
Content-Driven Layout for Visualization Design
Yngve S. Kristiansen
University of Bergen
Bergen, Norway
ykr088@uib.no

Laura Garrison
University of Bergen
Bergen, Norway

laura.garrison@uib.no

Stefan Bruckner
University of Bergen
Bergen, Norway

stefan.bruckner@uib.no

ABSTRACT
Multi-view visualizations are typically presented in a grid layout
with elements positioned according to their bounding rectangles.
These rectangles often contain unused white space. In cases where
Tufte’s Shrink Principle can be applied to reduce non-data-ink with-
out impairing the communication of information, unused white
space can be utilized for the placement of other elements. This is of-
ten done in manually “hand-crafted” layouts by designers. However,
upon changes to individual elements, this design process has to
be repeated. To reduce non-data-ink and repetitive manual design,
we contribute a method for automatically turning a grid layout
into a content-driven layout, where elements are positioned with
respect to their contents. Existing approaches have explored the
use of a force simulation in conjunction with proxy geometries to
simplify collision handling for irregular shapes. Such customized
force directed layouts are usually unstable, and often require ad-
ditional constraints to run properly. In addition, proxy geometries
become less accurate and effective with more irregular shapes. To
solve these shortcomings, we contribute an approach for identify-
ing central elements in an original grid layout in order to set up
corresponding attractive forces. Furthermore, we utilize an image-
based approach for collision detection and avoidance that works
accurately for highly irregular shapes. We demonstrate the utility
of our approach with three case studies.

CCS CONCEPTS
• Human-centered computing→ Visualization techniques.

KEYWORDS
Multi-view visualizations, grid layout, force-directed layout.
ACM Reference Format:
Yngve S. Kristiansen, Laura Garrison, and Stefan Bruckner. 2022. Content-
Driven Layout for Visualization Design. In Proceedings of the 15th Inter-
national Symposium on Visual Information Communication and Interaction
(VINCI ’22). ACM, New York, NY, USA, 8 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION
Data-driven infographics and dashboards often have a small set of
elements positioned by an underlying grid layout, which considers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VINCI ’22, August 16–28, 2022, Chur, Switzerland
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

only bounding rectangles of individual elements. In this paper, we
propose means for compacting the layout of designs that have (1)
unused white space between contents of grid cells and (2) one or
a few identifiable central elements. By Tufte’s Shrink Principle
[36], many data graphics can have their data-density increased
and be reduced in area without loss of information or readability.
One way to achieve this is to reduce the amount of non-data-ink,
which occurs frequently in designs with underlying grid layouts.
This process is frequently performed manually. However, manual
designs become tedious to re-design upon changes to individual
elements due to manual revisions or changes in the underlying
data.

Consider a user placing a set of visual elements onto a canvas in
order to create a layout. A concrete example of this would be a user
designing a Tableau [34] dashboard by arranging elements into a
grid layout, as shown in Figure 1a. In this layout, each element is
contained by a bounding rectangle. Within these bounding rect-
angles, there may be much unused white space. However, a grid
layout does not allow the user to utilize this space efficiently.

One alternative to a grid layout is a force-directed layout [14],
which allows for flexible control of distances between elements.
However, force-directed layouts are often designed to work with
only simple shapes such as circles, and rarely support irregular
shapes where other representations are necessary. Ali et al. [2]
utilized a force layout wherein irregular shapes are represented
by convex hulls. Such proxy geometries are approximations to
complex, fine-grained details, and become less accurate with more
irregular and complex shapes. For example, the marks of the scatter
plot on the right in Figure 4 are difficult to describe geometrically
without losing some fidelity. As another example, consider the lower
concave region of the lungs in Figure 2. A convex hull would fail to
properly capture this region. In this paper, we aim to enable the use
of this white space by employing a force-directed layout that reflects
the original grid layout topology by attracting peripheral elements
towards central elements, avoiding content-to-content collisions
with high precision, even for highly irregular shapes. We present
a scheme for better preserving the original grid layout topology,
which applies attractive forces only towards a small set of inferred
central elements. We use a novel image-based approach for content-
to-content repulsion that enables fine-grained control of distances
between elements. With three case studies, we demonstrate how
our approach successfully turns grid layouts with a high degree
of unused white space into content-driven layouts. These layouts
effectively utilize white space around irregular shapes, and are able
to better capture the aesthetic qualities of a manual design.

2 RELATEDWORK
The primary goal of a multi-view visualization layout is to position
elements so that they convey information to the user as intended.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

VINCI ’22, August 16–28, 2022, Chur, Switzerland Kristiansen et al.

Such layouts are typically designed manually, often with the help of
a grid [12]. Grid-based layouts are frequently used in visualization
software programs such as Tableau [34] and for other multi-view
visualizations. Since then, many more sophisticated techniques for
multi-view visualizations have been introduced. Our work is a con-
tinuation of this, as we provide a more content-driven alternative
to the typically used grid layout.

Multi-view visualization layout techniques have been ex-
plored by several researchers. For example, Javed et al. [23] defined
the space of composite visualization in terms of four operators: jux-
taposition, superimposition, overloading, and nesting. Chen et al.
[8] explored 360 visualizations and identified a set of composition
and configuration patterns in multi-view visualizations. Also on the
topic of dashboard design, Sarikaya et al. [30] contributed a design
space across several dimensions, including functional design, pur-
pose, audience, and data semantics. They further pointed out that
dashboards are currently venturing into the realm of infographics.
In this work, we aim to enable for such a transition from a tradi-
tional dashboard towards a more “infographics”-like dashboard by
transforming its layout into a more compact “hand-crafted” version.

Automated layout techniques typically fall into one of two
categories: machine learning techniques, and constraint based tech-
niques [26]. These techniques often extend such quality measures
to encompass higher-level concepts. Jahanian et al. [22] quantified
concepts from art and aesthetics into a system for automatically
designing magazine covers. This knowledge was further leveraged
to create a recommendation system [21] for generating magazine
covers by adhering to high-level intuitive cues such as "formal" or
"sporty". In their layout process, they identify non-salient image
segments of the main image, and use them as potential regions
to place secondary content. Yang et al. [39] proposed a system
to automatically generate layouts by leveraging expert-designed,
topic-dependent templates and a computational framework for inte-
grating and harmonizing high-level aesthetics and low-level image
features. Moritz et al. [29] proposed Draco, a system for formalizing
such design knowledge and guidelines, making them accessible to
non-experts through a constraint-based Answer Set Programming
language.

Techniques for synthesis and optimization of grid layouts
are useful since they operate on an already widely used layout
technique. Jacobs et al. [19] introduced an approach for adapting
grid-based magazine layouts to different screen sizes. Xu et al. [38]
proposed an interface for beautifying layouts by visualizing and
editing relationships with sketching gestures. Sketchplorer [35]
integrates sketch-based design with a real-time layout optimizer. It
automatically infers the designer’s task and searches for local and
global improvements. Dayama et al. [10] presented a method for
interactively transferring a layout of a single user interface design to
another user interface. Li et al. [25] proposed the use of LayoutGAN,
a generative adversarial network, to synthesize, model, and edit
geometric relations between different 2D elements. Schrier et al.
[32] presented a system for assembling documents from different
sources into a single grid-based design, which automatically adapts
to different viewing conditions and content selections.

Space usage optimization has been explored in the context
of multi-view visualization as well as windowing management. A
foundational idea behind such optimization is to reduce the loss

of white space. Analogous to this idea, Albano and Sapuppo [1]
explored heuristic methods for allocating irregular 2D shapes with
a minimal amount of white space for reducing loss of physical fabric
while cutting. Similarly, Bouganis and Shanahan [6] used computer
vision and AI techniques to minimize white space in layouts with
varying shapes on both regular and irregular surfaces. Ishak and
Feiner [18] devised a technique dubbed content-aware layout to
position several windows by taking their contents into account.
Steinberger et al. [33] presented a dynamic window management
technique which identifies coherent information that is then used
as a basis for moving and scaling windows. Haraty et al. [16] pro-
posed a genetic algorithm for optimizing multi-window layouts for
specific tasks. Ishak and Feiner [18] devised a technique dubbed
content-aware layout to position several windows by taking their
contents into account. Zheng et al. [40] introduced an approach to
generate high quality, content-aware magazine graphic designs by
using a deep learning generative model trained on a large magazine-
layout dataset. Effective screen space usage is becoming even more
relevant with a myriad of different devices and screen sizes being
used to dissect data. Kim et al. [24] characterized different respon-
sive visualization strategies by analyzing 378 pairs of large screen
and small screen visualizations. They identify implications for exist-
ing works as well as future work. Andrews and Smrdel [3] applied
the principles of responsive web design, and leveraged these princi-
ples to make commonly used visualizations responsive. Motivated
by interviewing journalists, and analyzing 231 responsive news
visualizations, Hoffswell et al. [17] proposed a prototype system
for previewing and editing multiple visualization versions simulta-
neously. While such works focus on optimization of space usage,
they typically consider elements only by their bounding rectan-
gles, rather than contents. Our work shares the goal of efficient
use of space, but achieves it for cases where it is more desirable to
have a compact layout that adheres precisely to the contents of its
elements.

The common force-directed layout approach [14] is often
used alone or in conjunction with other constraints to achieve
highly flexible graph layouts. Force-directed layouts have a wider
range of applications, including visualizing biological pathways
[15], improving Euler diagrams [28], rendering Lombardi-style
graphs [9], targeting network spatialization [20], and rapidly visu-
alizing large networks [7]. Dengler et al. [11] used a generalization
of a simple force-layout to generate diagram layouts satisfying geo-
metric and aesthetic/perceptual constraints. We are inspired by the
work of Ali et al. [2] who proposed a tool for creating blueprints to
integrate interactive illustrations into one layout. However, their
approach represented elements by their convex hulls, limiting its
ability to tightly arrange irregular shapes (for example, the concave
region of the lungs in Figure 2). Our method uses an image-based,
rather than geometric, approach to deriving Euclidean content-to-
content distances between elements, which does not suffer from
these drawbacks.

3 CONTENT-DRIVEN LAYOUT
Layouts used in the context of multi-view visualizations typically
position elements by their bounding rectangles, rather than con-
tents. In a content-driven layout, elements are positioned by their

Content-Driven Layout for Visualization Design VINCI ’22, August 16–28, 2022, Chur, Switzerland

contents, i.e., pixels that are not white space. A content-driven lay-
out can make better use of previously unused white space, resulting
in a potentially more visually pleasant, compact and “hand-crafted”
appearance as seen in Figure 3. The main goal of our method is to
enable the automatic transformation of a grid layout to a content-
driven layout. This is achieved by generating a force-directed layout,
with forces derived from the original grid layout.

3.1 Terminology
A grid layout (Figure 1a) is a layout where a rectangular space is
recursively subdivided horizontally or vertically. A single element
contains visual content and white space, while content excludes
white space. Each grid layout corresponds to a hierarchy as seen
in Figure 1b. If several elements in the grid layout share the same
strip of space, they have the same parent node in the corresponding
hierarchy, where the left-to-right order of nodes correspond to the
order in which elements appear in the grid layout. In this hierarchy,
non-leaf nodes have a flow that controls the order and direction
in which their children are placed, which is either vertical left-to-
right, or horizontal top-to-bottom. Consider how elements C, D, E in
Figure 1a correspond to nodes in the hierarchy in Figure 1b. These
three nodes also share the same parent (node 3 in Figure 1b), which
flows vertically top-to-bottom, while A is a child of the root node
(node 1 in Figure 1b), which also flows vertically top-to-bottom.
Adjacency relationships between elements in the grid layout are
referred to as the topology of the layout. For example, in Figure 1a
we see that elements C, D, and E are to the left, and appear in order
from top to bottom, while B, I, and J are in the middle, and element
A is on the top. This topology can be concisely expressed by an
extracted adjacency graph (Figure 1c), where each element in the
grid layout is represented as a node positioned at its original center
of gravity, and each adjacency between two elements in the grid
layout is represented as a link between two nodes.

3.2 Overview
On a high level, our method follows a pipeline composed of the
following steps. First, we derive adjacency relationships from the
underlying tree structure of the grid layout (Figure 1b) and store
them as an adjacency graph (Figure 1c). This adjacency graph is
then used to identify a set of nodes (Figure 1d), which correspond to
the visually most central elements in the original layout (Figure 1a,
elements B and I). Attractive forces are set up such that in a force
simulation, elements are pulled only towards these central elements.
Image-based repulsive forces between each distinct pair of elements
are used for content-to-content repulsion. With these attractive and
repulsive forces, a force simulation is started, where each element
is initially placed according to its original grid layout position. The
execution of the force simulation transforms the grid layout into a
content-driven layout.

3.3 Attractive Forces
Content-to-content attraction ensures that elements gravitate to-
wards each other. Visually, it is easy to see that a grid layout has
a small set of central elements. To represent the topology of the
original grid layout, we model attractive forces so that they are all
directed towards these central elements. To achieve this, we derive

Algorithm 1 Inferring adjacency graph

1: procedure pos(𝑝𝑎𝑡ℎ)
2: 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝐹𝑙𝑜𝑤 = flow of first node in path
3: 𝑝𝑎𝑡ℎ' = 𝑝𝑎𝑡ℎ without its two first nodes
4: 𝑛𝑙𝑝 = nodes in 𝑝𝑎𝑡ℎ' with 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑓 𝑙𝑜𝑤 = 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝐹𝑙𝑜𝑤

5: return '𝑜𝑛𝑙𝑦' if 𝑛𝑙𝑝.𝑙𝑒𝑛𝑔𝑡ℎ = 0
6: return '𝑓 𝑖𝑟𝑠𝑡 ' if ∀𝑛 ∈ 𝑛𝑙𝑝 : 𝑖𝑛𝑑𝑒𝑥 (𝑛) = 0
7: return '𝑙𝑎𝑠𝑡 ' if ∀𝑛 ∈ 𝑛𝑙𝑝 : 𝑖𝑛𝑑𝑒𝑥 (𝑛) = | siblings(𝑛) |
8: return '𝑚𝑖𝑑𝑑𝑙𝑒 '
9: procedure isAdjacent(𝑎, 𝑏)
10: if 𝑎 and 𝑏 are siblings: return 𝑡𝑟𝑢𝑒

11: 𝑙 ← LCA(𝑎, 𝑏) ⊲ Lowest common ancestor
12: 𝑎', 𝑏 ' = ancestors of 𝑎 and 𝑏 that are children of 𝑙
13: if index(𝑎') > index(𝑏 '): return isAdjacent(𝑏, 𝑎)
14: if index(𝑏 ') - index(𝑎') > 1: return 𝑓 𝑎𝑙𝑠𝑒

15: 𝑝𝑎𝑡ℎ𝑎, 𝑝𝑎𝑡ℎ𝑏 = path from 𝑙 to 𝑎, and 𝑙 to 𝑏
16: return pos(𝑝𝑎𝑡ℎ𝑎)∈{'𝑙𝑎𝑠𝑡 ', '𝑜𝑛𝑙𝑦'}∧pos(𝑝𝑎𝑡ℎ𝑏)∈{'𝑓 𝑖𝑟𝑠𝑡 ', '𝑜𝑛𝑙𝑦'}

a graph from the original grid layout where each link represents
the adjacency relationship between two elements in the grid lay-
out. From this adjacency graph, we infer a minimal set of central
nodes. Finally, we apply attractive forces that pull elements towards
central elements.

We define the adjacency graph by a conditional that determines
adjacency between two elements 𝑎 and 𝑏. Throughout this para-
graph, we refer to lines in Algorithm 1, and consider the nodes 𝐵
and 𝐹 in Figure 1 as examples of 𝑎 and 𝑏, respectively. Adjacency
between non-sibling nodes is determined by first finding their LCA
(lowest common ancestor) in the grid hierarchy (line 10). Next, we
extract the paths 𝑝𝑎𝑡ℎ𝑎 and 𝑝𝑎𝑡ℎ𝑏 between the nodes and their
LCA (line 11), which would correspond to the paths consisting of
node 4 between 𝐵 and 2, and 5 between 𝐹 and 2. Now, the goal is to
find out if there are no other leaf nodes between the two possibly ad-
jacent nodes. Thus, we check how 𝑝𝑎𝑡ℎ𝑎 and 𝑝𝑎𝑡ℎ𝑏 are positioned
in relation to each other by using the subroutine 𝑝𝑜𝑠 (line 1). This
subroutine checks the order of appearance of nodes with respect to
the flow of the LCA. For example, since the flow of the LCA (node
2) is horizontal, and there are no other horizontally flowing nodes
between 𝐵 and 2, or 𝐹 and 2, 𝑝𝑜𝑠 will in both cases return '𝑜𝑛𝑙𝑦'. If
there was a horizontally flowing node on the path from 𝐹 to 2, 𝐹
would have to be the horizontally first or only leaf node to be in
contact with 𝐵. Conversely, 𝐵 would have to be the horizontally
last or only leaf node in the case of a horizontally flowing node
between 𝐵 and 2. Thus, two nodes are adjacent if 𝑝𝑜𝑠 evaluates to
'𝑙𝑎𝑠𝑡 ' or '𝑜𝑛𝑙𝑦' for 𝑝𝑎𝑡ℎ𝑎 , and '𝑓 𝑖𝑟𝑠𝑡 ' or '𝑜𝑛𝑙𝑦' for 𝑝𝑎𝑡ℎ𝑏 as seen on
line 16.

From the adjacency graph, we can now determine the most
central elements. For every node 𝑛 in the adjacency graph, we count
how many of its immediate neighbors are unvisited, and store this
number as 𝑛.𝑎 as seen on line 6 of Algorithm 2. Furthermore, we
count how many of its neighboring nodes are connected to an
unvisited node, and store this number as 𝑛.𝑏 (Algorithm 2, line
7). We then identify the highest 𝑎-value among all non-central
nodes (Algorithm 2, line 9), and find all nodes with this 𝑎-value
(Algorithm 2, line 10). From these nodes, we find the highest𝑏-value,

VINCI ’22, August 16–28, 2022, Chur, Switzerland Kristiansen et al.

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

B

C

A

F

G

H
I
J

D

E

INITIAL GRID CORRESPONDING HIERARCHY ADJACENCY GRAPH INFERRED CENTRAL NODES
& CORRESPONDING FORCES

Attractive forces

A

DC E F G HIB J

Grid Layout & Hierarchy

Infer
Adjacencies

A

B

C

D

E
J

H

G

F

I

J

A

B

C

D

E H

G

F

I

1

2

3 4 5

a b c d

Figure 1: Here we see the steps for generating a set of attractive forces from an initial grid layout (a), which corresponds to a
grid layout hierarchy (b). From this hierarchy (b) we infer all adjacent elements in the grid layout (a) using Algorithm 1, and
store them as a neighborhood graph (c). This neighborhood graph is again used to determine which elements are central in the
original layout (a). In this case, elements B and I are inferred to be central nodes (d). This results in attractive forces directed
only towards B and I, indicated by the direction of the arrows along the links (d).

Algorithm 2 Identifying central elements

1: procedure findCentralNodes(N)
2: 𝐶 ← [] ⊲ central nodes
3: 𝑉 ← [] ⊲ visited nodes
4: until all nodes in 𝑁 are in 𝐶 or 𝑉 , do:
5: for each node 𝑛 : 𝑛 ∈ 𝑁 , do:
6: 𝑛.𝑎 ← number of unvisited neighbors of 𝑛
7: 𝑛.𝑏 ← number of neighbors connected to unvisited node
8: 𝑁 '← 𝑉 if |𝑉 | ≠ ∅, otherwise 𝑁
9: 𝑎𝑚𝑎𝑥 ←𝑚𝑎𝑥 ({𝑛.𝑎 | 𝑛 ∈ 𝑁 ' }) ⊲ Greatest 𝑎
10: 𝐴← {𝑛 | 𝑛 ∈ 𝑉 ∧ 𝑛.𝑎 = 𝑎𝑚𝑎𝑥 } ⊲ Nodes with greatest 𝑎
11: 𝑏𝑚𝑎𝑥 ←𝑚𝑎𝑥 ({𝑛.𝑏 | 𝑛 ∈ 𝐴 }) ⊲ Greatest 𝑏
12: for each node 𝑛 ∈ 𝐴 where 𝑛.𝑏 = 𝑏𝑚𝑎𝑥 , do:
13: add 𝑛 to 𝐶 ⊲ 𝑛 is central
14: add all neighbors of 𝑛 to 𝑉 ⊲ neighbors of n are visited

as shown on line 11 of Algorithm 2. Finally, we select only the nodes
with the highest identified 𝑎-value, and associated highest 𝑏-value
(Algorithm 2, line 12), which are tagged as central (Algorithm 2,
line 13). Furthermore, the neighbors of each central node are tagged
as visited on line 14 of Algorithm 2.

Based on the computed central nodes, we can now apply attrac-
tive forces drawing corresponding peripheral elements towards
central elements, and each central element towards all other central
elements. In other words, no elements are attracted towards periph-
eral elements, and bidirectional attractive forces are set up between
all central elements. The directionality of a force attracting ele-
ment 𝐵 towards element𝐴 is defined as the normalized vector going
from the center of gravity of 𝐵, to the center of gravity of 𝐴. We
use standard spring forces based on Hooke’s law with a constant
strength.

3.4 Repulsive Forces
Content-to-content repulsion prevents elements from overlapping.
The first step towards achieving this is to consider each element
by its content rather than its bounding rectangle. In existing ap-
proaches, irregular shapes are often simplified to geometric shapes,
which are then used to compute content-to-content distances and

overlaps. For example, Ali et al. [2] used convex hulls to compute
content-to-content distances and collisions. Such geometry-based
approaches become less reliable and more difficult to handle with ir-
regular shapes. For example, consider the image of a lung in Figure 2.
Using a convex hull around this fails to represent the gap between
the two lungs. Hence, we use an image-based approach to detect
and avoid overlapping contents. We achieve accurate content-to-
content distances by utilizing the Euclidean distance transform [4],
which we compute for every element by using Meijster’s algorithm
[27]. The distance transform of an element𝐴 is denoted as 𝑑𝑡𝐴 , and
encodes in every pixel the Euclidean distance to the nearest content
pixel. We compute the distance transform from a binary image of
the original content, where 1 is content and 0 is white space.

Repulsive forces are applied between all elements. These forces
are active only if elements have overlapping bounding rectangles. If
two elements 𝐴 and 𝐵 have intersecting bounding rectangles at the
region𝐴∩𝐵, they may also have overlapping contents. To compute
the distance between the contents of the two views, we first consider
the distance transforms of 𝐴 and 𝐵, 𝑑𝑡𝐴 and 𝑑𝑡𝐵 . Then, we clip out
the region 𝐴 ∩ 𝐵 from the distance transforms of 𝐴 and 𝐵, giving
us the images 𝑑𝑡 ′

𝐴
and 𝑑𝑡 ′

𝐵
. These clipped distance transforms are

then summed together pixel by pixel, giving the content-to-content
distance at the smallest pixel as follows:

𝑑𝐴𝐵 = min(𝑑𝑡 ′𝐴 + 𝑑𝑡
′
𝐵) (1)

The repulsive force pushes the content of element 𝐵 away from
the content of element 𝐴. The directionality of repulsion is deter-
mined by the gradient of the distance transform. To compute the
directionality, we consider the distance transform gradient of 𝐴, at
the region of intersection 𝐴 ∩ 𝐵, denoted ∇𝑑𝑡 ′𝐴. The directionality
of repulsion is the normalized sum of vectors from ∇𝑑𝑡 ′

𝐴
.

In practice, it is often desirable to have a certainmargin𝑀 around
the content of an element. This requires correspondingly enlarging
the bounding rectangle of an element to avoid issues when the
content is close to its borders. The repulsive strength between
two elements 𝐴 and 𝐵 is then computed as:

𝜌𝐴𝐵 =
1

max(𝑑𝐴𝐵 −𝑀,𝜃) (2)

Content-Driven Layout for Visualization Design VINCI ’22, August 16–28, 2022, Chur, Switzerland

where 𝜃 acts as a lower threshold for the denominator of the ex-
pression, avoiding near infinite strengths as 𝑑𝐴𝐵 −𝑀 approaches
zero.

4 IMPLEMENTATION
We implemented our approach by using Vue.js and TypeScript for
rendering the layout elements, and D3.js [5] for running the force
simulation. The attractive and repulsive forces are implemented as
custom forces in D3’s force-directed layout implementation. Layout
elements are reactively linked to underlying layout objects, which
are updated in each step of the layout simulation.

The underlying grid layout is specified as a recursive JSON ob-
ject corresponding to the underlying tree structure outlined in
Section 3. Non-leaf nodes have the following properties: (1) flow,
which is either vertical or horizontal, and children, a list of chil-
dren. Leaf nodes have a source property which may be an image
link, or a Vega-Lite [31] specification string which enables the easy
integration of a rich set of different types of visualizations.

The most expensive part of our algorithm is finding the content-
to-content repulsion between nodes. More specifically, adding to-
gether the distance transforms at the region of intersection, and
finding the smallest pixel is most time-consuming. We currently
use a straight-forward CPU implementation using Javascript’s
Float64Array to represent the underlying distance transforms, so
a GPU-based approach could lead to significant time reductions.
The performance of this operation is also highly dependent on
the resolution of the distance transform. To illustrate this impact,
we present the performance of our algorithm with two different
distance transform resolutions: (1) max(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) = 50, and
(2) max(𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) = 200. We generated the lungs example in
Figure 2 using the Mozilla Firefox browser, on a machine with 32GB
RAM and a Intel Core i7-7700K CPU @ 4.20GHz. With both reso-
lutions, convergence was reached after 35 iterations of the force
layout, which took 905 and 1207 milliseconds for resolutions 50 and
200, respectively. On average, each iteration took 25.8 milliseconds
with the resolution of 200, and 18 milliseconds with a resolution
of 50 (in both cases, this includes rendering time). In our experi-
ments, we found that even when using resolutions significantly
lower than rendering resolutions, impacts on the final results were
negligible with large-scale structure shapes such as the lungs in
Figure 2. However, a higher resolution was required to capture finer
aspects such as very small bubbles in the bubble plot in Figure 4.

5 CASE STUDIES
In this section we illustrate the value of our approach in three
case studies in collaboration with a designer who is a coauthor
of this paper. Each case study begins with the project brief that
a designer or data journalist would typically receive at the begin-
ning of a project. We then discuss the ideation phase, where the
designer develops layout concepts, and the subsequent challenges
faced in typical production tools such as Tableau or Adobe Illustra-
tor. We then compare the functional capabilities of these typical
production tools against our content-driven layout algorithm. For
all case studies we use styling from the Vega cook book repository1.

1https://github.com/aezarebski/vegacookbook

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Understanding Breathing Patterns
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut

12-15
breaths/min

Average breathing rate of adults
under normal conditions

Figure 2: Using our content-driven layout approach, the artist
is able to achieve a composition where the six respiratory
patterns are arrayed around the margins of the lungs.

A demonstration video illustrating our approach and these case
studies is available at: https://tinyurl.com/y652kt6n.

5.1 Respiration Patterns
We begin with a case study illustrating a relatively simple white
space optimization challenge that is not possible to achieve in stan-
dard visualization tools, such as in Tableau. The design brief for this
scenario is to design an infographic describing six common breath-
ing patterns as seen in the output of a ventilator. This is intended
for medical staff to use as a study aid, with an engaging vector
graphic of the lungs and additional text describing the normal rate
of respiration. The lungs are intended as the center piece, with the
six respiration patterns arrayed around this central graphic.

Per the design brief, the designer places the lung anatomy cen-
trally and as the largest graphical element in the figure. To add
visual interest to the infographic, they array the six respiration
patterns in a slightly out-of-grid layout to fan around the outer
borders of the lungs, as per the artist’s concept sketch in Figure 2.
Additionally, the text stating the average normal breathing rate
(12–15 breaths per minute) per the brief also requires visual empha-
sis, and the gap where the heart would normally rest in the white
space between the lungs is an ideal position for its optimization
of white space and visual interest. However, such a placement is
impossible to implement in Tableau, which uses a grid-based design
ignoring white space around the graphical assets, per Figure 2, top

https://tinyurl.com/y652kt6n

VINCI ’22, August 16–28, 2022, Chur, Switzerland Kristiansen et al.

ARTIST’S CONCEPT CHART COMPONENTS

FINAL LAYOUT

Gridded layout
does not make
optimal use of
white space
created by wind
turbine blades
and requires a
much taller
canvas.

Our approach
makes more
efficient use of
white space and
can compress to
a more normal
portrait-style
aspect ratio,
which is a better
match original
artist concept.

Figure 3: Our content-driven layout enables plots and text
elements to array around the large, central wind turbine
to optimize use of white space and more closely match the
artist’s intended layout.

right. These adjustments would typically need to be implemented in
Adobe Illustrator or similar software. While creating such a layout
is reasonably low-effort once, placement and alignment becomes te-
dious withmultiple design iterations, particularly if design elements
change. For example, an interactive version of this infographic may
require the average respiration rate text to change with selection of
particular respiration patterns. This requires minor layout tweaks
in each iteration that rapidly become tedious for the designer. Our
method enables the graphs of respiration patterns to align smoothly
along the margins of the lungs in the central graphic. It further-
more is able to move the average respiration text into the white
space between the lungs to add visual interest and emphasis to this
information.

5.2 Wind Turbine Distribution in the US
This case study illustrates the value of our method when creat-
ing layouts that use the white space surrounding highly irregular-
shaped assets. In this instance, the designer has been tasked with

creating a visually-engaging poster infographic explaining the dis-
tribution of wind turbines across the US. The brief requires hand-
drawn vector graphics of wind turbines alongside charts describing
wind turbine geographic distribution and power capacity, as well
as charts describing changes in power capacity and dominant man-
ufacturers from 2017 to 2021.

Wind turbines are large, irregularly-shaped objects, with large
amounts of white space between the turbine blades of the central,
large wind turbine that anchors the other design elements of the
infographic. To add visual interest and economize white space, the
designer wishes to nest the data visualizations in these white spaces,
as in the artist’s concept shown in Figure 3. Such use of white space
normally requires manual layout creation in Adobe Illustrator or
similar artistic programs. The closest achievable layout in a grid-
based system is illustrated in the top right image of Figure 3. There
are several instances of inefficient use of white space in this layout.
First, the title of the infographic cannot efficiently nest between
the blades of the central turbine. Second, the width of the bounding
box around the central turbine is dictated by the span of the turbine
blades, where there is insufficient space on either side to draw the
bar charts and companion smaller wind turbine graphical elements.
These four elements are not able to nest below the turbine blades
and thereby make more efficient use of the white space in the lower
half of the infographic. The canvas must be taller to accommodate
the two smaller windmills and bar charts, which are pushed below
the central wind turbine element.

Our content-driven approach generates more compact layouts
for positioning irregularly-shaped graphics with a graphically-
interesting use of white space underneath the large wind turbine
blades. The infographic title, “American Wind Energy” tucks into
the space immediately above the central wind turbine, which en-
ables enlargement of the wind turbine distribution map. The two
bar charts describing wind turbine capacity and manufacturer for
the years 2017 and 2018, with their companion graphical wind tur-
bine elements, can move close to either side of the turbine pole,
which enables the entire canvas to take on the standard portrait
aspect ratio dimensions that the designer originally intended.

5.3 Health vs. Wealth in the Countries of the
World

Our final case study considers the optimization of white space
under two changing conditions in a visualization: (1) changing the
accompanying image element in a visualization and (2) changing
the scales of the axes of a plot that leads to a different distribution
of white space. This design brief is for a visualization plotting
the health against wealth of 187 countries of the world, from the
GapMinder dataset2. To add visual interest, the brief requests each
data point to include a map of the country.

This design is centered around a bubble plot that describes the
correlation of countries’ health and wealth. Each bubble represents
a country, and its size is encoded to the population of that country.
Hovering over a bubble reveals a tooltip of information for that
country, as well as a map of the country. The designer furthermore
wishes to have this map element appear as close to the associated
country bubble as possible, without obscuring surrounding data

2https://www.gapminder.org/data/

Content-Driven Layout for Visualization Design VINCI ’22, August 16–28, 2022, Chur, Switzerland

Wealthier countries are healthier countries.

Wealthier countries are healthier countries. Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

Wealthier countries are healthier countries.

ARTIST’S CONCEPT

CHART COMPONENTS

FINAL LAYOUT(S)
Efficient use of white space
with changes in country map.

Inefficient white space use
with changes in country map.

Efficient white space use
with changes in plot scale.

Inefficient white space use
with changes in plot scale.

Figure 4: Concept for visualization of health vs. wealth of
countries of the world. While a grid layout is unable to place
a country map element near the data points, our content-
driven approach places the map element in an optimal po-
sition. This concept shows efficient use of white space in (1)
changing elements and (2) changing white space.

points in the bubble plot. A complication to this brief is that the plot
scales can be adjusted to zoom in to different regions of the plot,
which requires a different layout for the map element depending
on the changing white space.

The designer’s concept is shown in the top of Figure 4 for inspec-
tion of China and Japan, and a subsequent alteration of the plot
scale to look closer at only the healthiest and wealthiest countries,
including Japan. The design in these three instances, first with the
change of image element and second with the change of plot scale
and subsequent bubble positioning, takes advantage of the exten-
sive white space around the bubble plot to nest maps closely around
the data elements. Unfortunately, this layout is not achievable in
a standard grid-based layout system, which is illustrated in the
middle row of Figure 4. Here, the maps must be much smaller and
further away from their associated data point. This is an inefficient
use of white space, and forces the viewer to look back and forth
between associated elements.

Our content-driven approach enables the country map element
to slide in near the data point of interest to reduce white space in
the visualization, and to reduce the number of places the user must
focus their attention on in the visualization. In the first scenario
at the bottom left two images of Figure 4, the differently-shaped
countrymaps of China and Japan each are able to position efficiently
in the white space in the lower right of the bubble plot. When
adjusting the plot scales to show only the healthiest and wealthiest
countries (bottom rightmost), our algorithm positions the Japan
map element more optimally in the upper right of the bubble plot.
This case study thus demonstrates our algorithm’s capabilities both
in conditions of (1) changing elements and (2) changing white space.

6 DISCUSSION AND LIMITATIONS
As demonstrated in the presented case studies, our approach is
capable of transform a grid layout that makes inefficient use of
white space into a content-driven layout that can closely mirror the
artist’s original design concept and more efficiently use the white
space in the visualization. Our approach is targeted at scenarios
with relatively few elements (i.e., tens), which is typical for common
infographics, and hence is not well-suited for the layout of large
data collections [13].

While the method presented in this paper primarily focuses on
turning grid layouts into content-driven layouts, it could greatly
benefit from being combined with existing works and approaches.
Our force-directed layout setup could be used on other initial lay-
outs with irregular shapes, as long as it is possible to infer the layout
topology as a graph. Our prototype starts from a fully-specified grid
layout and specific screen size, which introduces some instability
to the layout. However, using interaction to incrementally place or
move shapes could help tweak and overcome such instabilities.

Although we found that our approach delivers good results even
with distance transforms computed at lower resolutions, there may
be instances where this fails to take into account details that may
be relevant for the final layout. In such cases, an additional pre-
processing step could be used (e.g., a low-pass filter) to make sure
that all important features are captured. Alternatively, or addition-
ally, the input to the distance transform could be adapted according
to the semantics of individual components of the visualization,
e.g., by giving higher priority to data-encoding pixels compared
to legends or other decorations. Such extensions could be easily
integrated into our approach by automatically applying different
styles for layout and display purposes to the Vega-Lite specification.
Similarly, object detection techniques could be leveraged to identify
salient regions of images or charts and separate it from the back-
ground, before generating the distance transform. Furthermore,
image-space edits could be done to the image before the distance
transform is computed. For example, drawing a line on the right
side of an image before computing the distance field would create a
hard boundary on the right side of that image in the layout simula-
tion, and such manipulations could be used as additional alignment
guides. Other types of interactions could also be integrated in order
to further increase the degree of design freedom. While currently
our approach is based on an automatic identification of central ele-
ments, this initial selection could be modified by the user in order
to provide a more tailored user experience as discussed by Tyagi et
al. [37].

While our current prototype implementation already allows
for basic interactions when supplied with corresponding Vega-
Lite specifications, we do not yet support fully dynamic content
(e.g., interactive filtering or cross-linking between multiple views),
partly due to the fact that it has proven difficult to implement event
translation consistently across different browsers. However, we
plan to extend this functionality in the future. We plan to evaluate
our approach through a user study or a larger set of existing grid
layouts and element types. Here, in particular, it will be interesting
to study differences related to the design expertise of individual
users.

VINCI ’22, August 16–28, 2022, Chur, Switzerland Kristiansen et al.

7 CONCLUSION
In this paper we presented an approach for turning an existing
grid layout into a content-driven layout, wherein elements are
positioned by their contents rather than their proxy bounding ge-
ometries. Ourmethod parses and transforms the original grid layout
topology into a smaller graph which informs the selective applica-
tion of attractive forces and leverages distance transforms to repulse
elements based on their content to enable better space utilization.
Furthermore, we presented three case studies demonstrating the
effectiveness and versatility of our algorithm. In the future, our
approach to repulsing irregular shapes can be applied to other use
cases, in combination with other image-based techniques.

REFERENCES
[1] Antonio Albano and Giuseppe Sapuppo. 1980. Optimal allocation of two-

dimensional irregular shapes using heuristic search methods. IEEE Transactions
on Systems, Man, and Cyfbernetics 10, 5 (1980), 242–248. https://doi.org/10.1109/
TSMC.1980.4308483

[2] Kamran Ali, Knut Hartmann, Georg Fuchs, and Heidrun Schumann. 2008. Adap-
tive layout for interactive documents. In Proc. International Symposium on Smart
Graphics. 247–254. https://doi.org/10.1007/978-3-540-85412-8_24

[3] Keith Andrews and Ales Smrdel. 2017. Responsive data visualisation. In Proc.
EuroVis (Posters). 113–115. https://doi.org/10.2312/eurp.20171182

[4] Gunilla Borgefors. 1986. Distance transformations in digital images. Computer
vision, graphics, and image processing 34, 3 (1986), 344–371. https://doi.org/10.
1016/S0734-189X(86)80047-0

[5] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3: data-driven
documents. IEEE Transactions on Computer Graphics and Visualization 17, 12
(2011), 2301–2309. https://doi.org/10.1109/TVCG.2011.185

[6] Alexandros Bouganis and Murray Shanahan. 2007. A vision-based intelligent
system for packing 2-D irregular shapes. IEEE Transactions on Automation Science
and Engineering 4, 3 (2007), 382–394. https://doi.org/10.1109/TASE.2006.887158

[7] Govert G. Brinkmann, Kristian F.D. Rietveld, and Frank W. Takes. 2017. Exploit-
ing GPUs for fast force-directed visualization of large-scale networks. In Proc.
International Conference on Parallel Processing. 382–391. https://doi.org/10.1109/
ICPP.2017.47

[8] Xi Chen, Wei Zeng, Yanna Lin, Hayder Mahdi Al-Maneea, Jonathan C. Roberts,
and Remco Chang. 2020. Composition and Configuration Patterns in Multiple-
View Visualizations. CoRR abs/2007.15407 (2020). https://doi.org/10.48550/arXiv.
2007.15407

[9] Roman Chernobelskiy, Kathryn I Cunningham, Michael T Goodrich, Stephen G
Kobourov, and Lowell Trott. 2011. Force-directed Lombardi-style graph drawing.
In Proc. International Symposium on Graph Drawing. 320–331. https://doi.org/10.
1007/978-3-642-25878-7_31

[10] Niraj Ramesh Dayama, Simo Santala, Lukas Brückner, Kashyap Todi, Jingzhou
Du, and Antti Oulasvirta. 2021. Interactive layout transfer. In Proc. International
Conference on Intelligent User Interfaces. 70–80. https://doi.org/10.1145/3397481.
3450652

[11] Edmund Dengler, Mark Friedell, and Joe Marks. 1993. Constraint-driven diagram
layout. In Proc. IEEE Symposium on Visual Languages. 330–335. https://doi.org/
10.1109/VL.1993.269619

[12] Steven Feiner. 1988. A grid-based approach to automating display layout. In Proc.
Graphics Interface. 192–197.

[13] Steffen Frey. 2022. Optimizing Grid Layouts for Level-of-Detail Exploration of
Large Data Collections (preprint). (2022). https://freysn.github.io/papers/ldg.pdf

[14] Thomas MJ Fruchterman and Edward M Reingold. 1991. Graph drawing by force-
directed placement. Software: Practice and Experience 21, 11 (1991), 1129–1164.
https://doi.org/10.1002/spe.4380211102

[15] Burkay Genc and Ugur Dogrusoz. 2003. A constrained, force-directed layout
algorithm for biological pathways. In Proc. International Symposium on Graph
Drawing. 314–319. https://doi.org/10.1007/978-3-540-24595-7_29

[16] Mona Haraty, Syavash Nobarany, Steve DiPaola, and Brian D. Fisher. 2009. Ad-
WiL: adaptive windows layout manager. In Proc. International Conference on Hu-
man Factors in Computing Systems. 4177–4182. https://doi.org/10.1145/1520340.
1520636

[17] Jane Hoffswell, Wilmot Li, and Zhicheng Liu. 2020. Techniques for flexible
responsive visualization design. In Proc. CHI Conference on Human Factors in
Computing Systems. 1–13. https://doi.org/10.1145/3313831.3376777

[18] Edward Waguih Ishak and Steven Feiner. 2007. Content-Aware Layout. In Proc.
CHI Extended Abstracts on Human Factors in Computing Systems. 2459—-2464.
https://doi.org/10.1145/1240866.1241024

[19] Charles Jacobs, Wilmot Li, Evan Schrier, David Bargeron, and David Salesin. 2003.
Adaptive grid-based document layout. ACM Transactions on Graphics 22, 3 (2003),
838–847. https://doi.org/10.1145/882262.882353

[20] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.
2014. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PloS one 9, 6 (2014), e98679.
https://doi.org/10.1371/journal.pone.0098679

[21] Ali Jahanian, Jerry Liu, Qian Lin, Daniel Tretter, Eamonn O’Brien-Strain, Se-
ungyon Claire Lee, Nic Lyons, and Jan Allebach. 2013. Recommendation system
for automatic design of magazine covers. In Proc. International Conference on
Intelligent User Interfaces. 95–106. https://doi.org/10.1145/2449396.2449411

[22] Ali Jahanian, Jerry Liu, Daniel R Tretter, Qian Lin, Niranjan Damera-Venkata,
Eamonn O’Brien-Strain, Seungyon Lee, Jian Fan, and Jan P Allebach. 2012. Au-
tomatic design of magazine covers. In Proc. Imaging and Printing in a Web 2.0
World III. 114–121. https://doi.org/10.1117/12.914596

[23] Waqas Javed and Niklas Elmqvist. 2012. Exploring the Design Space of Composite
Visualization. In Proc. IEEE PacificVis. 1–8. https://doi.org/10.1109/PacificVis.
2012.6183556

[24] Hyeok Kim, Dominik Moritz, and Jessica Hullman. 2021. Design patterns and
trade-offs in responsive visualization for communication. Computer Graphics
Forum 40, 3 (2021), 459–470. https://doi.org/10.1111/cgf.14321

[25] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2019.
Layoutgan: Generating graphic layouts with wireframe discriminators. arXiv
preprint arXiv:1901.06767 abs/1901.06767 (2019). https://doi.org/10.48550/arXiv.
1901.06767

[26] Simon Lok and Steven Feiner. 2001. A survey of automated layout techniques
for information presentations. Proc. Smart Graphics 2001 (2001), 61–68.

[27] Arnold Meijster, Jos BTM Roerdink, and Wim H Hesselink. 2002. A general
algorithm for computing distance transforms in linear time. In Proc. Mathematical
Morphology and its Applications to Image and Signal Processing. 331–340. https:
//doi.org/10.1007/0-306-47025-X_36

[28] Luana Micallef and Peter Rodgers. 2014. eulerforce: Force-directed layout for
Euler diagrams. Journal of Visual Languages & Computing 25, 6 (2014), 924–934.
https://doi.org/10.1016/j.jvlc.2014.09.002

[29] Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith,
Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge
as constraints: Actionable and extensible models in draco. IEEE Transactions on
Computer Graphics and Visualization 25, 1 (2018), 438–448. https://doi.org/10.
1109/TVCG.2018.2865240

[30] Alper Sarikaya, Michael Correll, Lyn Bartram, Melanie Tory, and Danyel Fisher.
2018. What do we talk about when we talk about dashboards? IEEE Trans.
Visualization and Computer Graphics 25, 1 (2018), 682–692. https://doi.org/10.
1109/TVCG.2018.2864903

[31] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2016. Vega-lite: A grammar of interactive graphics. IEEE Transactions on Computer
Graphics and Visualization 23, 1 (2016), 341–350. https://doi.org/10.1109/TVCG.
2016.2599030

[32] Evan Schrier, Mira Dontcheva, Charles Jacobs, Geraldine Wade, and David
Salesin. 2008. Adaptive layout for dynamically aggregated documents. In
Proc. International Conference on Intelligent User Interfaces. 99–108. https:
//doi.org/10.1145/1378773.1378787

[33] Markus Steinberger, Manuela Waldner, and Dieter Schmalstieg. 2012. Interactive
self-organizing windows. 31, 2pt3 (2012), 621–630. https://doi.org/10.1111/j.1467-
8659.2012.03041.x

[34] Chris Stolte, Diane Tang, and Pat Hanrahan. 2008. Polaris: a system for query,
analysis, and visualization of multidimensional databases. Commun. ACM 51, 11
(2008), 75–84. https://doi.org/10.1109/2945.981851

[35] Kashyap Todi, Daryl Weir, and Antti Oulasvirta. 2016. Sketchplore: Sketch and
explore with a layout optimiser. In Proc. ACM Conference on Designing Interactive
Systems. 543–555. https://doi.org/10.1145/2901790.2901817

[36] Edward R. Tufte. 1986. The Visual Display of Quantitative Information. Graphics
Press, USA. https://doi.org/10.5555/33404

[37] Anjul Tyagi, Jian Zhao, Pushkar Patel, Swasti Khurana, and Klaus Mueller. 2022.
Infographics Wizard: Flexible Infographics Authoring and Design Exploration.
https://doi.org/10.48550/ARXIV.2204.09904

[38] Pengfei Xu, Hongbo Fu, Takeo Igarashi, and Chiew-Lan Tai. 2014. Global beautifi-
cation of layouts with interactive ambiguity resolution. In Proc. ACM Symposium
on User Interface Software and Technology. 243–252. https://doi.org/10.1145/
2642918.2647398

[39] Xuyong Yang, Tao Mei, Ying-Qing Xu, Yong Rui, and Shipeng Li. 2016. Automatic
generation of visual-textual presentation layout. ACMTransactions onMultimedia
Computing, Communications, and Applications 12, 2 (2016), 1–22. https://doi.org/
10.1145/2818709

[40] Xinru Zheng, Xiaotian Qiao, Ying Cao, and RynsonWH Lau. 2019. Content-aware
generative modeling of graphic design layouts. ACM Transactions on Graphics
38, 4 (2019), 1–15. https://doi.org/10.1145/3306346.3322971

https://doi.org/10.1109/TSMC.1980.4308483
https://doi.org/10.1109/TSMC.1980.4308483
https://doi.org/10.1007/978-3-540-85412-8_24
https://doi.org/10.2312/eurp.20171182
https://doi.org/10.1016/S0734-189X(86)80047-0
https://doi.org/10.1016/S0734-189X(86)80047-0
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TASE.2006.887158
https://doi.org/10.1109/ICPP.2017.47
https://doi.org/10.1109/ICPP.2017.47
https://doi.org/10.48550/arXiv.2007.15407
https://doi.org/10.48550/arXiv.2007.15407
https://doi.org/10.1007/978-3-642-25878-7_31
https://doi.org/10.1007/978-3-642-25878-7_31
https://doi.org/10.1145/3397481.3450652
https://doi.org/10.1145/3397481.3450652
https://doi.org/10.1109/VL.1993.269619
https://doi.org/10.1109/VL.1993.269619
https://freysn.github.io/papers/ldg.pdf
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/978-3-540-24595-7_29
https://doi.org/10.1145/1520340.1520636
https://doi.org/10.1145/1520340.1520636
https://doi.org/10.1145/3313831.3376777
https://doi.org/10.1145/1240866.1241024
https://doi.org/10.1145/882262.882353
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1145/2449396.2449411
https://doi.org/10.1117/12.914596
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1111/cgf.14321
https://doi.org/10.48550/arXiv.1901.06767
https://doi.org/10.48550/arXiv.1901.06767
https://doi.org/10.1007/0-306-47025-X_36
https://doi.org/10.1007/0-306-47025-X_36
https://doi.org/10.1016/j.jvlc.2014.09.002
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2864903
https://doi.org/10.1109/TVCG.2018.2864903
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/1378773.1378787
https://doi.org/10.1145/1378773.1378787
https://doi.org/10.1111/j.1467-8659.2012.03041.x
https://doi.org/10.1111/j.1467-8659.2012.03041.x
https://doi.org/10.1109/2945.981851
https://doi.org/10.1145/2901790.2901817
https://doi.org/10.5555/33404
https://doi.org/10.48550/ARXIV.2204.09904
https://doi.org/10.1145/2642918.2647398
https://doi.org/10.1145/2642918.2647398
https://doi.org/10.1145/2818709
https://doi.org/10.1145/2818709
https://doi.org/10.1145/3306346.3322971

	Abstract
	1 Introduction
	2 Related Work
	3 Content-Driven Layout
	3.1 Terminology
	3.2 Overview
	3.3 Attractive Forces
	3.4 Repulsive Forces

	4 Implementation
	5 Case Studies
	5.1 Respiration Patterns
	5.2 Wind Turbine Distribution in the US
	5.3 Health vs. Wealth in the Countries of the World

	6 Discussion and Limitations
	7 Conclusion
	References

