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Fig. 1. Semantic snapping allows the user to perform iterative operations to improve the compactness and consistency of a multi-view
visualization. Underlying algebraic rules called relations define the available operations for each iteration. In this example showing
the 2016 US Election poll percentages and pollsters, from our initial composition we (1) identify a confuser relation between the
bottom left and rightmost views showing the same color (red). We differentiate these views by selecting green as the fill color for the
scatter plot. We next identify a multiples relation in the two left views. We resolve this through one of two integration operations. (2*)
Overlay produces an unsatisfactory result, so we revert and (2) perform a mirroring operation to arrive at our resulting composition.
The semantic map to the right illustrates our path through semantic space.

Abstract—Visual information displays are typically composed of multiple visualizations that are used to facilitate an understanding of
the underlying data. A common example are dashboards, which are frequently used in domains such as finance, process monitoring
and business intelligence. However, users may not be aware of existing guidelines and lack expert design knowledge when composing
such multi-view visualizations. In this paper, we present semantic snapping, an approach to help non-expert users design effective
multi-view visualizations from sets of pre-existing views. When a particular view is placed on a canvas, it is “aligned” with the remaining
views–not with respect to its geometric layout, but based on aspects of the visual encoding itself, such as how data dimensions
are mapped to channels. Our method uses an on-the-fly procedure to detect and suggest resolutions for conflicting, misleading, or
ambiguous designs, as well as to provide suggestions for alternative presentations. With this approach, users can be guided to avoid
common pitfalls encountered when composing visualizations. Our provided examples and case studies demonstrate the usefulness
and validity of our approach.

Index Terms—Tabular data, guidelines, mixed initiative human-machine analysis, coordinated and multiple views

1 INTRODUCTION

Multi-view visualizations are frequently utilized to present and analyze
data. Dashboards, for example, are commonly employed for monitoring
and related tasks in a wide variety of fields. Popular visualization
systems like Tableau [39] and PowerBI provide galleries of carefully
crafted templates in order to enable the quick and easy generation of
such visualizations. However, when non-expert users would like to
extend, modify, or customize such a multi-view visualization, they may
easily fall prey to a number of pitfalls that can result in potentially
misleading or otherwise problematic results. Expert knowledge to
guide such tasks is mostly available in the form of guidelines from the
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visualization literature, which are not readily accessible to novice users.
Common examples include Qu and Hullman’s constraints, C1 (the same
data should be shown the same way) and C2 (different data should be
shown in different ways) [30]. In this paper, we present a method that
detects and helps users to resolve such potential problems in multi-view
visualization design in a semi-automatic and guided fashion.

Suppose a user of a visualization system wants to create or extend
a multi-view visualization from a set of pre-existing charts that are
individually well-designed (e.g., based on a gallery). If the user wishes
to use these visualizations in combination (e.g., in a dashboard), there
are non-obvious design opportunities and pitfalls. Views may show the
same data in different ways, or different data in the same way. A single
view may be highly informative and take up a modest amount of screen
space. However, when used in combination with other views, they may
show overlapping information, or use too much screen space. These
issues can be remedied by showing the same data with fewer views, i.e.,
making the overall design more compact. A multi-view visualization
can be made more compact, or less conflicting, by manually redesigning
and tweaking single views. However, manually detecting and resolving
conflicts, and coming up with alternate representations of views, is



cumbersome, error-prone and time-consuming. Our method lets the
user perform this process via high-level design-altering operations.

Our approach uses a semantic space with two axes that represent the
degree of consistency and compactness of a multi-view visualization.
We examine relations between views to identify opportunities to im-
prove the overall visualization with respect to these criteria. We then
provide the user with a set of operations to realize the corresponding
changes. For instance, two views may employ the same color map
for different quantities. In such a case, our approach may suggest to
differentiate the two views by modifying one of the mappings to in-
crease the overall consistency. Likewise, when the same data are shown
differently in multiple views, our method suggests different ways to ho-
mogenize them. In other cases it may be possible to integrate multiple
views in order to improve the compactness of the visualization.

The contributions of our work can be summarized as follows. Based
on a synthesis of existing guidelines from the literature, we present a
novel approach for identifying and applying potential improvements of
multi-view visualizations. We use predicate logic to represent relations
between individual views and propose operations to improve the con-
sistency and compactness of the underlying visualization based on the
identified relations. Furthermore, we propose a simple workflow and
user interface for presenting and selecting the suggested operations.

2 RELATED WORK

Visualization design and measures. Bertin’s Semiology of Graph-
ics [2] and Wilkinson’s Grammar of Graphics [44] were two of the
early influential works focusing on formal aspects of reasoning about
the effectiveness of visualizations. Munzner [28] later consolidated and
refined existing concepts and terminology, leading to a comprehensive
framework for thinking about visualization in terms of principles and
design choices. Bolte & Bruckner [3] survey measures focusing on
different aspects of the visualization process: perceptual characteristics,
task-oriented quality measures, structure-oriented measures, and meta-
perceptual processes. Perceptual characteristics such as Cleveland &
McGill’s experiments on graphical perception [6] are based on human
performance in elementary tasks such as comparing positions on a
common scale. Other measures express desirable relationships between
the data and its visual representations. For example, Tufte’s data-to-ink
ratio [41] describes the proportion of pixels used to represent data ver-
sus the total amount of available pixels. Furthermore, Correll et al. [7]
address the issue that designs may appear to be showing the data com-
pletely, while hiding important details. They propose actions to remedy
discovered vulnerabilities for different chart types. Behrisch et al. [1]
categorized different quality measures from around 250 papers. Most
of these measures were specific to a certain combination of underlying
data, task and visualization technique.

Through literature review, Zhu [50] points out why existing defini-
tions of visualization effectiveness are often incomplete: they usually
take either a data-centric, or task-centric view on what an effective
visualization is. Data-centric effectiveness measures deal with how
accurately a visualization is showing its underlying data. An example
of a data-centric framework for measuring visualization effectiveness
is Kindlmann and Scheidegger’s algebraic framework [18]. By consid-
ering symmetries between changes in data space and resulting changes
in visualization space, they describe three principles that should ideally
be true for any data-to-visualization mapping: unambiguous data depic-
tion, representation invariance, and visualization-data correspondence.
We draw inspiration from this model and adopt a similar line of reason-
ing in the context of multi-view visualizations. Based in part on the
concept of algebraic visualization design, McNutt and Kindlmann [26]
present a linting mechanism for the process of designing a chart. Their
linting is realized as a Python library that evaluates visualizations cre-
ated with matplotlib, and returns a list of rules that are violated. While
our work is based on similar fundamental considerations, we focus on
multi-view visualizations and expose potential revisions through a user
interface.

Many approaches take into account both data and tasks. Cantu et
al. [4] outline an approach to identify relationships between visual-
ization challenges and representation components (e.g., data transfor-

mations, filtering techniques, visual variables). They argue that these
relationships can further our understanding of the mechanisms behind
visualization components, which could eventually be used to build
visualization recommendation tools. Silva et al. [38] survey work done
on using different color scales in visualization, with a focus on desired
properties and guidelines for choosing the right colors. They highlight
that it is important to consider factors such as the type of data, type of
visualization, type of task, and audience. As pointed out by Zhu [50],
there are multiple disjoint, sometimes conflicting sets of guidelines
and measures. Efforts have been made to facilitate convergence and
understanding between different viewpoints. Diehl et al. [9] initiated
the VisGuides forum both to facilitate collection and discussion of
visualization guidelines, and knowledge about visualization in general.
Engelke et al. [11] highlight that there is a gap between the communi-
ties who propose visualization guidelines, and those who need them.
They provide a conceptual model called VISupply that highlights prob-
lems and opportunities with how guidelines are currently “shipped” to
non-experts.

Authoring tools and visualization recommendation. Visualiza-
tion authoring tools help users creatively express a wide range of indi-
vidual charts. While these systems have much design freedom, they
also rely on the expertise of the user. Zhu et al. [49] survey different
tools for automatically generating infographics and visualization rec-
ommendations. Examples of systems that mostly focus on authoring
and design flexibility include Charticulator [33], Lyra [35], iVisDe-
signer [32], Data Illustrator [22], Data Driven Guides [17]. These
systems all use varying underlying frameworks for representing visual-
izations. We provide a set of relations and operations specified at a high
enough level so that they can be expressed in terms of most individual
frameworks.

Several efforts have been made to make expert knowledge avail-
able through software. Among them, visualization recommendation
systems can potentially take into account expert knowledge to steer
which revised designs are presented to the user. MacKinlay’s APT (A
Presentation Tool) [23] was among the first of these systems. He used
a composition algebra for designing visualizations, and evaluated their
effectiveness in accordance with Cleveland & McGill’s effectiveness
metrics [6]. Wongsuphasawat et al. proposed CompassQL [46] as
a general language for querying over the space of visualizations, to
be used in visualization recommender systems. Voyager [45] allows
for exploring data via automatically generated visualizations. With
Voyager 2 [47], the user is able to partially specify what a view should
show by using wildcards and also see automatically-generated charts
showing data related to the existing views. Data2Vis [8] is a trainable
neural translation model for automatically generating visualizations
from datasets. It is powered by formulating visualization generation as
a language translation problem, where data specifications are mapped to
Vega-Lite specifications [36]. Grammel et al. [13] explore how novices
construct visualizations. Their findings suggest the need for a tool that
supports iterative refinements, and explanations that help with learning.
Our method shares a similar line of thought by enabling incremental
refinement of a multi-view visualization. Show Me [24] is a set of
user interface commands that provide a way to display an additional
data attribute within a view, as well as high-level commands for build-
ing views for multiple fields. Draco [27] makes visualization design
guidelines available for a wider audience by formalizing the knowledge
into precise constraints, which can then be used and accessed in an
Answer Set Programming environment. They model single visualiza-
tions as sets of logical facts, and represent design guidelines as hard
and soft constraints over these facts. Dziban [21] further extends Draco
with anchoring mechanisms to help drive specification queries with
increased user agency. These works all represent different ways of
representing and reasoning about visualizations. Our method differs
from these approaches in that it focuses in the incremental refinement
of multi-view visualizations.

Multi-view visualization design. One of the most common use-
cases of multi-view visualizations are dashboards. Sarikaya et al. [34]
construct a design space of dashboards, by analyzing multiple examples
of dashboards found “in the wild.” QualDash [10] is a task-oriented



dashboard generation engine that enables the mapping of specific user
task sequences in healthcare quality improvement to a view composi-
tion. For dashboards and multi-view visualizations in general, multiple
views must be laid out on a single screen, or even multiple screens.
PanoramicData [48] is a visual analysis tool using a canvas metaphor
to explore and combine data views. We use a similar metaphor in our
approach, although we focus on semantics rather than filtering and
linking the views. Vistribute [14] is a framework that automatically
distributes visualizations and user interface components among multi-
ple heterogenous devices. Scout [40] is a system that helps interface
designers to create layouts by using high-level constraints based on
design concepts such as semantic structure, emphasis and order. While
our approach currently does not address layout, we believe that our
method could be combined with similar approaches to also take into
account layout considerations.

Composed views such as small multiples [42] allow for compar-
ing visualizations. Gleicher et al. [12] provide a general taxonomy
of visual designs for comparing visualizations, with three categories:
juxtaposition, superposition and explicit representation of relationships.
Elzen and van Wijk [43] leverage small multiples so that they are not
only informative, but also helpful for the data exploration process itself.
Through a series of graphical perception experiments, Ondov et al. [29]
investigated which compositions of multiple charts are the most effec-
tive for different tasks. From 360 images of multi-view visualizations
collected from IEEE VIS, EuroVis and PacificVis publications from
2011 to 2019, Chen et al. [5] identify common multi-view visualization
practices, including typical view layouts, view types, and correlations
between view types and layouts. The patterns found among these views
are made available through a multi-view visualization recommendation
system, allowing users to interactively browse different designs. We
draw inspiration from these approaches by enabling the transformation
of, for example, two bar charts into an item-wise grouped or chart-wise
juxtaposed mirrored bar chart in order to increase the compactness of
the overall visualization, as in Figure 5.

Conventional snapping creates a “gravity field” around geometric
objects, making it easier to place them together in certain ways. Hud-
son [15] introduced the notion of semantic snapping as an interaction
technique for geometrically snapping objects together only if the objects
are specified to be semantically related. Our work is a continuation of
this basic concept, extending it to the scenario of multi-view visualiza-
tion design and focusing on the semantic rather than geometric aspects.
Shadoan & Weaver [37] explore semantic relations in multi-view vi-
sualizations using a hypergraph querying system. While such queries
are constructed similarly to relations in our approach, the former are
driven through cross-filtering on attribute relationship graphs, while
ours draws from rules heavily inspired by Kosslyn’s principles [19]
and Kindlmann and Scheidegger’s algebraic framework [18]. The latter
framework has been used to identify effective visualization types for
certain user tasks, e.g., table cartograms [25]. Kim et al. characterize
responsive visualization strategies via their targets, i.e., element(s) of a
design that change, and actions, i.e., how element(s) are changed [16].
This semantics-based characterization parallels our notion of relations
and operations, although the underlying models differ.

Qu and Hullman [30] discuss how to operationalize Kosslyn’s prin-
ciples [19] with the two following constraints: C1 (encode the same
data in the same way), and C2 (encode different data in different ways).
These two constraints are further detailed by specifying lower-level
constraints on encodings across two views. In a later paper [31], they
found through a Wizard-of-Oz study that Tableau users unknowingly,
and with some exceptions, respected their constraints C1 and C2. They
found that study participants were positive to having a consistency
checker tool to surface such warnings. Similarly to Qu and Hullman,
we operationalize the principles C1 and C2 on an encoding-level, but
we do so by using a model inspired by Kindlmann and Scheidegger’s al-
gebraic framework [18]. Furthermore, we present a practical realization
of this concept that both shows how to identify potentially problematic
relations and introduces a set of concrete operations to address the
relations, i.e., remove the relation itself or a problem caused by the
relation.
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Fig. 2. Conceptual figure showing the semantic space with relations and
operations for our semantic model. Operation 4 displays the homogenize
operation which is available as a result of a multiples relation (the two
axis scales are different, but should be the same if the underlying data
represents the same quantity).

3 SEMANTIC SNAPPING MODEL

Semantic snapping is the process of incrementally modifying a multi-
view visualization by aligning its individual views with respect to their
semantic, rather than their geometric, attributes. The main underpin-
ning of our method is that a multi-view visualization, and its potential
revisions, can be placed into a semantic space with two dimensions
representing the degree of compactness and degree of consistency. We
provide a conceptual overview of this semantic space in Figure 2. In
other words, a potential revision of a design is either more or less com-
pact, or more or less consistent, than the original design. Our method
identifies these potential revisions, and presents them to the user as
operations. By executing these operations, the user is able to intuitively
navigate the semantic space of revised designs.

Achieving high-level goals by piecing together low-level modifica-
tions can be tedious, especially for novice users. In other software, such
as word processors, semi-automatic tools help with this workload by
highlighting errors, and suggesting corrections to these errors. Previous
approaches, such as McNutt and Kindlmann’s linting mechanism [26],
have already explored this direction by providing functionality akin to a
spell checker for a single visualization. In contrast, semantic snapping
can be seen as more similar to a grammar checker, since it focuses on
relationships between visualizations, just as a grammar checker ana-
lyzes relationships among words or phrases. Errors or potential errors
represent detected inconsistencies or redundancies between views, and
error corrections are represented as suggested operations to revise the
composition of views.

Our method identifies existing and potential semantic inconsisten-
cies and redundancies, so-called relations, between single views. Each
relation identifies a potential problem which can be resolved by an op-
eration. Thus, each operation is a high-level modification to the overall
design. It is necessary to have the user involved in each modification to
the design, since consistency and compactness are sometimes traded
off for other design considerations [31]. The cycle of finding relations
to infer available operations is repeated every time the design is altered.

3.1 Semantic Space
We begin with defining the terms that comprise our semantic space.
A canvas is composed of multiple views of a single tabular dataset,
where each individual view displays a single chart of a certain type (for
example a bar chart, scatter plot, line chart, etc.). A chart grouping
is a data dimension by which a chart is grouped, similar to SQL’s
GROUP BY command. For example, a bar chart grouped by country will
have one bar for each distinct country in the dataset. Each chart has
a set of channels, which may or may not be mapped to data. Data
shown by a channel is denoted as a data mapping, which may also be



Relation Specification Illustration Possible Operations Illustration

(a) Full redundancy g = 1∧∀c(c = 1 → d = 1) D1D1 Delete one D1

(b) Partial redundancy g = 1∧∀c((c = 1∧d 6= 1)→∃!D = 0) ∈D2D2 D1D1 Integrate, or delete D1 view D2

(c) Multiples (1)
same grouping

g = 1∧∃c((c = 1∧∃D 6= 0)→ d 6= 1) D1 D2 Integrate or homogenize D1
D2

(d) Multiples (2)
same data

g 6= 1∧∃c((c = 1∧∃D 6= 0)→ d = 1) D1 D1 Homogenize D1 D1

(e) Hallucinator g = 1∧∃c(c = 1∧d = 1∧∃D 6= 0∧ v 6= 1) D1 Homogenize D1

(f) Confuser ∃c(c = 1∧d 6= 1∧ v = 1) D2D1 Differentiate D1 D2

Table 1. All relations specified in terms of our model. The lower case letters: g, c, d, and v represent equalities (1) or inequalities (0) between
chart groupings, channels, data mappings and visual outputs, and the specifications are predicate logic expressions operating primarily on these
(lower case) equalities or inequalities. The uniqueness quantifier on ∃!D indicates that there exists exactly one data mapping that satisfies a certain
condition, for example being unmapped (= 0) for (b). For the partial redundancy relation, D1 ∈ D2 signifies that all data shown by one view (D1) is
also shown by the other view (D2).
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what identifies these two views as multiples (1) same grouping.

empty (indicating an unmapped channel). For example, consider the
fill color channel in a scatter plot, which can optionally be mapped to
data to display an additional quantitative data attribute for each mark.
When a channel has a data mapping, the data are scaled from a data
domain to a resulting visual output which directly or indirectly affects
the appearance of the chart. The data domain denotes the minimum and
maximum value of a certain attribute, or attribute aggregate, and is used
as an input for the scale from data to a resulting visual output. When
groupings differ, sampled data domains may also differ. Furthermore,
domains may be different due to custom configuration of individual
views. While there are different ways to arrange and transform tabular
data, we limit the scope of chart groupings and channel mappings to
single data dimensions. Summarized, a view has one chart grouping
and multiple channels. Each channel has a data mapping, a data domain
(if the data mapping is non-empty), and a resulting visual output. A
view is part of a canvas, and a canvas has a certain position in the
semantic space.

The semantic space has two axes, representing (1) redundancy/com-
pactness (shorthand: compactness axis) and (2) inconsistency/consis-
tency (shorthand: consistency axis). The compactness axis ranges from
redundant to compact, whereas the consistency axis ranges from incon-
sistent to consistent. For example, if a canvas is made more compact
by turning two views into one, the canvas becomes less redundant, thus
moving up along the compactness axis. Semantic snapping corresponds
to movement along one of these semantic axes.

It is important to note that more consistency and compactness is not
always desirable. For example, Qu and Hullman [31] found that in
cases, homogenizing axis domains is undesirable due to the extra white

space it generates. Conversely, a compact design is not always more
readable, or the most ideal for telling a story. Our operations make it
possible for the designer to explore this space of alternative designs
more rapidly, one semantic axis at a time. Relations between individual
views identify not only where the canvas is currently located, but also
which changes (denoted operations) are possible.

3.2 Algebraic Relations
Relations are explicit specifications of redundancies or inconsistencies
between views. Although relations themselves do not indicate whether
a design is good or bad, they are available to help the user identify
potential problems in their overall visual design.

Our specification of relations draws both from Qu and Hullman’s
evaluation constraints [30] and a generalization of the principles es-
tablished in Kindlmann & Scheidegger’s algebraic model of visual
design [18]. Originally developed in the context of only a single visual-
ization, their model describes the relationships between three elements
of the visualization process: the data, the representation of the data, and
the resulting visualization. We adopt two principles from this model,
which are easily framed within the two high-level constraints stated by
Qu and Hullman [30]:

C1 Encode the same data in the same way. A violation of this con-
straint corresponds to representation invariance in Kindlmann & Schei-
degger’s algebraic model, which states: if the data of two visualizations
are the same, the resulting visualizations should also be the same. A
violation of this is called a hallucinator (Table 1e).
C2 Encode different data in different ways. A violation of this con-
straint has a corollary again in Kindlmann & Scheidegger’s model as
an unambiguous data depiction, which states: if the resulting visualiza-
tions are the same, the data should also be the same. If this principle is
violated, we say that there is a confuser (Table 1f).

We represent aspects of a single view with the following four ele-
ments: the chart grouping (G), a channel (C), the data shown by the
channel (D), and the resulting visual output (V). Typically, the term
“channel” can denote the entire mapping from data to visual output.
However, in our case C simply represents the name of the channel, e.g.,
fill color, and we use the other lower-level elements to concisely specify
relations between views as predicate logic expressions as specified in
Table 1.

A single view has a grouping (G), which is the first element in our
model. Each view has multiple channels, with (C) referring to a single
channel, and correspondingly each single channel has a data mapping
(D) and a resulting visual output (V). Thus, each view has one (G, C,
D, V) tuple per channel, where G is always the same, while (C, D,
V) is unique to each channel as shown by Figure 3. Consider a bar
chart grouped by category, showing average rank on the y-axis. Since
G=category, C=bar height, D=average rank, and V =y-position, the tuple
for the channel is then (category, bar height, average price, y-position)



as seen in Figure 3. If a channel does not have a data mapping, this is
expressed as D = 0.

By considering a single view to be a set of (G, C, D, V) tuples
(see Figure 3), we can establish relations between two views by using
predicate logic on the tuples and their equalities. When comparing the
tuples of two views, we use the same lower case letter to denote equality
or inequality. For instance, if two views have the same chart grouping,
the relation between G1 and G2 is the identity: g = 1. Conversely, if
the groupings are different, then g 6= 1. If a relation exists between the
views A and B, and between A and C, it also exists between B and C.

A relation exists between two views if there are two tuples (one
from each view) that satisfy the predicate logic formula. For example,
consider the predicate logic expression of the multiples relation: g =
1∧∃c((c = 1∧∃D 6= 0)→ d 6= 1). This relation exists between two
views if there is a pair of channels (one from each view) that satisfy
this expression. As illustrated in Figure 3, the two highlighted views
have the same grouping (category), but are showing different quantities
on the y-axis (rank vs. score), making the multiples expression come
true.

As discussed by Qu and Hullman [30], two encodings are showing
the same field when the fields are semantically the same. We use this
definition. Thus, if two fields are semantically the same, d = 1. To
confirm semantic sameness, the user is asked to confirm if fields are the
same, as seen in Figure 5.1b if this cannot be directly determined. We
also specify that d 6= 1 if both data mappings are empty, but the grouping
is different. For example, suppose two pie charts are respectively
grouped by gender, and age group, and are both colored red. A sector
of the pie chart can then represent either an age group, or a gender, yet
they are colored the same. This is a potential confuser since each are
showing different data, but are colored the same.

We define that the stroke color channel of charts without filled shapes
(e.g., a line chart), and the fill color channel for a any chart with a fill
(e.g., bar chart, scatterplot), is the same. For example, in the example
shown in Figure 1.1 we see a line chart and a scatter plot both using the
color red. With our notion of channel equality, c = 1 since the stroke
color of the line chart is the same as the fill color of the scatterplot.
Furthermore, they are grouped differently (g 6= 1), and both of the color
channels are not mapped to data. As a result of these two factors, the
data mappings of the two channels are seen as different: d 6= 1.

The degree of redundancy and compactness in a view can be mea-
sured by the number, and severity, of detected relations. A design is
more compact if it has fewer relations indicating redundancy, and more
consistent if it has fewer relations indicating inconsistency. For our
method, it is only necessary to know that a relation exists, and that it
can be resolved. However, generating a quantitative score from these
relations would be possible, and useful for many other problems. These
relations are specified and visually summarized in Table 1. We discuss
each of these relations in detail in the remainder of this section.

R1: Full Redundancy. If two views are showing exactly the same
data, there is a full redundancy relation between them. The full re-
dundancy relation is present when two views have the same grouping
(g = 1) for all channel pairs (∀c). If the channels are the same (c = 1),
then they also show the same data (d = 1). For example, if two bar
charts are both grouped by number of cylinders (g = 1), and their bar
height is mapped to average price, then (c = 1 → d = 1) is true, i.e.,
there is a full redundancy relation between them.

R2: Partial Redundancy. Two views A and B are partially redundant
if A is showing all data shown by B, as well as some data not shown
by B. More formally, two views are considered partially redundant
if they have the same grouping (g = 1), and for all pairs of channels
showing different data (c= 1∧d 6= 1), one of the channels is unmapped,
and all the unmapped channels consistently belong to the same view
(∃!D = 0). For example, consider two bar charts, both grouped by
number of cylinders (g = 1) and with bar height mapped to average
price, but with one chart also indicating the number of cylinders via its
fill color channel. When comparing the fill color channels of the charts
(c = 1), we see that they have different data mappings (d 6= 1), and that
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Fig. 4. These four figures illustrate all degrees of redundancy. There
is a multiples relation between (a) and (b) since they both have the
same grouping, but are showing different data via the bar height channel.
Between a and c we see there is a partial redundancy, since (a) is
showing the exact same data as (c), but (c) is also showing more data
via the fill color. (a) and (d), as well as (c) and (d) are differently grouped
multiples showing the same data via the bar height.

one of them is not mapped to anything (∃!D = 0). Thus, all the data
shown by the one chart is also shown by the other chart.

R3: Multiples. There are two kinds of multiples: (1) views with same
grouping but different data, or, conversely, (2) views with different
groupings but same data. As an example of the former, suppose two
equally grouped bar charts showing a different quantity via the bar
height channel as illustrated in Figure 4a and b. Multiples with different
groupings could for example be two differently grouped bar charts
showing the same aggregated dimension via the bar height channel (see
Figure 4a and d). The multiples relation is specified more precisely in
Table 1c-d.

R4: Hallucinator. Corresponding to Kindlmann and Scheidegger’s
model, a hallucinator is present when the same data are shown in
different ways. A hallucinator exists on a canvas if two views with the
same chart grouping (g = 1), have a common channel (c = 1) showing
the same data (d = 1), but with different visual output (v 6= 1).

R5: Confuser. A confuser exists on a canvas if the same channel
(c = 1) of two views has the same visual output (v = 1), but different
data mappings (d 6= 1). As an example, consider charts using the same
fill color (for example, reds) to show different data.

Relations identify redundancies, inconsistencies, and alternative de-
sign opportunities. They are detected by iterating over all view permuta-
tions and checking whether the permutation satisfies the predicate logic
expression that corresponds to the rule. If the expression is satisfied,
the relation exists between the views. Each relation has corresponding
”resolutions” – operations which resolve the given relation by altering
one or more of the affected views.

3.3 User Operations
Operations resolve potential problems between views of a canvas. The
main idea behind each operation is to resolve a certain relation by
changing or removing one or more views. At a low level, operations
can, for example, transfer a data mapping from one view onto another,
or replace two views with another view showing the same data. Our set
of operations do not exhaustively express all possible combinations of
low-level changes, but serves to demonstrate the wide range of possible
operations to navigate the semantic space of revised designs.



Our model specifies the following classes of operations, which we
summarize in Table 1 along with associated their associated relation(s).

O1: Delete. The first operation is the most simple. If there is a full
redundancy relation between two views, the user may delete one view.
With one of the views removed, the formula for full redundancy, g =
1∧∀c(c = 1 → d = 1), will not evaluate to true for that pair of views,
since the pair no longer exists.

O2: Homogenize. The homogenize operation resolves hallucinator,
as well as multiples relations, where the same data are shown differently.
On a high level, the homogenize operation makes dissimilar views more
similar. For example, consider two bar charts that are showing the
same data dimension with a different color scheme (hallucinator), as
in Figure 7.1a, or that are using different data domains (multiples),
as shown in Figure 6.2. The homogenize operation resolves these
conflicts by making the visual outputs, or data domains equal for the
two views. If visual outputs are made equal, the v 6= 1 portion of the
hallucinator will evaluate to false and thus remove the relation. For
multiples with different domains, equalizing the domains will make the
views consistent. If only the data domains are different, the operation
is presented to the user as homogenize data. When the visual outputs
differ, the user will see the operation as homogenize style, although it
also implicitly homogenizes the data domains.

O3: Differentiate. The differentiate operation addresses a confuser,
where two views show different data in the same way. This is achieved
by making the views to show different data in different ways (Table 1f).
For instance, if different data are shown using the same color scheme,
the differentiate operation will assign different color schemes to the
views. An example of this operation could take two views showing
different data, such as age and income, where both views are mapped
to the color red. This is ambiguous. Our solution is to use a different
color scheme for one of the views. When the visual outputs are made
different, i.e., from v = 1 to v 6= 1, the formula for a confuser, c =
1∧d 6= 1∧ v = 1, will evaluate to false, since v 6= 1.

O4: Integrate. The integrate operation resolves redundancy to create
a visually compact canvas, and can be used to resolve partial redundan-
cies and certain multiples relations. With a partial redundancy relation,
there are two possible solutions: delete the view showing the least data,
or integrate the “missing” mapping into this view while deleting the
other (Table 1b). Views sharing a multiples relation where the data
grouping is the same (Table 1c) can be integrated in several ways.
Since the multiples relation can only exist between two views, the act
of combining these views by integration also removes the relation from
the canvas. Views that are highly semantically similar are sensible to
integrate, provided that: (1) the chart type is the same, and (2) if d = 1
for the channel representing the x-axis. There are four ways to perform
this integration: overlay, group, stack, and mirror. Overlay integrates
multiple views into the same coordinate system. This operation can be
applied to scatter plots and line charts. Figure 1.2* shows an example of
an overlay operation when applied to a line chart. The mirror operation
can be applied to line charts, area charts, and bar charts. This operation
first aligns the two views and then mirrors one of them, causing their
marks diverge from a common origin in a manner similar to violin plots.
We demonstrate an example of this in Figure 5.2b. Similar to the group
operation, the stack operation stacks views into a single view, turning,
for instance, a set of bar charts into a stacked bar chart as shown again
in Figure 5.2c. The group integration bundles several views into one
single view. It can, for example, turn multiple bar charts into a grouped
bar chart, as illustrated in Figure 5.2d.

Operations make high-level changes to the canvas, making it more
compact or more consistent. For an operation to be applicable to a
design, a certain relation must exist. When the user selects a view in
the interface, our method reveals available operations to resolve a given
relation. When the operation is performed, the corresponding relation
is addressed.

Listing 1. Pseudocode of the general execution flow of semantic snap-
ping.

1def findRelations ( views ) :
2byView = { view : [ ] f o r view in views }
3subsets = permutations ( views )
4f o r view1 , view2 in subsets :
5f o r relationFn in allRelations :
6i f relationFn ( view1 , view2 ) :
7f o r view in subset :
8byView [ view ] . append ({
9’subset’ : [ view1 , view2 ] ,
10’relation’ : relation })
11re turn byView

12

13def semanticSnap ( views ) :
14relationsByView = findRelations ( views )
15view = userInput ( ) # User s e l e c t s a view
16relations = relationsByView . get ( view )
17operations = [ findOperation ( r ) f o r r in relations ]
18display ( operations ) # User s e e s o p e r a t i o n s
19selectedOperation = userInput ( ) # User s e l e c t s
20newViews = selectedOperation . execute ( )
21re turn newViews

Listing 2. Pseudocode of an example relationFn, invoked at Listing 1 line
6, modelling a hallucinator as specified in Table 1e.

1def isHallucinator ( view1 , view2 ) :
2i f isSameGrouping ( view , view2 ) :
3pairs = findChannelPairs ( view1 , view2 ,{
4’d’ : 1 , # same d a t a
5’v’ : 0 , # d i f f e r e n t v i s u a l o u t p u t
6’mappedToData’ : 1 }) # D != 0
7re turn pairs . length > 0
8re turn 0

3.4 Snapping Algorithm

The goal of our approach is to provide the user with a set of available
design-altering operations upon selection of a single view. The outlined
algorithm in Listing 1 achieves this goal by identifying all relations and
mapping them to operations for any selected view. When an operation is
selected, a revised set of views is generated. The relations correspond to
the descriptions in Table 1, and can in practice be modeled as constraints
or functions.

The first step of the algorithm is to identify all relations between all
subsets of views. The logic of each relation is outlined in Table 1, and
is mapped to a relation function that takes in two views, and returns
1 if the relation exists between the views, or 0 if the relation does not
exist between the views, as exemplified in Listing 2. Consider line 5 in
Listing 1. Here we loop over each relationFn (relation function), and
invoke it using two views as arguments. If this invocation returns 1, the
relation exists between the two views. When relations are identified
for all views, they are grouped by the views they affect. When the user
selects a view, the view’s relations are looked up and used to identify
which operations are possible. Line 17 of Listing 1 illustrates how
relations are mapped to corresponding operations. When an operation is
executed, a new set of views is generated and displayed to the user. With
this new set of views, the algorithm is re-run, recomputing relations
and potential operations.

4 WORKFLOW & IMPLEMENTATION

Our method improves and refines canvas designs incrementally. In
order to create a canvas, single visualizations must also be generated.
While the creation of single visualizations is not a part of our method,
we used the existing Visception visualization editor environment [20] as
a basis to realize and demonstrate our method. Our semantic snapping
interface enables the user to build a canvas using simple drag & drop
operations from a visualization gallery and to optimize the design with
semantic snapping step by step. In order to build a canvas, the user
places individual views into a grid layout and is presented with a set
of potential operations at every step. While browsing the operations,
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Fig. 5. Semantic snapping interface and workflow. The semantic snap-
ping interface presents the user with a canvas to place single views
within a larger layout. A clickable button on top of each view exposes the
possible operations available to resolve a relation between two views, in
this case a multiples relation (1). The user homogenizes the two views
after confirming that the y-axes are semantically the same. This step
represents a move towards increased consistency in semantic space.
The user may choose to keep or undo the result of any performed oper-
ation. On execution of an operation, we recompute the set of possible
operations. The user may next perform any one of three available inte-
gration operations to resolve a multiples relation in this view (2). The
user selects the mirror operation to increase the compactness of the
visualization in semantic space.

the user is presented with information about what they do and what
potential problems in the design they resolve.

We use two primary views in our interface: the singles view and the
canvas view. Both are shown in Figure 5.1. The singles view is a view
from where the user can drag single visualizations into the canvas view.
Each tile in the singles view represents a data source, which, when
clicked, expands to more tiles–one for each single visualization of that
dataset. We highlight two of these single visualization tiles in Figure 5,
which have been dragged into the canvas view.

4.1 Workflow
The main workflow of using semantic snapping is integrated into the
canvas view. We demonstrate this workflow in Figure 5. As the user
is constructing a canvas with multiple views, our approach detects re-
lations and makes the corresponding operations available along every
step of the way. Whenever an existing view is added to the design, or
modified by an operation, relations are re-detected and the correspond-
ing operations are updated. In order to see possible operations, the user
clicks on the view of interest. When the view is clicked, a menu appears,
showing how many operations are available per category (homogenize
data, homogenize style, differentiate, and integrate). Only categories
with available operations are displayed. The user can then click on a
category and see all available operations as tiles. Each operation tile
informs the user of the potential problem and its solution. Consider

the canvas in our workflow example where there is a multiples relation
between two bar charts (Figure 5.1), showing sum of sales in Europe,
and North America. To verify that the fields are semantically equal,
the operation tile will ask the user ”Are sum(Europe) and sum(North
America) representing the same quantity?”. If the user clicks ”Yes”,
the domains are made consistent using a homogenize operation. When
any operation is executed, the user is given the option to undo or keep
it as shown in Figure 5.2. If ”keep” is clicked, the current canvas is
re-evaluated and the user can proceed to explore other operations, add
new views, or otherwise customize the setup.

4.2 Implementation

We implemented semantic snapping within the framework of Viscep-
tion [20], an application written in Javascript ES6 using VueJS for
user interface components and D3 for SVG rendering. The underlying
framework of the authoring tool was leveraged to realize the relations
and operations to support semantic snapping.

The relations are specified as functions taking in two views as pa-
rameters, returning true if they match the given relations. Operations
are also defined by functions that take in a set of views, and a detected
relation. From this set of views and the detected relation, we can infer
what operations are possible, and also take into account the specific
chart type and other edge cases. When the user modifies a design, a
pipeline of four steps is run. First, all relations are detected for all sets
of relations as shown in Listing 1, and the relations are stored so that
they can be looked up on a per-view basis. When the detection is done,
the editor is ready for the user to specify which view to change. When
the user clicks on a view, all relations and corresponding sets of views
are looked up, and all possible operations are computed. When the
user selects an operation, it is executed, and the existing set of views is
modified, and relations are recomputed.

5 CASE STUDIES

We next demonstrate our semantic snapping method workflow in three
case studies. These studies include data from the 2016 US Election
Results, Nightingale’s historic Soldier Morbidity & Mortality, and
a COVID-19 dataset. We selected these particular datasets as they
are both representative of the type of data we expect to be used for
our approach, as well as for their familiarity and applicability to the
visualization community. Each case study represents a possible pathway
through semantic space from an initial to a more compact and consistent
design. We illustrate such pathways through semantic space with a
semantic space map positioned in the upper right of each associated
figure.

5.1 2016 Election Results

In this case study we demonstrate a user flow that identifies confuser
and multiples relations that are resolved via differentiate and integrate
operations. We also use this study case to demonstrate a flexible work-
flow whereby the user may perform and then revert an operation to
arrive at their preferred final design.

In Figure 1 we see an initial canvas comprised of three views de-
picting data from the 2016 US Election. These views show election
polls over time for the two main candidates (left, top view: Democrats,
bottom view: Republicans), as well as average pollster ratings for the
two candidates (right scatter plot view). We localize our position in
semantic space at the origin (pos. 1) in the map in the upper right of
Figure 1. We quickly identify a confuser relation between the bottom
line chart and the right scatter plot (Figure 1.1). This is because the
color channels of the two views are using the color red as visual output.
This is particularly misleading in the right scatter plot view, where
each dot represents a pollster, since red may indicate that all pollsters
are advocates for the Republican party. Since these charts are using
the same visual output to represent different data domains, our model
recommends a differentiate operation to change their respective visual
outputs. We change the color of the scatter plot to green, as this is
color is more neutral. We keep the red color in the lower left view; this
makes sense to remain red, as this is the color of the US Republican
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Fig. 6. Case study workflow demonstrating semantic snapping to resolve
two multiples relations in the canvas depicting 1858 solider morbidity &
mortality from the Nightingale dataset. This end result is a semantically
consistent and compact visualization.

Party. In our semantic map we have increased the consistency of our
canvas and are now at pos. 2.

We next observe a correspondence between the two leftmost views.
These views share the same x-axis, but show a different quantity on the
y-axis (bottom view: avg. Trump, top view: avg. Clinton). In other
words, they share a multiples relation. We consequently can integrate
them to produce a more compact visualization using the mirroring (Fig-
ure 1.2) or overlaying operation (Figure 1.2*). Integrating these charts
additionally produces a more consistent visualization, because both
overlay and mirror perform an implicit axis homogenization step. To
mirror or overlay, we simply select and execute either operation. In
this case we first try overlay (Figure 1.2*). However, while the result
is very compact, it is difficult to read. We choose to do a different
integrate operation to resolve the multiples relation. We revisit the
available operations for this relation and select this time to mirror the
two views (Figure 1.2). This path in semantic space leads us to an
equally consistent, while slightly less compact visualization. The re-
sulting chart composition, however, is easier to read, which illustrates
the flexibility of our approach in incorporating user goals and decision
processes.

5.2 Nightingale Soldier Morbidity & Mortality in 1858
In this case study we use the popular Nightingale solider morbidity &
mortality dataset to illustrate the use of additional operations to resolve
multiples between canvas views.

Figure 6 shows the fate of British soldiers in the year of 1858 in
the Crimean War. In our traversal through semantic space we begin
again at the origin in our semantic map at the upper right (pos. 1).
The top two views of the initial canvas display area charts. The left
view plots the number of soldier deaths over time while the right plots
the number of unharmed soldiers over time. Because these two views
comprise the same grouping (soldier morbidity & mortality) with a
different data domain plotted onto the y-axis, we can say that these
views share a multiples relation (Figure 6.1). We can compact the views
by mirroring (integrating) the views. When the charts are mirrored, the
domains are also implicitly homogenized, which additionally increases
the consistency of the resulting chart. This brings us to pos. 2 in our
semantic map. It would also be possible to keep the multiples relation,
and only homogenize the data domains on the y-axis. However, our
choice to compact the views with mirroring illustrates that, while our
model can show potential problems in a canvas, it is ultimately up to
the user to decide how they wish to design their visualization.

We may also compact the three bar chart views arrayed along the bot-
tom of the canvas that show different causes of soldier death (Figure 6,
bottom of initial canvas). Each of the three views plots by number of
deaths caused by disease, wounds, or other, respectively, over time.
Because these views share the same grouping (cause of solider death)

and data domain on the x-axis (time), but their data domain plotted
to the y-axis is different, we identify a multiples relation (Figure 6.2).
However, by looking at the data, we also know that the y-axes represent
the same semantic quantity – i.e., number of deaths. As a consequence
of this, they can be integrated via a group or stack operation. Since our
goal is to produce a maximally compact visualization, we choose to
stack the views. This step additionally homogenizes the data domains
for increased consisstency. This brings us to the result point in our
semantic map.

5.3 COVID-19 in Germany
COVID-19 dashboards are now ubiquitous in society with great im-
portance for public health. However, integration of numerous charts
to demonstrate various data aspects in a dashboard may introduce nu-
merous possible conceptual and perceptual pitfalls. For our final case
study we demonstrate the ability of our approach to assist in resolv-
ing the complexities of creating a semantically consistent COVID-19
dashboard. We demonstrate an overview of this workflow in Figure 7.

The initial layout as shown in the central part of Figure 7 shows
six charts. The first chart column shows COVID-19 deaths grouped
by age, where the top bar chart represents total deaths and the bottom
streamgraph indicates deaths over time. The second column displays
COVID-19 cases that are again grouped by age, with the top bar chart
indicating summed cases while the below streamgraph shows case load
over time. The rightmost column shows two pie charts grouped by
gender, where the top chart shows cases while the bottom shows deaths.
Our goal is create a dashboard using multiple chart types that clearly
presents the COVID-19 cases and deaths distributed by age group and
gender in Germany.

As in the prior case examples we have a number of different routes
through which we can traverse the semantic space, as indicated in
map in the lower middle of Figure 7. In this case study we describe
the navy blue indicated route, beginning with the confuser that our
system identifies between the pie chart showing COVID-19 deaths and
the COVID-19 cases over time chart (Figure 7.1). This is a confuser
because the female segment in the pie chart uses the same blue as for
the color mapping in the chart showing cases grouped by age over
time. We perform the suggested differentiate operation to clarify the
different groupings by changing the color mapping of genders to a light
green for males and pink for females. This increases consistency in
semantic space. We next resolve the hallucinator relation between the
two pie charts by homogenizing the color mapping of both charts so the
cases chart receives the same green and pink color mapping to males
and females, respectively, for increased consistency in semantic space
(Figure 7.2).

Two additional hallucinators exist, one between the age-grouped
COVID-19 cases charts (Figure 7.3) and the second between the age-
grouped COVID-19 deaths charts (Figure 7.4). Each are classified
as hallucinators because the chart data and groupings are identical
but they do not share the same color mapping. We resolve the first
hallucinator between the two case charts with a homogenize operation
that applies the same continuous blue color mapping in the streamgraph
to the bar chart. We resolve the second hallucinator the same way for
the deaths chart, by applying the continuous red color mapping in the
deaths over time streamgraph to the corresponding bar chart. Each of
these operations sequentially improves consistency in semantic space.

We may compact our dashboard visualization by resolving two mul-
tiples relations that our system identifies. The first multiples relation
exists between the two bar charts, which we integrate into a single
grouped row chart (Figure 7.5). A second compacting step in semantic
space integrates the two streamgraphs in a mirroring operation to re-
solve their multiples relation (Figure 7.6). In both integration steps the
system implicitly homogenizes the data domains as well. The resulting
COVID-19 dashboard in the right of Figure 7 is a much more compact
and semantically consistent visualization with the aid of our approach.

6 DISCUSSION & LIMITATIONS

We realized our method by implementing and embedding it into the
Visception visual authoring system [20]. For specifying rules, it is
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Fig. 7. Case study workflow demonstrating semantic snapping to resolve a COVID-19 dashboard with a confuser, several hallucinators and two
multiples relations. We resolve these relations via a series of operations that include homogenize, differentiate, and integrate.

necessary to be able to retrieve detailed information about each chan-
nel mapping, as well as the chart type and grouping. We believe this
information should be accessible in most frameworks. Specifying chart
operations requires more knowledge about the underlying architecture
and programming interface. For instance, our framework had sup-
port for nesting visualizations, which was highly useful for generating
grouped and stacked charts. For example, two bar charts grouped the
same, showing two different quantitative attributes can be grouped into
a stacked bar chart, where the outer bar is grouped the same, and the
inner grouping is one bar for each of the two attributes. In principle,
however, we believe that our approach is applicable to a variety of
different visualization systems, even if the specifics of how individual
operations are implemented will differ. At present, our prototype only
supports a limited number of common chart types: line charts, bar
charts, pie charts, scatter plots, and streamgraphs. For addressing a
wider range of charts, we believe that a framework for unifying the
reasoning about these charts could allow for a more generally applica-
ble realization of semantic snapping. We believe that frameworks that
allow for expressing and modifying charts on a general level are ideal
for implementing our semantic snapping concept.

At present, a canvas is limited to views of a single tabular dataset.
For dealing with more advanced multi-table setups, our approach would
have to be built on top of an additional abstraction over these different
data topologies. Such an abstraction layer would enable a more gen-
eral implementation of semantic snapping that could also facilitate the
incorporation of other dataset types such as network data. Likewise,
techniques such as interactive linking & brushing and crossfiltering are
frequently used in multi-view visualizations but currently not explic-
itly supported in our framework, which also represents an interesting
challenge for future research.

The layout of the views is an important factor in an overall design,
which is currently not addressed in our approach but is definitely worthy
of further investigation. It would be possible to specify more advanced
relations by incorporating the spatial arrangement of individual views.
For instance, if two views are sufficiently spatially separated, a confuser
could be classified as less severe. Likewise, taking into account spatial
arrangement could extend the space of operations as, for example, a
differentiate operation could move views further apart or even add
graphical separators or visual groupings. This is an important direction
for future research. Related to this, since currently the number of
possible operations is sufficiently small, we do not perform any explicit
sorting. However, a larger number of possibilities would necessitate
to incorporate an appropriate mechanism for prioritizing operations.
We believe that such a sorting of potential revisions using for example
Qu & Hullman’s effectiveness preservation score [30] would be useful

when there are many potential solutions.
While the operations of our method alter the design and resolve

potential inconsistencies, it would provide more flexibility and design
freedom if they were customizable. For example, the mirror operation
could be parameterized by letting the user decide the spacing between
the views and the placement of the labels. A general assumption of our
method is that the existing views are already well-designed individually.
However, when a view is placed into a multi-view design, the aspect
ratio and size will change. Keeping font sizes and other styles consistent
across a design becomes tedious. While our operations do combine
views and optimize design, they do not at present allow for a final
fine-tuning of, for instance, font sizes. Such global controls are not
a part of our method, but would be highly helpful in any multi-view
visualization design process.

Finally, our method is based on general principles in the sense of
Kindlmann and Scheidegger [18] and thus does not take into account
an explicit task specification. While this focus was deliberate, since
meaningfully characterizing user tasks is a significant challenge of its
own that would also explode the design space, we still believe that
exploring how different types of general user tasks could guide the
evaluation of relationships and the presentation of operations is an
important topic for future research.

7 CONCLUSION

We presented semantic snapping, a semi-automatic guided method
that allows for incrementally refining multi-view visualizations. While
previous work on multi-view visualizations has given us guidelines and
constraints for reasoning about and improving visualizations, we further
operationalized these concepts by (1) specifying relations between
views precisely, and (2) proposing how each relation can be resolved
by an operation. Each operation is a step in the semantic space with
two axes representing the consistency and compactness. Furthermore,
we presented a prototype implementation of our method, where users
can perform operations to gradually refine a multi-view visualization
design. In the future, believe that our approach to specifying relations
and corresponding operations can be applied to more elements of multi-
view visualizations such as their layout. Furthermore, many additional
rules and guidelines for single visualizations could be adapted to or
extended for multi-view visualizations.
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