted to the available space, the branching
structure is difficult to compare. An alternative abstraction is used in the
3rd row that optimizes the preservation of the length of branches and
the overall branching structure.

the residual ea,ch, i.e., the evaluation of the corresponding measure-
ment function minus the previously computed reference value, is com-
puted (or e in the case of multiple characteristics of interest). This
drives the optimization in order to choose one a with minial resid-
ual. Depending on the size of A, this optimization can be very simple
(evaluate the residual for all a∈A and choose the one with the smallest
residual). In the case of a larger set A (for example, when consider-
ing parameterized abstraction functions) or even a continuous set A,
an appropriate iteration-based minimization algorithm (for example, a
conjugate-gradient-based method) can be used.

Eventually, the ensemble members are abstracted to a(rep(p)) and
composed into the comparative visualization according to cv. The user
evaluates the visualization v(P) then and iterates, changing parame-
ters, i.e., d, cv, or de, or concludes, if satisfied (Fig. 2).

4 DEMONSTRATION EXAMPLES

To demonstrate the power and utility of our model, we show three
illustrative examples. First, we further detail our ivy example as an in-
stance of a 2D dataset with two ensemble parameters (Sect. 4.1). Our
focus here is to show the iterative analysis process and to demonstrate
the preservation of selected spatial characteristics. The second exam-
ple demonstrates the power of spatial reduction for the comparative
visualization of 3D data (Sect. 4.2). The third example relates to the
domain of city-planning, for example, for game design: we show a
hybrid composition solution for exploring a 3D ensemble (Sect. 4.3).
For each example, we discuss the spatial characteristics of interest, i.e.,
the features that should be preserved under abstraction and their cor-
responding measurement functions (the quantitative measure used to
capture the characteristic), as well as the chosen abstraction and then
depict and discuss the resulting visualizations.

4.1 Wall-covering Ivy

We synthesized an ensemble as an open L-System [27], simulating the
effect of varied parameters (environmental, genetic, . . . ) on the growth
of ivy on a planar wall. We have modeled the branching probability,
nutrition flow, and segment length, as well as the available space in

the environment and the light level as parameters. As an initial simple
example, we focus on a subset of this ensemble, which consists of ivy
plants growing over time with different branching probabilities. Our
goal is to study the shape variability in the ensemble, in particular
with respect to the differences in branching probability. In total, the
visualized ensemble subset has 10×10 members.

The individual ivy instances p of the ensemble Pivy are represented
as meshes, with an explicit encoding of the tree structure g. To exem-
plify the core principle of our model, we consider three spatial charac-
teristics, together with the corresponding measurement functions:

1. coverage, indicating the fraction of space covered by the plant,
with the measurement function mcov that estimates the fractal
dimension of the plant by the box-counting method [2].

2. numbers of holes, capturing how “complete” the coverage is,
with the measurement function mnoh, counting the number of
connected of closed regions inside the ivy structure.

3. symmetry, characterizing how “balanced” the plant is, with func-
tion msym, quantifying the difference in coverage between the left
and right branches, computed in a hierarchical manner.

To demonstrate the selection of an optimal abstraction, we provided a
small set of comparably simple abstractions, which have distinct be-
havior with respect to the preservation of spatial characteristics:

1. 1D-scale, i.e., a straight-forward scaling of one spatial dimen-
sion (x or y), denoted as ascX ,ascY , leaving most of the geometri-
cal characteristics intact. Other characteristics, including branch
lengths, for example, are not preserved.

2. squeeze, asqu, a more complex abstraction that focuses on the
properties of the branches, preserving the length of the branches,
the branching hierarchy, and the coverage. Branches are straight-
ened and rotated towards the main stem, minimizing overlap.
This abstraction is inspired by reformation techniques for blood
vessel visualization [16].

3. hole-snap, ahsn, aims at supporting the comparison of holes.
Here, we overlay a coarse grid over the ivy mesh and move all
holes to coincide with the closest grid vertex. The results of this
abstraction are shown in Fig. 5.

Demonstration: We show results for different parameters and sets of
characteristics, starting with a case where the aim is to preserve cover-
age and branch length, using the model parameters cv = juxtaposition
and de = 1. Based on these parameters, the ensemble members are put
side-by-side. To fit the individual ensemble members into the available
screen space, their spatial extent must be confined and abstraction asqu
is automatically chosen (see Fig. 6, bottom row), since it has a smaller
error for branching and coverage when compared to scaling. As shown
in the figure, we get a clear depiction of all individual substructures,
including leaves and segments. If, on the other hand, our focus is on
the preservation of holes, the resulting composition presents us with a
side-by-side view using scaling as abstraction (see Fig. 6, middle row),
because the squeeze abstraction changes the topology of branches and
therefore affects the number of holes. For comparison, the top-most
row of Fig. 6 shows the result if only uniform scaling is permitted.

Interestingly, if we aim to preserve coverage and set the ensemble
parameter dimension to two, the proposed composition is also a side-
by-side layout, using scaling as abstraction. This is also demonstrated
in the supplemental video. If a superposition or a hybrid type of com-
parative visualization is desired, ahsn is chosen, as it delivers the best
results in this case and there is no need for reducing the dimensionality
as shown in Fig. 5.

4.2 PARP Polymerization

Our second illustrative example demonstrates how our model supports
dimension reduction. We visualize a dataset from the interactive sim-
ulation of emergence in polymerization [21]. In this earlier work, we

Fig. 7. Two examples of PARP compositions: a default solution (isotropic scaling, top row), a solution based on an abstraction that carefully bends
the polymer into a narrow slab (bottom row). While the geometry of the molecule is distorted a bit in the lower example, certain spatial properties,
including the length of the branches and the overall branching structure, are preserved in a better way.

have presented an illustrative modeling approach to generate interac-
tive simulations of polymer growth inside an environment filled with
molecules and monomers, i.e., the basic building blocks of polymers.
Polymers grow as either linear or branched structures and they are rep-
resented as strings of symbols, representing the monomers and their
respective parameters. The process of polymerization varies based
on the parameters of the simulation such as the concentration of the
molecules, the branching probability of the polymer, and the duration
of the polymerization process. In our dataset we have 41 polymers
created with different branching probabilities. The polymers are rep-
resented as meshes, augmented by a tree structure which encodes the
relationships between the monomers.

The only variable that is changed in our ensemble is the branching
probability, which is linearly increasing from 5% to 50%, determin-
ing the probability of a newly connecting monomer to form a new
branch. The properties of polymers, as for proteins in general, are
highly dependent on their structure. It is therefore relevant to explore
their topological and geometrical properties. For the purpose of our
demonstration, we use a set of simple properties which influences the
elasticity of the molecule. The characteristics of interest are

1. The average angle between neighboring monomers, mAA.

2. The maximum length of the structure mMLen, i.e., the maximum
distance between the start monomer and all end monomers.

3. The space filling factor mSF , computed as a ratio between the
volume of the structure bounding box and the accumulated vol-
umes of the monomer bounding boxes.

We consider the following abstractions:

1. ascale is the same as in the ivy example (in 3D—it is either uni-
form for all 3 axes, non-uniform for each axis, or a the combina-
tion of the two).

2. aslab is a deformation which only rotates the branches in order to
put the structure into one narrow slab, similar to ACPR [16], with
the difference, that we are not working with the vessel segments,
but polymer branch segments. This abstraction is an example
for reducing 3D structures into slabs (thick slices). This can be
helpful if the secondary structures of a polymers, e.g., the alpha
helices, should be preserved.

Demonstration: Since this ensemble is a set with one dimension to
explore, possible types of comparative visualization are juxtaposition
or superposition. Using juxtaposition (in 2D) will put the structures

side-by-side and thereby reduce two dimensions. Superposition, on
the other hand, will stack the structures, reducing only one dimension.
Using our method the user can more clearly explore the branching and
space-filling characteristics. This example also shows the power of
combinations in the abstraction mechanism. In Fig. 7, we can see that
the avilable visualization space is insufficient for placing 10 polymer
structures side-by-side. This can be solved, by default, with a trivial,
isotropic scale (Fig. 7, top row), but the visibility of branch lengths
and the overall branching hierarchy is compromised in this case. Al-
ternatively, aslab, where all branches are rotated into one slab, shows
the structure of polymer branches, their lengths, and also preserves the
hierarchy in a better way (bottom row).

4.3 Parameterized Cities

As a third example, we study a three-dimensional ensemble with two
spatial dimensions (variations of a modeled 2D city layout) to demon-
strate the simultaneous exploration of multiple ensemble dimensions.
The dataset is an ensemble of city street networks with model param-
eters that specify the density of the city population and its coverage.
The networks are generated by the method by Parish and Müller [28].
This method comes with several parameters such as the overall pop-

Fig. 8. Illustration of the abstraction used in Fig. 9. Given a certain
street network (left), we identify the centers in the network (indicated by
color) and represent them as disks—sized according to how many street
crossing (colored on the left) belong to the center. Further, we count all
street connections between centers and encode this in the width of the
edges between the disks (right).
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Fig. 9. An optimized variant of a comparative visualization (right) versus a default solution (left). On the left, we see a partial unrolling of the 3D
ensemble (not all of the 125 networks in the ensemble are shown). On the right, a hybrid composition is shown with 5×5 juxtaposed superpositions
of 5 colored and abstracted networks per patch. The abstraction identifies the centers of the network (represented as disk, sized according to the
city center size) as well as their connections (edge width according to the number of street connections between the centers). See also Fig. 8.

ulation density, the water level, height level, and 2D images speci-
fying map properties. We implemented three parameters to generate
maps of population density. These parameters are the overall density,
the count of the highly-populated areas, and the shape of these areas,
which range from circles to ellipses.

Demonstration: In this example we deal with a higher number of
ensemble dimensions (three in our case). A comparative visualization
can be accomplished using a hybrid solution of positioning stacks of
abstracted representations side-by-side in two dimensions (see Fig. 9).
In this visualization (Fig. 9, right), we see interesting spatial aspects
in this ensemble: while it is not surprising that city centers grow with
increasing population density (left-to-right), it is interesting that city
centers seem to merge earlier, if they are either circular (red) or very
elliptcal (blue). This could be interesting for a city planer, if aiming
at relatively highly populated regions with connected, but separated
centers (to model non-merging city centers seem to be a challenging
task with this city model).

5 PROTOTYPE IMPLEMENTATION

To test our model and to work out the illustrative examples from above,
we have created a prototype, which is implemented in the Unity3D
game engine [12]. The project file is zipped and available online
from http://www.ii.uib.no/vis/projects/physioillustration/research/
comparative-visualization-of-spatial-ensemble-data.html. Even
though Unity3D is primarily intended for the development of
computer games, its simple C# programming interface provides fast
prototyping possibilities and its efficient multi-platform build system
supports the sharing of results.

Our visualization exploits 2D and 3D features, as well as the com-
ponent system of Unity3D. Each ensemble member is represented as
a GameObject, which is assigned a component for its visual represen-
tation (usually a mesh, but possibly also a network, image, or even a
volume). In our demonstration cases, the ivy and PARP examples are
represented as meshes, while the city example employed a network
representation for the streets. The number of GameObjects in our sys-
tem is in the order of hundreds.

The measurement functions are implemented as utility functions
with GameObjects as input and a floating point number as output.
The abstraction functions are static classes with one public function,
which takes a GameObject representing an ensemble member as their
only parameter. The function returns a new GameObject, which is

Fig. 10. Screenshot (or screen capture) from the prototype implemen-
tation featuring a part of the user interface. User is able to load the
data (a, c), change characteristics (b) and model parameters (d, e), and
iterate through possible visualizations (f, g).

the abstracted representation of the input ensemble member. These
functions only modify the visual representation (e.g., the mesh or net-
work), which they can freely modify (e.g., they may change the type
or dimensionality of the representation). For the ease of implementa-
tion, all of the algorithms that are used for measurements and abstrac-
tions were implemented on the CPU in our current prototype, result-
ing in a non-optimized performance. Certainly, performance improve-
ments are expected when exploiting the GPU, instead (fully supported
in Unity3D).

In our prototype we have used the Unity3D editor interface to in-
teract with the model parameters (see Fig. 10). The first step of the
interaction with the model is to load an ensemble (Fig. 10a)—then
the characteristics for the example are shown (Fig. 10b). Here, the
user adjusts the importance of the characteristics for the optimiza-
tion (weights wch). After pressing “Build Samples” (Fig. 10c), our
prototype picks ensemble members (randomly), applies the available
abstractions and computes the selected characteristics in order to ap-
proximate the cost function for the optimization. For all the examples
in this paper, we used an empirically-determined sample size of 10
ensemble members. Clearly, this is only a prototype implementation
of the otherwise more general framework and ample opportunities for
optimization are given here.

After the initial setup, the user interacts with the model parame-
ters, characteristics, and axes (see Fig. 10d, b, e, respectively). After
each parameter change, a preview of how the ensemble members will
be positioned and how much visual space is available for each mem-
ber is shown. If the user is satisfied, he/she can then create the final
visualization (Fig. 10g).

6 DISCUSSION

Using our model for the design of comparative visualization solutions
for spatial data ensembles has several benefits. Firstly, the steered
confinement of spatial representations allows to fit more members of
an ensemble without loosing important spatial information. This is
possible due to the ability of our model to find the abstraction, which
preserves the data spatiality of interest best-possibly, i.e., which mini-
mizes the abstraction error. Another important benefit of our model is
that it automatically links the choice of the abstraction with the spec-
ification of relevant spatiality in the data. Thereby, the time required
to explore possibly useful abstractions is reduced. Another benefit of
our model is the possibility to swiftly explore the space of different
comparative visualization solutions. With the simple change of a pa-
rameter, the user is able to see new possible visualizations, based on
juxtaposition, superposition, or a hybrid layout. Moreover, the user
is able to steer how many ensemble parameters should be varied in
the comparative visualization. At large, the overall advantage of our
model is the reduction of the overall time that is needed for designing
an effective comparative visualization for spatial ensemble data.

As a natural limitation, the overall available space is limited and
usually not all the data can be accommodated without any abstraction
(which would be the ideal solution, in principle). Our model exploits
the fact, however, that not all of the spatial properties are equally im-
portant. Therefore, the use of our model is limited, if the user wants to
explore all spatial properties at the same time. Specifying the subset
of preserved spatial properties in advance also limits the possibility of
generating unexpected visualization results and to thereby explore un-
known patterns in the non-preserved properties. For such a scenario, a
solution based on no abstraction at all would be best, of course.

We have conducted an informal evaluation, based on our model re-
alization for comparatively visualizing polymerization, together with
a professor in molecular biology, who is an expert on PARP polymers.
We explained our idea, introduced him, based on our prototype imple-
mentation, to our process of iteratively creating different instances of
comparative visualization (Fig. 2), and we also presented some of our
results (in particular, the PARP polymerization as discussed in Sec-
tion 4.2). He acknowledged that our process design was effective
in terms of focusing the interface on questions that really matter for
the user (the aspects of the ensemble members that the visualization

should bring out, as well as the few open parameters including 2D
vs. 3D visualization and super- vs. juxtaposition), while at the same
time hiding algorithmic details (handled by the optimization compo-
nent). He also acknowledged that there is an increased need for com-
parative visualization due to the emergence of ensemble datasets in
many different application cases. With respect to our case study in
polymerization, he confirmed that he would prefer the lower visual-
ization in Fig. 7, if his focus was on the number of branches, while
he would prefer the upper visualization (in Fig. 7, also), if he would
wish to understand, where the density is higher or lower. Beyond the
case study, which we had prepared for the discussion, he immediately
started to think ahead and suggested new opportunities, for example
for the comparative visualization of non-spatial data. In conclusion, he
emphasized that he strongly appreciated that he could swiftly survey
a larger set of different comparative visualization results (for the same
data ensemble) by just adjusting the weights of the different interest
functions (Fig. 10b) and by having a new comparative visualization
result being computed from these adjustments automatically.

7 CONCLUSION & FUTURE WORK

In this paper, we present a new visualization model for the design of
effective comparative visualization solutions for spatial data ensem-
bles, where

• the available visualization space is exploited optimally and

• the representation of the ensemble members is abstracted such
that selected spatial data characteristics are preserved optimally.

Our model helps to find an optimal compromise between the spatial
abstraction of individual ensemble members and the composition of an
effective comparative visualization. Due to the assistance by computa-
tional optimization, new visualization solutions are possible by simply
changing one of the input parameters of the design setup. Thereby, a
swift exploration of multiple, different comparative visualization op-
tions is possible.

Maybe the most important conclusion of this work is that integrat-
ing optimization into visualization clearly is an interesting and promis-
ing approach. While this is maybe not all new, it still seems worth-
while to emphasize that this way of thinking can likely lead to better
visualization solutions, also in other cases.

Even though the described model is sufficiently powerful to enable
a large variety of useful comparative visualization solutions, still sev-
eral interesting options for future work are identified.

One way to further improve our approach would be to better steer
the minimization process for finding the optimal abstraction—our cur-
rent solution is based on sampling the available abstraction functions.
Steering this optimization process to more efficiently minimizing the
residual function would be useful, of course.

Another opportunity would be to encode (or learn), which abstrac-
tion functions preserve which spatial characteristics so that their (pos-
sibly costly) evaluation can be avoided during optimization.

In our current realization, the system of the measurements needs
functions that map to the domain of the real numbers. For a number
of characteristics this is not ideal. An extension of the set of measure-
ment functions to discrete types, for example, and the error evaluation
between different function types would allows us to set up even more
advanced characteristics to be preserved.

Another potential limitation is the Cartesian composition of the
comparative visualization. We can see the benefits of non-Cartesian
composition approaches for a more advanced exploration of the data.
In video visualization [5, 7] of that kind, for example, where frames
are stacked onto each other, and deformed, the user is able to explore
the changes in a video in one picture.

Currently, we are also working on the application of our model to
a new application domain (also from biology), where large ensemble
based on imaging technology are of interest.
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Fig. 9. An optimized variant of a comparative visualization (right) versus a default solution (left). On the left, we see a partial unrolling of the 3D
ensemble (not all of the 125 networks in the ensemble are shown). On the right, a hybrid composition is shown with 5×5 juxtaposed superpositions
of 5 colored and abstracted networks per patch. The abstraction identifies the centers of the network (represented as disk, sized according to the
city center size) as well as their connections (edge width according to the number of street connections between the centers). See also Fig. 8.

ulation density, the water level, height level, and 2D images speci-
fying map properties. We implemented three parameters to generate
maps of population density. These parameters are the overall density,
the count of the highly-populated areas, and the shape of these areas,
which range from circles to ellipses.

Demonstration: In this example we deal with a higher number of
ensemble dimensions (three in our case). A comparative visualization
can be accomplished using a hybrid solution of positioning stacks of
abstracted representations side-by-side in two dimensions (see Fig. 9).
In this visualization (Fig. 9, right), we see interesting spatial aspects
in this ensemble: while it is not surprising that city centers grow with
increasing population density (left-to-right), it is interesting that city
centers seem to merge earlier, if they are either circular (red) or very
elliptcal (blue). This could be interesting for a city planer, if aiming
at relatively highly populated regions with connected, but separated
centers (to model non-merging city centers seem to be a challenging
task with this city model).

5 PROTOTYPE IMPLEMENTATION

To test our model and to work out the illustrative examples from above,
we have created a prototype, which is implemented in the Unity3D
game engine [12]. The project file is zipped and available online
from http://www.ii.uib.no/vis/projects/physioillustration/research/
comparative-visualization-of-spatial-ensemble-data.html. Even
though Unity3D is primarily intended for the development of
computer games, its simple C# programming interface provides fast
prototyping possibilities and its efficient multi-platform build system
supports the sharing of results.

Our visualization exploits 2D and 3D features, as well as the com-
ponent system of Unity3D. Each ensemble member is represented as
a GameObject, which is assigned a component for its visual represen-
tation (usually a mesh, but possibly also a network, image, or even a
volume). In our demonstration cases, the ivy and PARP examples are
represented as meshes, while the city example employed a network
representation for the streets. The number of GameObjects in our sys-
tem is in the order of hundreds.

The measurement functions are implemented as utility functions
with GameObjects as input and a floating point number as output.
The abstraction functions are static classes with one public function,
which takes a GameObject representing an ensemble member as their
only parameter. The function returns a new GameObject, which is

Fig. 10. Screenshot (or screen capture) from the prototype implemen-
tation featuring a part of the user interface. User is able to load the
data (a, c), change characteristics (b) and model parameters (d, e), and
iterate through possible visualizations (f, g).

the abstracted representation of the input ensemble member. These
functions only modify the visual representation (e.g., the mesh or net-
work), which they can freely modify (e.g., they may change the type
or dimensionality of the representation). For the ease of implementa-
tion, all of the algorithms that are used for measurements and abstrac-
tions were implemented on the CPU in our current prototype, result-
ing in a non-optimized performance. Certainly, performance improve-
ments are expected when exploiting the GPU, instead (fully supported
in Unity3D).

In our prototype we have used the Unity3D editor interface to in-
teract with the model parameters (see Fig. 10). The first step of the
interaction with the model is to load an ensemble (Fig. 10a)—then
the characteristics for the example are shown (Fig. 10b). Here, the
user adjusts the importance of the characteristics for the optimiza-
tion (weights wch). After pressing “Build Samples” (Fig. 10c), our
prototype picks ensemble members (randomly), applies the available
abstractions and computes the selected characteristics in order to ap-
proximate the cost function for the optimization. For all the examples
in this paper, we used an empirically-determined sample size of 10
ensemble members. Clearly, this is only a prototype implementation
of the otherwise more general framework and ample opportunities for
optimization are given here.

After the initial setup, the user interacts with the model parame-
ters, characteristics, and axes (see Fig. 10d, b, e, respectively). After
each parameter change, a preview of how the ensemble members will
be positioned and how much visual space is available for each mem-
ber is shown. If the user is satisfied, he/she can then create the final
visualization (Fig. 10g).

6 DISCUSSION

Using our model for the design of comparative visualization solutions
for spatial data ensembles has several benefits. Firstly, the steered
confinement of spatial representations allows to fit more members of
an ensemble without loosing important spatial information. This is
possible due to the ability of our model to find the abstraction, which
preserves the data spatiality of interest best-possibly, i.e., which mini-
mizes the abstraction error. Another important benefit of our model is
that it automatically links the choice of the abstraction with the spec-
ification of relevant spatiality in the data. Thereby, the time required
to explore possibly useful abstractions is reduced. Another benefit of
our model is the possibility to swiftly explore the space of different
comparative visualization solutions. With the simple change of a pa-
rameter, the user is able to see new possible visualizations, based on
juxtaposition, superposition, or a hybrid layout. Moreover, the user
is able to steer how many ensemble parameters should be varied in
the comparative visualization. At large, the overall advantage of our
model is the reduction of the overall time that is needed for designing
an effective comparative visualization for spatial ensemble data.

As a natural limitation, the overall available space is limited and
usually not all the data can be accommodated without any abstraction
(which would be the ideal solution, in principle). Our model exploits
the fact, however, that not all of the spatial properties are equally im-
portant. Therefore, the use of our model is limited, if the user wants to
explore all spatial properties at the same time. Specifying the subset
of preserved spatial properties in advance also limits the possibility of
generating unexpected visualization results and to thereby explore un-
known patterns in the non-preserved properties. For such a scenario, a
solution based on no abstraction at all would be best, of course.

We have conducted an informal evaluation, based on our model re-
alization for comparatively visualizing polymerization, together with
a professor in molecular biology, who is an expert on PARP polymers.
We explained our idea, introduced him, based on our prototype imple-
mentation, to our process of iteratively creating different instances of
comparative visualization (Fig. 2), and we also presented some of our
results (in particular, the PARP polymerization as discussed in Sec-
tion 4.2). He acknowledged that our process design was effective
in terms of focusing the interface on questions that really matter for
the user (the aspects of the ensemble members that the visualization

should bring out, as well as the few open parameters including 2D
vs. 3D visualization and super- vs. juxtaposition), while at the same
time hiding algorithmic details (handled by the optimization compo-
nent). He also acknowledged that there is an increased need for com-
parative visualization due to the emergence of ensemble datasets in
many different application cases. With respect to our case study in
polymerization, he confirmed that he would prefer the lower visual-
ization in Fig. 7, if his focus was on the number of branches, while
he would prefer the upper visualization (in Fig. 7, also), if he would
wish to understand, where the density is higher or lower. Beyond the
case study, which we had prepared for the discussion, he immediately
started to think ahead and suggested new opportunities, for example
for the comparative visualization of non-spatial data. In conclusion, he
emphasized that he strongly appreciated that he could swiftly survey
a larger set of different comparative visualization results (for the same
data ensemble) by just adjusting the weights of the different interest
functions (Fig. 10b) and by having a new comparative visualization
result being computed from these adjustments automatically.

7 CONCLUSION & FUTURE WORK

In this paper, we present a new visualization model for the design of
effective comparative visualization solutions for spatial data ensem-
bles, where

• the available visualization space is exploited optimally and

• the representation of the ensemble members is abstracted such
that selected spatial data characteristics are preserved optimally.

Our model helps to find an optimal compromise between the spatial
abstraction of individual ensemble members and the composition of an
effective comparative visualization. Due to the assistance by computa-
tional optimization, new visualization solutions are possible by simply
changing one of the input parameters of the design setup. Thereby, a
swift exploration of multiple, different comparative visualization op-
tions is possible.

Maybe the most important conclusion of this work is that integrat-
ing optimization into visualization clearly is an interesting and promis-
ing approach. While this is maybe not all new, it still seems worth-
while to emphasize that this way of thinking can likely lead to better
visualization solutions, also in other cases.

Even though the described model is sufficiently powerful to enable
a large variety of useful comparative visualization solutions, still sev-
eral interesting options for future work are identified.

One way to further improve our approach would be to better steer
the minimization process for finding the optimal abstraction—our cur-
rent solution is based on sampling the available abstraction functions.
Steering this optimization process to more efficiently minimizing the
residual function would be useful, of course.

Another opportunity would be to encode (or learn), which abstrac-
tion functions preserve which spatial characteristics so that their (pos-
sibly costly) evaluation can be avoided during optimization.

In our current realization, the system of the measurements needs
functions that map to the domain of the real numbers. For a number
of characteristics this is not ideal. An extension of the set of measure-
ment functions to discrete types, for example, and the error evaluation
between different function types would allows us to set up even more
advanced characteristics to be preserved.

Another potential limitation is the Cartesian composition of the
comparative visualization. We can see the benefits of non-Cartesian
composition approaches for a more advanced exploration of the data.
In video visualization [5, 7] of that kind, for example, where frames
are stacked onto each other, and deformed, the user is able to explore
the changes in a video in one picture.

Currently, we are also working on the application of our model to
a new application domain (also from biology), where large ensemble
based on imaging technology are of interest.
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M. E. Gröller. CoViCAD: Comprehensive visualization of coronary
artery disease. IEEE Transactions on Visualization and Computer Graph-
ics, 13(6):1632–1639, 2007.

[33] M. Termeer, J. O. Bescós, M. Breeuwer, A. Vilanova, F. Gerritsen, M. E.
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of 3D spine images. Physics in Medicine and Biology, 50(19):4527–4540,
2005.

[38] J. Waser, A. Konev, B. Sadransky, Z. Horvath, H. Ribicic, R. Carnecky,
P. Kluding, and B. Schindler. Many plans: Multidimensional ensembles
for visual decision support in flood management. Computer Graphics
Forum, 33(3):281–290, 2014.

[39] H. Wickham and H. Hofmann. Product plots. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2223–2230, 2011.

[40] G. Wills and L. Wilkinson. AutoVis: Automatic visualization. Informa-
tion Visualization, 9(1):47–69, 2010.

[41] J. Woodring and H. W. Shen. Multi-variate, time varying, and compara-
tive visualization with contextual cues. IEEE Transactions on Visualiza-
tion and Computer Graphics, 12(5):909–916, 2006.


