
Computers & Graphics 92 (2020) 13–27

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Visception: An interactive visual framework for nested visualization

design

Yngve Sekse Kristiansen

∗, Stefan Bruckner

Department of Informatics, University of Bergen, Norway

a r t i c l e i n f o

Article history:

Received 16 January 2020

Revised 11 August 2020

Accepted 11 August 2020

Available online 17 August 2020

Keywords:

Information visualization

Nested visualizations

Nesting

a b s t r a c t

Nesting is the embedding of charts into the marks of another chart. Related to principles such as Tufte’s

rule of utilizing micro/macro readings, nested visualizations have been employed to increase information

density, providing compact representations of multi-dimensional and multi-typed data entities. Visual

authoring tools are becoming increasingly prevalent, as they make visualization technology accessible

to non-expert users such as data journalists, but existing frameworks provide no or only very limited

functionality related to the creation of nested visualizations. In this paper, we present an interactive vi-

sual approach for the flexible generation of nested multilayer visualizations. Based on a hierarchical rep-

resentation of nesting relationships coupled with a highly customizable mechanism for specifying data

mappings, we contribute a flexible framework that enables defining and editing data-driven multi-level

visualizations. As a demonstration of the viability of our framework, we contribute a visual builder for

exploring, customizing and switching between different designs, along with example visualizations to

demonstrate the range of expression. The resulting system allows for the generation of complex nested

charts with a high degree of flexibility and fluidity using a drag and drop interface.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

a

i

o

l

c

m

s

a

s

o

i

p

a

t

n

l

b

a

d

m

a

c

a

o

t

d

s

d

c

p

o

p

2

h

0

. Introduction

Nesting or embedding, i.e., the integration of additional visu-

lizations into the marks of a chart, enables the presentation of

nformation-dense graphical data depictions. By augmenting an

uter visualization with additional details presented as information

ayers as part of its marks, rich depictions of complex data can be

onstructed from a few basic building blocks.

Nested visualizations are frequently applied in order to convey

ulti-faceted data and facilitate storytelling. In particular in fields

uch as data journalism, users would greatly benefit from being

ble to create such visualizations without programming.

In recent years, a new generation of visual authoring systems

uch as Data Illustrator [1] and Charticulator [2] have been devel-

ped to enable the creation of custom charts via intuitive visual

nterfaces accessible to non-experts. In particular, they aim to sup-

ort the flexibility and customization options of design tools such

s Adobe Illustrator, while still providing a data-driven visualiza-

ion environment. While these systems feature advanced mecha-

isms for designing bespoke charts, they provide no or only very

imited support for nesting.
∗ Corresponding author:

E-mail address: ykr088@uib.no (Y. Sekse Kristiansen).

2

W

ttps://doi.org/10.1016/j.cag.2020.08.007

097-8493/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
In this paper, we present Visception, a visualization framework

uilt from the ground up based on nesting as a first-class oper-

tion. For this purpose, we introduce the VC-tree as our central

ata structure. We detail how this approach offers flexible data

appings for transforming tabular input data into data objects, en-

bling the expression of a wide range of different groupings when

reating a nested visualization. Individual charts are made compos-

ble with other charts through our framework’s implicit handling

f nesting and deformation. By providing a set of simple operations

o manipulate a VC-tree, we are able to realize a large number of

ifferent embedding and layering relationships. Furthermore, we

how that using a more inclusive definition of what constitutes a

ata-mappable channel provides additional design flexibility in the

ontext of nesting. The full functionality of our framework is ex-

osed in the form of a visual builder, and we demonstrate that

ur approach allows for the easy generation of a variety of com-

lex nested visualizations.

. Related work

.1. Formal graphics specifications

Foundational works like Bertin’s Semiology of Graphics [3] and

ilkinson’s Grammar of Graphics [4] provide constructs for
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cag.2020.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.08.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:ykr088@uib.no
https://doi.org/10.1016/j.cag.2020.08.007
http://creativecommons.org/licenses/by/4.0/

14 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

V

p

r

i

s

a

s

V

T

c

i

d

V

f

a

o

c

m

2

l

V

a

[

e

a

e

b

a

o

t

d

f

i

d

l

o

t

D

k

i

s

(

p

v

t

l

m

n

2

n

v

t

a

[

u

S
concisely specifying and reasoning about graphics. Bertin describes

marks as basic graphical units, and visual variables as modifica-

tions (position, shape, value, color, orientation, texture, and so on)

that can be applied to marks. Munzner [5] consolidated and ex-

tended similar approaches for discussing visualizations, and also

introduced the term channel as a way to control the appearance

of marks. Visception features a more inclusive kind of channel, de-

noted as a VC-channel. Layout parameters as well as global chart

properties such as for example the title or background of a chart,

are exposed as VC-channels.

Early information visualization techniques utilized low level li-

braries. While such low level libraries enable the expression of

graphics, they are not necessarily suitable for visual thinking. Thus,

multiple visualization toolkits that raise the level of abstraction

have been developed. Examples of such libraries include Prefuse

[6] , Protovis [7] and D3 [8] .

At an even higher level of abstraction, visualization grammars

such as Vega [9] enable clear expression of a wide range of visu-

alizations declaratively. In Vega, each chart is a unit which takes

in data and associated transformations, mark type, and encodings.

Each encoding is a specification for how a channel is mapped.

Built on Vega, Vega-Lite [10] is both a grammar of interaction and

graphics. A prominent feature of the Vega-Lite grammar is its view

composition algebra with four operations: Layer for placing one

chart on top of another, Concatenation for placing charts side by

side, Facet for creating one view per distinct value of a field, and

Repeat for creating several views with the same input data. Viscep-

tion uses nesting and data groupings independent of chart inputs

to provide a more flexible and recursive nesting behavior. In terms

of data, Visception’s nesting operation corresponds to Vega’s facet

operation. Visually, Vega provides rows and columns as host spaces

for child charts, while Visception provides a set of customizable

charts as host spaces. These charts are more flexible and control-

lable than rectangular host spaces generated via the facet opera-

tion, and may be mapped to data. Visception’s VC-channels func-

tion similarly to Vega’s encodings, although each chart in Viscep-

tion will have a larger set of VC-channels to modify the layout.

Tree visualization grammars are closely related to nesting. Li

et al. [11] introduced a declarative grammar of tree visualizations,

enabling users to rapidly specify both explicit and implicit depic-

tions. Their visual builder allows the user to combine different

tree layout algorithms, and to adjust finer aspects such as mar-

gin and padding between nodes. Visception has a similar approach

in that it combines layouts. However, Visception is focused on

enabling the creation of nested visualizations from tabular data,

while GoTree is focused on creating tree visualizations from pre-

defined hierarchies. Schulz et al. [12] propose a set of functional

building blocks denoted as layout operators that enable building

explicit node-link layouts as well as implicit space-filling layouts.

They specify a highly flexible layout pipeline for rendering such

trees, and expose operators that allow the user to modify the lay-

out in a variety of ways. Similarly, Visception uses a layout pipeline

in its underlying implementation, and exposes parameters that

modify the layout as VC-channels. Visception only does top-down

explicit layouts, and does not work bottom-up as Schulz’ genera-

tive approach.

Other more specialized grammars focus on particular categories

of visualizations. ATOM [13] is grammar for unit visualizations.

With this grammar the user can subdivide a space at multiple lev-

els and fill in units — one for each datum. Visception exposes a

similar design space by providing a unit chart type. Wickham and

Hofmann’s Product Plots [14] is a framework for transforming and

combining area-based visualizations. They define three 1D primi-

tives: bars, spines and tiles. With these three primitives, they show

that it is possible to express a wide range of both simple and com-

plex visual representations of data. While both Product Plots and
isception use nesting, Visception leverages the chart type itself to

rovide host spaces for child charts, while Product Plots subdivide

ectangles with a small set of rectangle-based 1D primitives.

Schulz and Hadlak [15] presented a way of representing visual-

zations by blending together existing visualizations defined as pre-

ets. In the process of describing how to interpolate between visu-

lizations, they expose connections between different chart types,

uch as the polar area chart and the bar chart. Rather than presets,

isception offers a set of charts the user may choose and combine.

hus, Visception covers a discretized subset of the design space

overed by preset-based visualization.

We are inspired by these approaches of combining and deform-

ng 2D geometries, and use such concepts to handle nesting and

eformation behavior for all chart types within our framework.

uillemot and Boy [16] use nested and composite visualizations to

acilitate the exploration of designs, regardless of data. They define

 visual grammar with partitioning patterns and data transform

perations. With our framework, we enable the specification of

harts without requiring explicit specification of nesting behavior,

aking it easy to introduce new building blocks to the language.

.2. Data exploration and visual authoring

Data exploration tools focus primarily on what the user can

earn about the data, rather than design and aesthetics. IVEE [17] ,

isage [18] , and Tioga2 [19] were some of the first systems to en-

ble visual building of queries, and visualizing the results. Polaris

20] by Stolte et al. (later commercialized as Tableau) enables rapid

xploration of large multidimensional datasets, leveraging a table

lgebra to display a wide range of charts.

Visual authoring tools are more focused on design than data

xploration, yet they serve a similar purpose and can potentially

e as powerful as data exploration systems. Charticulator [2] en-

bles the user to define a chart by articulating compound marks

r glyphs, as well as links between these. Lyra [21] enables the in-

eractive design of a wide range of visualizations using drag and

rop operations. Lyra also provides visual data pipelines that allow

or the expression of advanced layouts and data transformations.

VisDesigner [22] aims to cover a wide range of the visualization

esign space by leveraging modular visualization design. Data Il-

ustrator [1] augments vector design tools with new concepts and

perators, enabling users to bind parts of a vector-based illustra-

ion to data. Data Driven Guides [23] has a similar approach to

ata Illustrator, allowing users to create data-driven shapes (also

nown as guides) that can be decorated by custom vector graphics.

Volver [24] provides users with the means to extract and recon-

truct visualizations from both data sets and existing visualizations

including images and webpages).

While our work shares many of the general goals with the ap-

roaches mentioned above, Visception focuses on nested, aesthetic

isualizations. We provide an editor and a framework to enable

he design of highly customized information rich visualizations by

everaging nesting. Our definition of charts with VC-channels are

ade to be compatible and consistent for both nested and non-

ested charts.

.3. Nested visualization and related techniques

Hierarchical and small-multiple layouts are closely related to

esting. Schulz et al. [25] surveyed the design space of hierarchy

isualization, providing an overview of a large number of different

echniques (both 2D and 3D) used to visualize hierarchies, as well

s exposing unexplored parts of the design space. LeBlanc et al.

26] describe the technique of dimensional stacking, allowing the

ser to map high-dimensional data to a relatively small 2D space.

imilar expressiveness can be achieved in Visception by nesting

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 15

r

l

o

l

b

h

p

f

t

c

l

[

e

p

g

z

a

[

i

b

b

f

b

A

t

o

n

a

s

o

q

i

i

i

V

c

t

u

c

m

d

[

l

p

t

i

a

t

e

i

u

a

t

3

t

p

w

i

s

n

Fig. 1. Four visualizations with the same chart mapping, and different channel con-

figurations. The first three charts (a-c) are different configurations of a plot , while

(d) is the columns chart equivalent of (c).

3

t

t

m

a

s

s

s

s

m

w

w

a

c

c

r

b

s

fl

w

o

b

t

a

b

s

f

m

e

s

f

e

i

c

e

s

i

b

o

f

i

w

m

t

a

g

a

e

ows and columns . Wang et al. [27] introduced the circle packing

ayout, nesting circles within circles with arbitrary depths. This lay-

ut may also be expressed by nesting circles with a force-directed

ayout [28] within one another, which is achievable in Visception

y nesting plot charts. Treemap layouts are often used to visualize

ierarchies. Baudel et al. [29] present a generic algorithm that ex-

resses most of the different existing treemap layouts using only a

ew basic operations. Visception follows a similar line of thought:

o expose parametrized generic charts that may express other spe-

ific charts.

Using nested visualizations it is possible to express complex re-

ationships by only using a few simple building blocks. Parker et al.

30] , as early as 1998, designed NestedVision3D, allowing for the

xploration of nested graphs to explore the structure of computer

rograms. ZAME [31] (Zoomable Adjacency Matrix Explorer) nests

lyphs inside each cell of an adjacency matrix. Combined with

ooming, panning, and aggregation represented as glyphs, ZAME

llows for the exploration of large datasets. Javed and Elmqvist

32] detail four visual composition operators: juxtaposition, super-

mposition, overloading and nesting. Visception provides a flexi-

le layering operation that, combined with movable and resizable

ounds, achieves a similar level of expressiveness as using these

our operators. Juxtaposition and superimposition are expressible

y simply editing the bounds of a chart. HEDA (Heterogenous Data

ttributes) [33] is a generic interactive visualization component

hat aims to enable users to explore heterogenous data as a re-

rderable matrix. Visception maintains reorderability, but as a side

otion with an order VC-channel exposed for reorderable charts

nd focuses on providing a visual language for building nested vi-

ualizations. Slingsby et al. [34] explored the use of different lay-

uts with editable hierarchies to incrementally answer research

uestions. Their approach could be described as explorative nest-

ng of data. They define the language HiVE (Hierarchical Visual-

zation Expression Language) which includes operations for edit-

ng, deleting, inserting and swapping different levels of a hierarchy.

isception can express similar hierarchies as HiVE, with more fo-

us on design flexibility and support for a wider range of chart

ypes. NodeTrix [35] enables the visualization of large networks

sing juxtaposition and overloading by linking adjacency matri-

es together. It combines the node-link diagram and the adjacency

atrix into one visualization, enabling the designer to show more

ata and data relations using less visual space. Similarly, Domino

36] uses overloading and juxtaposition to compare and manipu-

ate subsets across multiple datasets.

Overall, multiple specific cases of using nesting have been ex-

lored by related works. In Visception, we go beyond existing solu-

ions by enabling the specification of nestable charts without need-

ng to specify nesting behavior. We also enable the user to specify

 wide range of different data groupings without having to modify

he dataset. Finally, we include layout parameters and global prop-

rties as VC-channels, making many specific chart types express-

ble as configurations of a more general chart type. Visception’s

se of charts as building blocks follows the same line of thought

s Pattison et al. [37] who proposed a “generalized layout”, similar

o treemaps but with more available intra-container layouts.

. The Visception framework

In this section we detail our framework for nested visualiza-

ion design. As the use of certain terms varies in the literature, we

resent the terminology used here in Table 1 . First, in Section 3.1 ,

e discuss how individual charts are represented and manipulated

n Visception. We then introduce the VC-tree, our central data

tructure that enables the specification of and interaction with a

ested visualization in Section 3.2 .
.1. Charts and VC-channels

Charts form the basic building blocks of Visception. A chart

ransforms tabular input data into output data objects, which are

hen used to generate graphical elements referred to as output

arks.

VC-channels represent the parameters that control the layout

nd style of a chart. Layout VC-channels affect the shape or po-

ition of a chart’s output marks directly and are hence typically

pecific to a particular chart, while other VC-channels affect the

tyling of the stroke, fill, drop shadows, etc. and are generally

hared among multiple charts. As a convenience, bundles of com-

on channels are represented as three general chart prototypes,

hich are then used to compose more specific charts: A base chart

ith all the common VC-channels for high-level transformations

pplied uniformly to the entire chart, a stroked chart with all VC-

hannels relating to the stroke, and a filled chart with all VC-

hannels relating to the fill of a chart.

Layout VC-channels allow the user to control different aspects

elated to the layout of a chart. For instance, a bubble chart, a

eeswarm plot, and a scatter plot, instead of being available as

eparate chart types, can be expressed as configurations of one

exible chart as illustrated in Fig. 1 a–c. In 1 a the collision radius ,

hich is a scaling factor of the repulsive force between the nodes

f a force layout, is set to 1.0, while in 1 c it is set to 0. 1 c also has

oth the x and y VC-channels mapped to data. In 1 b we see that

he force x is higher than force y , causing the circles to accumulate

long the vertical axis. All VC-channels available in Visception can

e seen in Appendix A, Figs. A.22 and A.23 .

Some attributes of a chart control global visual elements in-

tead of the appearance of individual marks. They are usually re-

erred to as properties in related works [2] and typically cannot be

apped to data since such an operation has limited utility. How-

ver, when nesting is introduced, the data of the parent chart can

erve as input data for these properties, making them meaning-

ully mappable to data. For these reasons, such properties are also

xposed as VC-channels, enabling an increased level of design flex-

bility without introducing additional complexity. For instance, we

an adjust the stroke width of a nested chart based on the par-

nt datum or use a categorical dimension to enable/disable effects

uch as drop shadows for a subset of the data.

Similar to Vega-Lite [10] , we populate all VC-channels with ed-

table default values. For example, if a columns chart is created, the

ar height VC-channel is by default mapped to the (editable) value

f 1, resulting in N bars with the same height. These defaults allow

or rendering the chart at its intermediary stages, without requir-

ng a complete specification of data mappings.

Furthermore, in order to be able to switch between chart types

hile preserving existing data mappings as much as possible, we

aintain a set of semantic VC-channel equivalences between chart

ypes as shown in Table 2 . For example, if we change a plot to

 columns chart (see Fig. 1 c and d), there are two equivalence

roups: one containing the plot y and bar height VC-channels, and

nother containing plot x and bar order VC-channels. Hence, these

xisting data mappings can be transferred to the new chart.

16 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

Table 1

Terminology used throughout the paper.

Term Explanation

Chart A chart has a type and associated tabular input data that is represented by output marks.

Chart type A type of chart within the Visception framework, consists of its own layout that is controlled by some of its VC-channels. The layout

controls the shape and position of the chart’s output marks.

Output marks Graphical marks of a single chart.

VC-channel Controls a particular aspect of the appearance or layout of a chart.

VC-channel mapping The assignment of data (for example a dimension) to a VC-channel (for example fill color).

Layout space Normalized space in which a layout is initially computed.

Parent space Space(s) in which a chart’s output marks are embedded according to the computed layout. If the node is a root node, the parent space

is simply the root viewport. Otherwise, a chart-dependent region within the output marks of the parent chart.

Data object Represents a selection from a tabular dataset. May be one of the following: 1) A single row, 2) A list of rows, 3) A list of values.

Chart input data A set of data objects inherited from the parent VC-node. If the node is the root VC-node, the input data is the list of rows of the entire

dataset.

Chart mapping Transforms every input data object into a new set of data objects.

Chart output data A set of data objects, used for rendering the chart, and possibly as input data to child charts.

Table 2

Examples of equivalence groups within the implementation of Visception. We followed Munzner’s [5] ranking of channel types by effectiveness to determine the most

significant channels.

Group Explanation VC-channels

Position Major Most significant VC-channel controlling the position of the

marks.

plot x, line x, bar order, circular bar order (for the charts: polar area,

sectors, tubes)

Size Major Most significant VC-channel controlling the size of the marks. tile size, unit size, stream size, plot size, bar height

Position Minor Secondary VC-channel controlling the position of the marks. plot y, line y

Size Minor Secondary VC-channel controlling the size of the marks. bar width (columns), bar height (rows), tube height (tubes chart)

Fig. 2. This figure depicts operations that can be performed on a VC-tree, along

with example charts. Note that the move operation is not shown here, since it cor-

responds to a delete operation followed by nest , group or layer operation that re-

inserts the node into the hierarchy. Red represents a deleted chart, while green

represents an added node

j

d

a

r

c

t

i

a

d

l
3.2. Visception tree

Visception aims to be a visual and conceptual framework for

nested charts by enabling operations for building and editing a hi-

erarchy of charts, as well as implicitly handling common nesting

behaviors for multiple charts. Other works such as HiVE [34] and

ATOM [13] enable setting up hierarchies of charts and data. Draw-

ing inspiration from these previous approaches, we propose the

Visception Tree (VC-tree) data structure. The VC-tree provides fine-

grained control over data mappings at different hierarchical levels,

and implicit handling of deformation and nesting behavior. In this

section we will go into detail on how the VC-tree encapsulates a

tree of charts, data mappings, and spaces.

Structure and properties : The VC-tree consists of VC-nodes

which have two explicit properties: A chart type and a data map-

ping. The data mapping represents a chosen grouping of the chart’s

input data, while the chart type defines the layout and thus the

transformation of the output data into output marks that make up

the visual representation of the data. When a VC-node is the child

of another VC-node, this corresponds to nesting one chart within

another. The contents of the nested chart is then displayed within

the output marks of the parent chart [32] . For example, nesting

a plot within a columns chart with N bars will result in N plots,

one within each bar. The left-to-right order of nodes corresponds

to the Z-index, with the leftmost nodes rendered on top as shown

in Fig. 2 . VC-nodes can be added, moved, and deleted as also illus-

trated in Fig. 2 .

Data mappings : Each VC-node has both input and output data,

consisting of a number of data objects. The output data of a node is

implicitly defined by its data mapping and input data. Depending

on the type of data mapping, a data object may represent a row in

the dataset, a list of rows, or a list of values.

Each node’s input data corresponds to the output data of its

parent (at the root of the tree, the input data is the list of all

rows in the tabular dataset). The data mapping of a node turns

its input data into output data as shown in Fig. 3 . For each chart

corresponding to a VC-node, the output data is used for generat-

ing geometric shapes. A VC-node is considered nestable, i.e., it can

have children, if it has one areal output mark per output data ob-
ect. In order to enable nesting without requiring a very specific

ataset format, we define four types of data mappings, dimension ,

ll , monolith , and identity , which are summarized in Table 3 .

For dimension and all , the input data objects must always

epresent a list of rows to be applicable. The dimension mapping

orresponds to grouping by a given dimension D . Thus, we parti-

ion each data object by distinct values of D . For example, if the

nput data is a single data object representing a list of all rows,

nd the mapping is a dimension D , the output data will be a set of

ata objects, each object representing a distinct value of D with a

ist of matching rows. If the data mapping is set to all , each input

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 17

Table 3

A summary of all possible data mappings in Visception. Not all mappings are nestable, some are only nestable if the child has a certain mapping. The cardinality of each

mapping describes the size of each set of data items per parent data object. If a non-identity, non-monolith mapping results in only sets with a cardinality of 1, this is

equivalent to an identity mapping.

Mapping Description Cardinality

Dimension (-, +) Groups every input data object by a given data dimension D , with, creates one data object per

existing (if not sparse-mapped) value of the domain of D . Always nestable.

between 0 and number of values

in domain of D

All (-, +) Ungroups input data object, creating one data object per row in the input data object. If

sparse-mapped, this will create one data object per row in the root dataset. Nestable only if

the child is identity -mapped

between 0 and number of rows in

dataset

Monolith (-) Creates D data objects per input data object, given D dimensions. Not nestable. D

Identity (-) Creates one identical data object per input data object. Always nestable. 1

(-) Sparse Mapping excludes empty rows and data objects when nesting.

(+) Non-sparse Mapping includes empty rows and data objects when nesting.

Fig. 3. A data mapping transforms every input data object into a set of new data

objects. By applying this relationship recursively, each node can compute its own

output data.

d

a

i

o

m

p

c

i

d

r

p

I

d

F

s

a

a

F

r

b

m

w

e

s

a

t

o

t

i

o

[

Fig. 4. On the left, we see a non-sparse mapping, which includes empty data. On

the right, we have a sparse mapping showing only non-empty data objects. Observe

how the non-sparse mapping horizontally arranges the innermost bars uniformly.

Fig. 5. Two examples of nesting with different types of parent spaces. If the parent

space is deformed, each bar of a columns chart is also deformed as seen on the left.

c

[

s

p

a

c

d

t

t

m

O

i

c

s

o

c

n

t

a

fi

t

f
ata object (always representing a list of rows) is “unpacked” into

 list of data objects, each containing one row. For instance, if an

nput data object is a list of three rows, an all mapping would

utput three data objects, each containing one row. The identity

apping generates a list of data objects identical to those of its

arent. Creating such “dummy” data objects allows for overloading

harts with extra information by nesting more charts within exist-

ng marks as shown in Fig. 10 . The monolith mapping creates one

ata object for every specified numeric dimension. For the list of

ows within every input data object, it generates one data object

er dimension, containing the list of values of that dimension.

ntuitively, the monolith mapping can be seen as “one mark per

ata dimension”. An example of this mapping can be seen in

ig. 9 .

In the case of nesting, the all and dimension mappings can be

pecified as sparse or non-sparse . A sparse mapping is the default,

nd will only create data objects that exist when nesting. For ex-

mple, suppose a dataset is grouped by gender: male and female.

urthermore, the hair colors of both males and females include

ed, brown, grey, black and white, but only the female set has

rown and grey hair. Then, if we apply a sparse mapping, the fe-

ale set will include a mark for red and brown, but the male set

ill not. If the mapping is non-sparse, empty data objects are gen-

rated in all sets of data. This construct is useful when, for in-

tance, creating bar charts on grids, and makes the nesting uniform

s shown in Fig. 4 . The examples shown in Figs. 13 and 14 show

he implications of a sparse vs. a non-sparse mapping.

Space transformations : Since the layout of an individual chart

nly outputs geometric shapes into a normalized space denoted as

he layout space , the framework must handle the rest of the nest-

ng behavior. Existing works have already addressed the problem

f deforming/transforming charts. For example, Schulz and Hadlak

15] , Wickham and Hofmann [14] , and Charticulator [2] transform
harts from Cartesian to non-Cartesian spaces. ATOM [13] , Vega

10] , Vuillemot and Boy [16] compose different layouts in Carte-

ian spaces via nesting. Using similar methods, the layout com-

onent of the Visception framework transforms the shapes from

 normalized space to fit within the parent space.With nested

harts, we need to consider two different spaces in order to ren-

er the chart. Given a parent-child pair of VC-nodes, each mark of

he parent node holds an inner space. We refer to this space as

he parent space . Each chart is first defined in layout space , a nor-

alized space in which the shapes of each chart are calculated.

ur framework implicitly handles nesting and deformation behav-

or by fitting layout shapes into a parent space. Fig. 5 shows how a

olumns chart can be fit into both a Cartesian and a circular parent

pace.

The transformation from layout space to parent space depends

n the type of the parent space, the layout shapes and the spe-

ific defined behavior for the shapes of the chart. For example,

esting a columns chart within a polar area chart corresponds to

ransforming rectangles to fit within arcs. If the parent space is

n arc, charts nested within each arc will be either deformed or

t within the arcs. For columns charts it makes sense to deform

he rectangles as shown in Fig. 5 b, whereas for scatter plots or

orce-directed layouts it makes sense to deform the position, but

18 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

c

g

t

d

m

o

T

t

i

4

o

A

f

T

s

p

a

v

m

d

i

a

i

b

s

a

e

p

v

v

b

i

W

v

l
not the shape. These deformations can be reduced to a matter

of either fitting (scaling and translating the whole shape to fit

within the parent shape), or deforming 2D shapes by transforming

every coordinate into the coordinate system of the parent. For

example, to transform a rectangle to an arc, we simply transform

the Cartesian (x , y) coordinates of each corner into the polar

coordinates of the parent arc.

4. Implementation and visual builder

4.1. Implementation

Visception was implemented as a web application using VueJS

for the front-end UI components, and D3 [8] for rendering the

SVG. A prototype of the framework is available at https://vis.uib.

no/visception/ .

D3’s data selections allow for creating SVG elements on a per-

datum basis. This also enables creating a set of child elements for

each parent element. Our implementation heavily relies on this

mechanism for specifying a hierarchy of SVG groups and paths cor-

responding to the hierarchy of data.

The VC-tree and its VC-nodes act as a skeleton for the rest of

the logic. Each VC-node has a channel manager, layout manager,

guides manager, chart type, and data input. With this information,

each node can compute its own layout and style. The VC-tree was

realized as a simple tree data structure, with functions for moving,

adding, and removing VC-nodes. Each VC-tree is tied to an SVG el-

ement, and each VC-node to a D3 selection representing the chart’s

output marks.

Data queries and local selections: Whenever the data mapping

or chart type changes, a data query is made, and the selection of

the node is updated accordingly. The data mapping and chart type

of the VC-node is used to query the dataset, and thus infer the

cardinality of the selection.

Layout: Whenever a VC-channel affecting the layout changes,

the layout step, which itself is implemented in the form of a

pipeline, is executed. The layout computes the position and shape

of each mark of a node’s selection. Since most charts have com-

monalities, we implemented a general layout pipeline where we

can easily replace/insert steps for customization, but also reuse

many steps across multiple chart types.
Fig. 6. A screenshot of all views exposed within Visception. Note how the Guides view

shows a list of VC-channels (similar to the Channels View displayed on right) that the us
Guides: After the style or layout has changed, the guides of the

hart are rendered, independent of the layout pipeline. Floating

uides, such as color legends (see Fig. 9) are rendered to a group at

he root of the SVG. Fixed guides such as axes (see Fig. 21) are ren-

ered in a selection local to each node. While guides are not the

ain focus of this paper, they use a similar mechanism to the lay-

ut pipeline for rendering, and are deformable as seen in Fig. 21 .

he geometric components of the axis are transformed along with

he output marks of the corresponding chart. Both axes and float-

ng guides can be styled using VC-channels.

.2. Visual builder

Design and components : Our visual builder uses drag and drop

perations to expose a majority of the framework’s functionality.

n overview of the user interface is shown in Fig. 6 and the main

unctions provided by each of the components are summarized in

able 4 .

The data view enables the user to drag data mappings, dimen-

ions and aggregates. Dragging an item from the data view ex-

resses an intent to map that item to a chart or a VC-channel

nd potential drop targets are immediately highlighted. The data

iew provides all possible data mappings and individual data di-

ensions. A dimension can be clicked and expanded into a set of

raggable aggregates (see Fig. 6). We currently provide the follow-

ng aggregation functions: sum , quartile , quantile , median , min , max ,

vg , distinct , and count . Furthermore, by dragging the respective

cons, the user can indicate whether the dragged mapping should

e sparse () or non-sparse (). Dragging the tile corre-

ponds to dragging a monolith mapping of the dimension. A drag

nd drop operation of a data mapping or dimension aggregate can

xpress a wide range of operations as shown in Table 5 .

All drag operations originating from the data view have three

ossible drop destinations: the outline view , channels view , or can-

as view . Thus, the data view is placed in the center to all these

iews. The canvas view shows the rendered charts, and accepts

oth chart and channel mappings. When the Visception builder

s initially opened, only the canvas and data views are visible.

hen a data mapping is dropped onto the canvas, the outline

iew and channels view appear. The outline view provides a high-

evel overview by showing the hierarchy of charts, and enables the
is within a tab in this example. The guides view lets the user select a guide, and

er can edit the guide’s style through.

https://vis.uib.no/visception/

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 19

Table 4

A summary of information each user interface component shows, and which functions it addresses. Together, these views enable the creation of nested charts, editing

individual charts and accompanying VC-channels and guides.

Component Information displayed Functions

Canvas Result visualization. Receive drops, mapping data to chart or VC-channels.

Data Data mappings, dimensions and aggregates. Initialize drags.

Outline Hierarchy of charts (a VC-tree) & data and chart type of

each node, selected node.

Receive drops (map data to chart), rearrange hierarchy (group, nest,

layer), changing chart type of node, selecting a node.

Channels VC-channels of selected chart. Receive drops (map data to VC-channel), edit individual VC-channels.

Guides Guides (legends and axes) of selected chart. Edit guide by editing channels.

Fig. 7. Visception, getting started step by step.

Table 5

When dragging and dropping a data dimension, there is a limited set of available

operations and outcomes. D denotes a dragged data dimension, or aggregate of an

dimension. C is the selected chart, and C ′ is a new chart grouped by D .

Target Area Operation Result

Channel Center Map (VC-channel) Map D to VC-channel

Outline Node Center Map (chart) Map chart to D

Left Layer (front) C ′ layered on top of C

Right Layer (back) C ′ layered beneath C

Top Group C nested within C ′
Bottom Nest C ′ nested within C

Canvas Center Map Map chart to D

Bottom Map (VC-channel) Map D to C x-axis

Left Map (VC-channel) Map D to C y-axis

e

T

o

v

u

g

g

o

a

c

p

i

o

d

a

s

t

Fig. 8. Snapshots of Visception’s user interface elements during an interaction ses-

sion.

a

F

l

v

T

c

c

t

v

xpression of operations such as nesting, grouping, layering (see

able 5), as well as changing chart types. When a node in the

utline view is clicked, it is selected. When selected, the channels

iew displays all available VC-channels for a chart, and enables the

ser to edit and map data to individual VC-channels. For editing

uides, we provide the guides view that allows the user to select a

uide and edit its VC-channels, in the same way the VC-channels

f a chart are edited. These views allow for expressing and editing

 hierarchy of charts, as well as individual charts.

Example workflow : Here we demonstrate a general workflow

onsidering the main operations of mapping data to charts, map-

ing data to VC-channels, editing the hierarchy of charts, and edit-

ng VC-channels.

After selecting a dataset (see Fig. 7 a), the user initiates a drag

peration on a data mapping. This operation highlights possible

rop areas and a preview of the result will be shown (see Fig. 7 c

nd d). If the chart is empty, the only drop area will be the vi-

ualization canvas, as shown in Fig. 7 b. After the drop operation,

he dropped data mapping becomes the data mapping of the chart,
nd the user will see a chart grouped by the given mapping (see

ig. 7 d).

With a non-empty chart, two more views will appear: the out-

ine view and the channels view, as seen in Fig. 7 d. The outline

iew shows a tree corresponding to the current hierarchy of charts.

he user can select a node by clicking it. If it is clicked again, a

hart menu is shown (see Fig. 8 a), enabling the user to change the

hart type. When a node is selected, the channels view will display

he VC-channels for that chart. For example, in Fig. 7 d the channels

iew corresponds to a plot .

20 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

Fig. 9. Nightingale’s Rose.

Fig. 10. 200 samples of mushroom.

Fig. 11. 8125 samples of mushroom.

s

t

i

u

b

s

c

With four active views there are some operations to consider. If

the user wants to edit an individual chart, the chart is selected

by clicking it in the outline view. When that chart is selected,

the channels view will display a set of editable VC-channels in

the form of small labeled icons, grouped into categories. The cat-

egory helps the user decide what to edit on a general level, while

the icons and accompanying labels provide more specific hints.

When the user has found and clicked a VC-channel, the widget for

editing it pops up as seen in Fig. 8 b. The widget can be a slider, a

color picker or another kind of control. Undo/redo functionality al-

lows the user to try out different controls and learn from resulting

changes to the chart.

By interacting with the widget, and immediately seeing the re-

sults, the user can learn what the VC-channel does. Sequentially

editing VC-channels lets the user control one aspect of the chart

at a time. The user must also be able to map data to a VC-channel.

When initializing a drag operation of a dimension or dimension

aggregation, potential target channels will be highlighted. An ex-

ample of this is shown in Fig. 7 d. If the user drops a dimension

on a VC-channel, a corresponding mapping is created. When a

VC-channel is clicked, the user may turn a mapping on or off, and

the widget will change accordingly.

For example, if a VC-channel is mapped to a dimension, the

user can edit the output ranges shown in Fig. 8 c (for example [0%,

100%] on the x-axis, and the domain (for example [0, 20] even

though the dataset only contains [8, 20]).

When a dimension is dragged, the user can drop it on one of

the areas of the node. These areas appear when the drag is initi-

ated (see Fig. 8 d). Table 5 illustrates the outcomes of a drag oper-

ation.

5. Results

Here we demonstrate a gallery of example charts created with

the Visception builder. Each example is accompanied by a screen-

shot of the outline view displaying the corresponding hierarchy of

charts. Each chart is generated by creating such a hierarchy and

applying styling/mappings to one chart at a time. We selected a

broad range of different datasets in order to demonstrate a wide

variety of data mappings and chart hierarchies. Our generated ex-

amples cover a variety of designs and aim to demonstrate the gen-

erative expressiveness of our framework.

Nightingale’s rose is an early and well-known data visualization,

used by Florence Nightingale to illustrate avoidable deaths of sol-

diers during the Crimean war. A row in the dataset holds a month

number, army size and death counts. Here we demonstrate the

usefulness of nesting and the monolith mapping. The chart is cre-

ated by leveraging the monolith mapping to nest the dimensions

disease, wounds, other as a vertical stack inside a polar area chart

mapped to all , as shown in Fig. 9 .

UCI’s Mushroom dataset [38] has been widely used for ma-

chine learning, and as an example dataset for visualizing categor-

ical data. It has 22 dimensions and over 80 0 0 rows. Each row in

the dataset is one mushroom sample. Here we will see how the

identity mapping can be used to decorate output marks at differ-

ent levels of nesting. First, we consider 200 samples of mushroom

(see Fig. 10) representing the hierarchy gill size → stalk-surface .

Within each container, we have a unit chart representing all rows

in the dataset (one square per row). Within each unit, we nest

an identity -mapped (one datum per parent datum) plot where the

symbol is mapped to cap-shape . The identity mapping allows us to

overload the unit squares with more information, in this case the

cap-shape .

For the second visualization, we show all 8124 rows (samples)

of mushrooms, by displaying the hierarchy cap-surface → cap-
hape using the squarified chart, with its size VC-channel mapped

o count (the count of rows per aggregation). Inside each square

s a unit chart, showing one unit per mushroom. Layered over the

nit chart, an identity -mapped plot (lower left node) has its sym-

ol VC-channel mapped to the cap surface, and helps show the cap

hapes. With both layering and nesting available, we can overload

harts with great flexibility as shown in Fig. 11 .

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 21

Fig. 12. Recreation of “At the National Conventions, the Words They Used”.

Fig. 13. Suicides per country, by gender, over time.

l

d

a

e

n

c

n

c

t

F

(

i

n

p

c

t

v

c

t

u

o

d

c

d

w

w

t

m

w

Fig. 14. Suicides per country over time, by generation, over time.

Fig. 15. A recreation of Fig. 10 of the ATOM paper [13] .

a

f

i

p

o

H

o

t

m

g

“

o

c

s

fi

s

b

o

s

b

c

e
“At the National Conventions, the Words They Used” was pub-

ished by the New York Times in 2012, illustrating how much

ifferent words are used by different political parties. We create

 similar visualization based on data from the 2016 presidential

lection. Each row in the dataset represents the following: (word,

ame, mentions, Trump, Obama) . Here we will see how the clip VC-

hannel, combined with nesting can “slice” the circles. First, we

est a columns chart within the circles, and enable the clip VC-

hannel, and use the bounds VC-channel to stretch the columns

o properly cover their parent shapes. The final result is shown in

ig. 12 .

Kaggle’s suicide rate dataset has many dimensions, such as

country, year, sex, suicides/100k pop, generation,...) . In the follow-

ng two examples, we explore this dataset and demonstrate how

esting can be utilized to generate information-rich small multi-

les. For the first example (Fig. 13) we investigate suicide rates per

ountry, by gender over time. First, we create a unit chart mapped

o country . We sort the chart by avg(suicides) . Each unit is subdi-

ided by sex using a rows chart. Within each rows chart, an area

hart is grouped by year (non-sparse), with avg(suicides) mapped

o y , and year mapped to x . The data mapping of the area chart

ses the parent datum to show gender . The non-sparse grouping

f the area chart creates empty data points for years with missing

ata points, thus exposing this in the visualization.

Next, we look at suicide rates for the different generations per

ountry, over time (see Fig. 14). At the root we have a force-

irected layout with one node per country. Next, we nest year

ithin the root chart, and set the chart type to columns . Finally,

e subdivide the bars by nesting a vertical stack chart (mapped

o generation) within it. In contrast to Figs. 13 and 14 uses a sparse

apping. We show this example to demonstrate the significance of

hether or not empty data items are included in a nested chart.
The Titanic dataset [39] shows how many passengers perished,

nd how many survived. Each row represents a passenger. In the

ollowing examples, we demonstrate how the combination of nest-

ng and the unit chart enables the visualization of both the global

atterns and individual details. Fig. 15 shows a recreation of Fig. 10

f the ATOM paper [13] , depicting survivors of the Titanic [39] .

ere we see a faceting by sex and class, with a centered unit lay-

ut. By using nesting, we nest a plot within the units, mapping

he symbol and opacity to the survival dimension. We use the color

apping to display gender.

Now we wish to investigate the distribution of survivors, by

ender and across different age groups. We do this in the form of a

unit stream” as shown in Fig. 16 , by age. This chart is created with

ne column for every age bin, then nesting a unit chart within the

olumns chart. The unit chart is centered vertically, and ordered by

ex-survival . Finally, we nest a plot within the unit chart, and map

ll color to gender , fill opacity and symbol to survival status .

Next, we split up the unit stream by gender. The root of the vi-

ualization is a columns chart, creating one column for every age

in. We subdivide by sex by creating a vertical stack within each

f the age ranges. Then, we nest a unit chart within the vertical

tack . The unit chart is sorted by survival . To customize the sym-

ols, we nest a plot within it, and map the symbol and opacity VC-

hannels to survival . The result is shown in Fig. 17 . The only differ-

nce between this figure and the previous is that there is one rows

22 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

Fig. 16. A “unit stream”, by age.

Fig. 17. Two “unit streams”, by gender, then age.

Fig. 18. An approximation of the Best Bookshelf [40] visualization.

Fig. 19. Gun crime broken down by intent, gender, race .

i

a

s

p

t

m

c

(

w

a

m

d

s

S

f

u

g

s

s

V

n

v

m

v

w

t

c

m

s

s

p

a

a

s

h

b

a

I

n

d

chart inserted into the hierarchy, above all , expressing the “group

by gender” operation.

The Best Bookshelf [40] visualization displays a wide range of

dimensions for the book best sellers dataset. Every row in the

dataset represents a single book publication and related dimen-

sions such as (year, genre, title, author, author age,...) . We recreate

this visualization as shown in Fig. 18 by utilizing nesting, layer-
ng and the identity mapping. Each square represents a book, with

 width representing the number of pages, and the height repre-

enting the average rating of the book. Within each square, the

roportion of darkened area indicates the age of the author at the

ime of publication. The data is faceted by creating a rows chart

apped to year . Within each year, we subdivide by genre with a

olumns chart. Finally, we create a columns chart mapped to all

one mark per row) where each column represents one book. The

idth of the bars is mapped to the numPages dimension. To gener-

te the age indication, as well as the best seller star, we nest single

arks within each bar using an identity mapping. For the age in-

icator, we map the age dimension to the height VC-channel. The

tars are created with a plot with the symbol set to star, and isBest-

eller mapped to size , setting it to 0 for False, and a non-zero value

or True. We could overload the squares to show more dimensions

sing the nesting mechanism.

FiveThirtyEight’s Gun Crime dataset [41] contains over 10 0,0 0 0

un crime incidents from 2012 to 2014. Each incident is repre-

ented as a row: (year, month, intent, age,...) . Here we demon-

trate deformation behavior, as well as layering and tweaking of a

C-channel to fit a series of labels along a single arc. At the root

ode we create one circular row for each intent . Each row is di-

ided by sex , by creating a columns chart mapped to sex . We then

ap the aggregate count to the size . Within each gender subdi-

ision, we subdivide again by age , using a columns chart. Finally,

e nest a vertical stack mapped to race. To generate labels along

he largest outermost arc, we create a new identity -mapped tubes

hart, nest all ages within it as bars, and fit the tubes chart to

atch up with the largest arc. We do this fitting by tweaking the

tart angle and width VC-channels. The resulting visualization is

hown in Fig. 19 . The identity -mapped chart is used to provide a

olar space in which the columns by age are laid out.

The Cars dataset is commonly used as a basis for example visu-

lizations of high dimensional data. Each row represents a car and

 large number of accompanying dimensions. Here, we demon-

trate different chart type nestings, representing the same data

ierarchy: engine-type → all . All of these charts can be toggled

etween by swapping the root chart type. The chart types used

s root are the following: columns, unit, squarified, sectors, tubes .

t would also be possible to change the chart type of the lower

ode. This allows for interactively exploring and prototyping new

esigns. Some example charts are shown in Fig. 20 .

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 23

Fig. 20. Variations of the data hierarchy engine-type → all . Swapping between these variations only requires the user to change the chart type. Mapped VC-channels are

transferred, thus the style is transferred.

Fig. 21. Titanic survivors, faceted by class and gender, showing a polar plot with Age mapped to y , and Fare mapped to x for every category.

t

f

s

f

a

c

b

u

b

m

c

e

6

c

c

t

a

f
Axes are available when a chart has its axis VC-channel mapped

o data value. Here, we aim to demonstrate that axes are available

or non-nested, nested, Cartesian and non-Cartesian layouts. Fig. 21

hows a plot with fare mapped to x , and age mapped to y , both

or all entries, as well as for every class-gender permutation. The

xes are deformable, are thus nestable and flexible similarly to the

harts themselves.

These examples show a range of different expressions that can

e achieved via nesting. We have demonstrated implications and

ses of different kinds of data mappings and charts used in com-

ination. The identity mapping allows for overloading charts with
ore information and the use of charts as containers for other s
harts. By combining custom mappings and nesting, a great vari-

ty of visualizations can be expressed.

. Discussion and limitations

Comparison to other visual builders: Satyanarayan et al. [42] re-

ently proposed a set of criteria to evaluate visual builders, and

ompare the three most feature rich, recent works: Data Illus-

rator [1] , Charticulator [2] and Lyra [21] . Visception focuses on

chieving expressiveness by nesting charts. We aim to show that

eatures such as glyph composition, coordinate systems and data

coping can all be expressed by leveraging nesting functionality.

24 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

Table 6

(W = what, H = how) Summary of the Visception visual builder system components. To compare to Lyra, Data Illustrator and Charticulator we recommend the user to view

this table next to the table presented in the work by Satyanarayan et al. [42] . Visception achieves many of these features through the use of nesting, while in other systems

these features are more explicitly specified. Furthermore, in Visception the data scoping of a chart is implicitly defined by the data mapping of the chart, abstracting the

specifics of this task away from the user.

Component Visception

Marks Instantiation and

Customization

W: Predefined marks only, referred to as chart type H: Start with default, click chart in outline view to change. Must

choose data grouping before seeing marks.

Glyph Composition H: Combine predefined marks into glyphs as layers. Such layers can be nested within existing charts, enabling a wide

range of combinations and mappings.

Path Points and Path Segments W: Map x and y to data dimensions. H: Drag data dimension or aggregate to the x or y VC-channel of the chart, if the

chart type is line , area or stream .

Links between Glyphs W: Limited availability. H: For example, a line chart can be layered under a plot, with identical x/y data mappings

linking the glyphs. However, for future work we aim to introduce a linking tool similar to that of Charticulator

Data Scoping for Glyphs W: Custom dimensions and groupings: all , identity , monolith , sparse and non-sparse grouping modes. H: An all

dimension to create one mark per tuple, a identity dimension to create a single mark representing the data selection

of the parent node (if root, the entire dataset). Grouping by a dimension implicitly aggregates the data by that

dimension. Groupings by a dimension are by default sparse, i.e they will not show empty marks when nesting. If

non-sparse, empty data is created to populate each nested viewport. To create one glyph per dimension, use the

Monolith grouping of a numeric dimension.

Mapping Data Values to Visual

Properties

H: Drag dimension or aggregate from data view and drop on channel, or select from menu. Available mappings depend

on the data scope of the selected chart.

Scales W: Scales for categorical, temporal, and numerical data H: Implicitly created when mapping data to channels (visual

properties)

Axes and Legends H: Created when a data binding is applied. Hidden by default if chart is nested, except for color mappings. Each

legend/axis is customized with channels, the same way a chart is customized.

Relative Layout H: Use the Bounds channel to free-form position a chart in normalized space.

Layout in a Collection H: Marks are always positioned according to the layout of the selected chart type. Each chart has a set of visual

channels, and in most cases a set of layout channels, some mappable to data (for example the x and y position of a

line chart).

Nested Layout H: If the chart is nestable (appropriate data and chart type), another chart may be nested within it. Since separate

aspects of layouts can be mapped to any eligible data dimension or aggregate, this implicitly changes the space in

which the nesting is done. With the bounds channel we can edit the bounds of a chart in a normalized space. If the

parent space is deformed (i.e an arc) the geometry of the child chart is deformed accordingly (for example, a square

to an arc).

Coordinate Systems W: Cartesian, Polar, extensible to others. H: Each chart is seen as a set of 2D shapes, these shapes are simply

transformed to fit within the given parent shape. As such, an arc can deform a rectangle to fit within itself. Each

chart type must specify how it is to be deformed.

t

a

o

t

a

e

e

b

f

p

b

p

a

n

e

7

f

i

t

a

i

f

b

t

a

c
Table 6 summarizes the Visception visual builder in the terms

proposed by Satyanarayan et al. and is meant to be compared

with Table 1 in their paper. By comparing Visception to the

other systems in this manner, it can be seen that Visception

achieves many features via nesting and the accompanying data

grouping.

Framework: While Visception provides a number of standard

charts, there are several types of more complex or specialized

types of visualizations that are currently not integrated. Our im-

plementation is designed with tabular data in mind. We support

categorical and numerical data, but currently do not provide spe-

cific operations for specifying categorical dimensions as ordinals,

as well as specialized aggregations for time-oriented data. We also

do not provide explicit support for visualizations targeted at graph

and network data such as node-link diagrams, and some other

common visualization techniques such as parallel coordinates or

parallel sets are also currently not implemented. However, we be-

lieve that they fit well within our architecture and plan to add

these and other relevant chart types in the future. Links and bands

between marks of different charts should also be possible to add

to the framework, but it proved difficult to find ways to make

bands and links work across different levels of nesting, especially

given the nature of SVG group hierarchies. The challenge of in-

creasing expressiveness is not in adding the charts themselves, but

in adding general structures to support different kinds of charts so

that they can leverage the existing nesting behavior.

Rendering and layout calculation: When a chart is fully reflowed,

its layout is calculated before it is applied to the corresponding

SVG paths. With nesting introduced, it is crucial to only apply
he necessary updates to the chart and its child charts. For ex-

mple, editing the fill color of a chart should not cause a reflow

f its children. Redundant reflows break the fluidity of the in-

eraction. We use throttling to keep the system responsive, but

dditional threading could further improve the situation. We rarely

ncountered performance problems with the SVG rendering itself,

xcept when filter effects like drop shadows are active. This is to

e expected, though it would be beneficial to disable filters ef-

ects upon zooming and interaction. Specifying which step of the

ipeline a VC-channel should trigger has removed a great num-

er of redundant full reflows. Furthermore, we noticed that com-

lex nested visualizations expose some deficiencies in SVG support

cross different platforms and applications. This is mainly due to

umeric instability arising from deeply nested SVG elements. The

xamples in this paper are screenshots taken in FireFox (version

2), which has not shown these issues.

Data querying: If the dataset is too large, there are potential per-

ormance concerns with regards to both data querying, and render-

ng of the chart itself.

For example, the suicide dataset had about 10 0,50 0 rows, and

he aggregation at the deepest level (intent, sex, age, race) took

bout 3 seconds to compute on a 2.2 GHz Quad-Core Intel Core

7 with 16GB memory.

The data querying issue could be resolved by using a server

or queries. However it is always preferable that the program can

e used without a server. Currently, we lazily compute aggrega-

ions as well as their domains when querying the data. Whenever

n aggregate is retrieved for the first time, all aggregates for that

olumn are computed and cached. We used arrow.js to store the

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 25

d

e

[

i

c

i

i

7

t

t

s

g

v

c

n

s

t

a

v

D

c

i

C

S

t

m

A

M

w

A

m

a

F

t

Fig. A.22. All general VC-channels within Visception. These exist for all charts, with

the exception of label channels not existing for area and line charts, and fill VC-

channels not existing for line charts.

S

f

ata in a columnar format, and a recursive data structure to gen-

rate queries for each VC-node. Taking a progressive visualization

43] approach might help in addressing this.

Visual builder user interface: The outline view tree has scalabil-

ty issues if the hierarchy of trees gets too wide or too deep. To

ounter this, the outline view (and other windows) can be made

nto a floating window. However, for future work we would like to

ncorporate more scalable techniques for showing this.

. Conclusion

In this paper we, presented our framework for nested visualiza-

ion design. We introduced the VC-tree as a unified framework for

he creation and manipulation of nested visualizations and demon-

trated how it can be used to flexibly specify a wide variety of data

roupings and visual mappings. We showed how the VC-tree pro-

ides fine-grained control over data mappings at different hierar-

hical levels, while providing implicit handling of deformation and

esting behavior. Based on our framework, we contributed a vi-

ual builder that exposes the full expressiveness of the framework

hrough a user interface. To demonstrate the expressiveness of our

pproach, we provided a wide range of examples demonstrating

arious features achievable via nesting.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Yngve Sekse Kristiansen: Conceptualization, Methodology,

oftware, Writing - original draft. Stefan Bruckner: Conceptualiza-

ion, Supervision, Resources, Writing - review & editing, Project ad-

inistration.

cknowledgments

The research presented in this paper was supported by the

etaVis project (# 250133) funded by the Research Council of Nor-

ay .

ppendix A. Overview of Charts and VC-channels

We present the full set of VC-channels in the current imple-

entation of Visception in Figs. A.22 and A.23 . Fig. A.22 shows

ll VC-channels that are common to multiple charts, while

ig. A.23 shows all chart types and the VC-channels unique to each

ype.
upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2020.08.007 .

https://doi.org/10.13039/501100005416
https://doi.org/10.1016/j.cag.2020.08.007

26 Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27

Fig. A.23. All chart types, and VC-channels unique to that chart type within the current implementation of Visception. Each icon represents a channel, and each VC-channel

controls the layout or some property unique to that chart, or charts with similar output marks.

Y. Sekse Kristiansen and S. Bruckner / Computers & Graphics 92 (2020) 13–27 27

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

eferences

[1] Liu Z, Thompson J, Wilson A, Dontcheva M, Delorey J, Grigg S, et al. Data il-

lustrator: augmenting vector design tools with lazy data binding for expres-

sive visualization authoring. In: Proc. CHI; 2018. p. 123:1–123:13. doi: 10.1145/
3173574.3173697 .

[2] Ren D, Lee B, Brehmer M. Charticulator: interactive construction of bespoke
chart layouts. IEEE Trans Vis ComputGraph 2019;25(1):789–99. doi: 10.1109/

TVCG.2018.2865158 .
[3] Bertin J . Semiology of graphics. University of Wisconsin Press; 1983 . ISBN

0299090604.

[4] Wilkinson L . The grammar of graphics (Statistics and Computing).
Springer-Verlag New York, Inc.; 2005 . ISBN 0387245448.

[5] Munzner T, Maguire E. Visualization analysis and design. CRC Press; 2015.
doi: 10.1201/b17511 . ISBN 9781498759717.

[6] Heer J, Card SK, Landay JA. Prefuse: a toolkit for interactive information visu-
alization. In: Proc. CHI; 2005. p. 421–30. doi: 10.1145/1054972.1055031 .

[7] Bostock M, Heer J. Protovis: a graphical toolkit for visualization. IEEE Trans Vis
Comput Graph 2009;15(6):1121–8. doi: 10.1109/TVCG.2009.174 .

[8] Bostock M, Ogievetsky V, Heer J. D3: data-driven documents. IEEE Trans Vis

ComputGraph 2011;17(12):2301–9. doi: 10.1109/TVCG.2011.185 .
[9] Wongsuphasawat K, Moritz D, Satyanarayan A, Heer J. Vega: a visualization

grammar. https://vega.github.io/ ; 2013.
[10] Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J. Vega-lite: a grammar of

interactive graphics. IEEE Trans Vis ComputGraph 2017;23(1):341–50. doi: 10.
1109/TVCG.2016.2599030 .

[11] Li G, Tian M, Xu Q, McGuffin MJ, Yuan X. Gotree - a grammar of tree visual-

izations. http://go-tree.info ; 2020.
[12] Schulz H, Akbar Z, Maurer F. A generative layout approach for rooted tree

drawings. In: Proc. IEEE PacificVis; 2013. p. 225–32. doi: 10.1109/PacificVis.2013.
6596149 .

[13] Park D, Drucker SM, Fernandez R, Elmqvist N. Atom: a grammar for unit vi-
sualizations. IEEE Trans Vis ComputGraph 2018;24(12):3032–43. doi: 10.1109/

TVCG.2017.2785807 .

[14] Wickham H, Hofmann H. Product plots. IEEE Trans Vis ComputGraph
2011;17(12):2223–30. doi: 10.1109/TVCG.2011.227 .

[15] Schulz H-J, Hadlak S. Preset-based generation and exploration of visualization
designs. J Vis Lang Comput 2015;31:9–29. doi: 10.1016/j.jvlc.2015.09.004 .

[16] Vuillemot R, Boy J. Structuring visualization mock-ups at the graphical level
by dividing the display space. IEEE Trans Vis ComputGraph 2018;24(1):424–

34. doi: 10.1109/TVCG.2017.2743998 .

[17] Ahlberg C, Wistrand E. IVEE: an environment for automatic creation of dy-
namic queries applications. In: Proc. CHI; 1995. p. 15–16. doi: 10.1145/223355.

223381 .
[18] Roth SF, Lucas P, Senn JA, Gomberg CC, Burks MB, Stroffolino PJ, et al. Visage:

a user interface environment for exploring information. In: Proc. IEEE InfoVis;
1996. p. 3–12. doi: 10.1109/INFVIS.1996.559210 .

[19] Aiken A, Chen J, Stonebraker M, Woodruff A. Tioga-2: a direct manipulation

database visualization environment. In: Proc. international conference on data
engineering; 1996. p. 208–17. doi: 10.1109/ICDE.1996.492109 .

20] Stolte C, Tang D, Hanrahan P. Polaris: a system for query, analysis, and visual-
ization of multidimensional relational databases. IEEE Trans Vis ComputGraph

2002;8(1):52–65. doi: 10.1109/INFVIS.2000.885086 .
[21] Satyanarayan A, Heer J. Lyra: an interactive visualization design environment.

Comput Graph Forum 2014;33(3):351–60. doi: 10.1111/cgf.12391 .
22] Ren D, Hllerer T, Yuan X. iVisDesigner: expressive interactive design of in-
formation visualizations. IEEE Trans Vis ComputGraph 2014;20(12):2092–101.

doi: 10.1109/TVCG.2014.2346291 .
23] Kim NW, Schweickart E, Liu Z, Dontcheva M, Li W, Popovic J, et al. Data-driven

guides: supporting expressive design for information graphics. IEEE Trans Vis
ComputGraph 2017;23(1):491–500. doi: 10.1109/TVCG.2016.2598620 .

24] Nacenta MA, Méndez GG. iVoLVER: a visual language for constructing visual-
izations from in-the-wild data. In: Proc. ACM international conference on in-

teractive surfaces and spaces; 2017. p. 438–41. doi: 10.1145/3132272.3132299 .

25] Schulz H, Hadlak S, Schumann H. The design space of implicit hierarchy visu-
alization: a survey. IEEE Trans Vis ComputGraph 2011;17(4):393–411. doi: 10.

1109/TVCG.2010.79 .
26] LeBlanc J, Ward MO, Wittels N. Exploring n-dimensional databases. In: Proc.

IEEE visualization; 1990. p. 230–7. doi: 10.1109/VISUAL.1990.146386 .
[27] Wang W, Wang H, Dai G, Wang H. Visualization of large hierarchical data by

circle packing. In: Proc. CHI; 2006. p. 517–20. doi: 10.1145/1124772.1124851 .

28] Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement.
Softw Pract Exp 1991;21(11):1129–64. doi: 10.1002/spe.4380211102 .

29] Baudel T, Broeksema B. Capturing the design space of sequential space-
filling layouts. IEEE Trans Vis ComputGraph 2012;18(12):2593–602. doi: 10.

1109/TVCG.2012.205 .
30] Parker G, Franck G, Ware C. Visualization of large nested graphs in 3D: navi-

gation and interaction. J Vis Lang Comput 1998;9(3):299–317. doi: 10.1006/jvlc.

1998.0086 .
[31] Elmqvist N, Do T-N, Goodell H, Henry N, Fekete J-D. ZAME: interactive large-

scale graph visualization. In: Proc. IEEE PacificVis; 2008. p. 215–22. doi: 10.
1109/PACIFICVIS.2008.4475479 .

32] Javed W, Elmqvist N. Exploring the design space of composite visualization. In:
Proc. IEEE PacificVis; 2012. p. 1–8. doi: 10.1109/PacificVis.2012.6183556 .

33] Loorak MH, Perin C, Collins C, Carpendale S. Exploring the possibilities of em-

bedding heterogeneous data attributes in familiar visualizations. IEEE Trans Vis
ComputGraph 2017;23(1):581–90. doi: 10.1109/TVCG.2016.2598586 .

34] Slingsby A, Dykes J, Wood J. Configuring hierarchical layouts to address re-
search questions. IEEE Trans Vis ComputGraph 2009;15(6):977–84. doi: 10.

1109/TVCG.2009.128 .
35] Henry N, Fekete J-D. NodeTrix: a hybrid visualization of social networks. IEEE

Trans Vis ComputGraph 2007;13(6):1302–9. doi: 10.1109/TVCG.2007.70582 .

36] Gratzl S, Gehlenborg N, Lex A, Pfister H, Streit M. Domino: extracting, compar-
ing, and manipulating subsets across multiple tabular datasets. IEEE Trans Vis

ComputGraph 2014;20(12):2023–32. doi: 10.1109/TVCG.2014.2346260 .
[37] Pattison T , Vernik R , Phillips M . Information visualisation using composable

layouts and visual sets. In: Proc. asia-Pacific symposium on information visu-
alisation; 2001. p. 1–10 .

38] Schlimmer J. 1987. https://archive.ics.uci.edu/ml/datasets/mushroom Accessed:

2019-11-07.
39] https://www.kaggle.com/hesh97/titanicdataset-traincsv Accessed: 2019-11-07.

2018.
40] Kim T. 2019. http://tany.kim/best-bookshelf Accessed: 2019-11-07.

[41] Casselman B. 2016. https://github.com/fivethirtyeight/guns-data Accessed:
2019-11-07.

42] Satyanarayan A, Lee B, Ren D, Heer J, Stasko J, Thompson J, et al. Critical
reflections on visualization authoring systems. IEEE Trans Vis ComputGraph

2020;26(1):461–71. doi: 10.1109/TVCG.2019.2934281 .

43] Angelini M, Santucci G, Schumann H, Schulz H-J. A review and charac-
terization of progressive visual analytics. Informatics 2018;5. doi: 10.3390/

informatics5030031 .

https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2018.2865158
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0003
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0004
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0004
https://doi.org/10.1201/b17511
https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://vega.github.io/
https://doi.org/10.1109/TVCG.2016.2599030
http://go-tree.info
https://doi.org/10.1109/PacificVis.2013.6596149
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2011.227
https://doi.org/10.1016/j.jvlc.2015.09.004
https://doi.org/10.1109/TVCG.2017.2743998
https://doi.org/10.1145/223355.223381
https://doi.org/10.1109/INFVIS.1996.559210
https://doi.org/10.1109/ICDE.1996.492109
https://doi.org/10.1109/INFVIS.2000.885086
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1145/3132272.3132299
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/VISUAL.1990.146386
https://doi.org/10.1145/1124772.1124851
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/TVCG.2012.205
https://doi.org/10.1006/jvlc.1998.0086
https://doi.org/10.1109/PACIFICVIS.2008.4475479
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/TVCG.2016.2598586
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2014.2346260
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0035
http://refhub.elsevier.com/S0097-8493(20)30125-4/sbref0035
https://archive.ics.uci.edu/ml/datasets/mushroom
https://www.kaggle.com/hesh97/titanicdataset-traincsv
http://tany.kim/best-bookshelf
https://github.com/fivethirtyeight/guns-data
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.3390/informatics5030031

	Visception: An interactive visual framework for nested visualization design
	1 Introduction
	2 Related work
	2.1 Formal graphics specifications
	2.2 Data exploration and visual authoring
	2.3 Nested visualization and related techniques

	3 The Visception framework
	3.1 Charts and VC-channels
	3.2 Visception tree

	4 Implementation and visual builder
	4.1 Implementation
	4.2 Visual builder

	5 Results
	6 Discussion and limitations
	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Overview of Charts and VC-channels
	Supplementary material
	References

