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Comparing Cross-Sections and 3D Renderings for Surface
Matching Tasks using Physical Ground Truths

Andreas J. Lind and Stefan Bruckner

Fig. 1. The participants in the study were asked to identify the digital version of the 3D printed physical object on the left, from four
visualized objects on the right. The right side shows the 3D renderings of four similar objects. To make it easier for participants to
distinguish between the four alternatives the 3D renderings were shown with different colored backgrounds. The participants were
able to rotate, scale and translate the objects to examine them in detail.

Abstract—Within the visualization community there are some well-known techniques for visualizing 3D spatial data and some general
assumptions about how perception affects the performance of these techniques in practice. However, there is a lack of empirical
research backing up the possible performance differences among the basic techniques for general tasks. One such assumption is
that 3D renderings are better for obtaining an overview, whereas cross sectional visualizations such as the commonly used Multi-
Planar Reformation (MPR) are better for supporting detailed analysis tasks. In the present study we investigated this common
assumption by examining the difference in performance between MPR and 3D rendering for correctly identifying a known surface. We
also examined whether prior experience working with image data affects the participant’s performance, and whether there was any
difference between interactive or static versions of the visualizations. Answering this question is important because it can be used
as part of a scientific and empirical basis for determining when to use which of the two techniques. An advantage of the present
study compared to other studies is that several factors were taken into account to compare the two techniques. The problem was
examined through an experiment with 45 participants, where physical objects were used as the known surface (ground truth). Our
findings showed that: 1. The 3D renderings largely outperformed the cross sections; 2. Interactive visualizations were partially more
effective than static visualizations; and 3. The high experience group did not generally outperform the low experience group.

Index Terms—Human-Computer Interaction, Quantitative Evaluation and Volume Visualization

1 INTRODUCTION

Within the field of visualization there are a number of commonly held
assumptions about the performance of 2D and 3D visualizations. In
2014 a panel at the IEEE VIS conference attempted to settle the ques-
tion [28]. Despite the inconclusive results of the discussion, it was
agreed that both had advantages and disadvantages. This conclu-
sion was reached despite some disagreement regarding exactly what
these advantages and disadvantages were. However, the importance
of choosing an approach that is appropriate for each task was empha-
sized. Determining which of the two approaches is best suited for
tasks using 3D spatial data is an important question, due to the differ-
ence between the visualization research community where much focus
is given to solutions using 3D renderings, and many practical commu-
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nities who prefer using cross sections [10]. Visualization practitioners
have intuitions and informal best practices relating to the performance
of the different techniques. However, to determine an appropriate visu-
alization technique for a given task it is necessary to conduct empirical
studies about the performance of different techniques as they relate to
different tasks [37]. Although some research has been done comparing
the utility of 2D and 3D visualizations in specific domains, the results
of the studies using different types of data, users and tasks are often
contradictory [40, 43, 39, 12]. This motivates a need to do more basic
studies to determine the performance without confounding factors.

Compared to other areas, empirical research on the visualization of
3D spatial data has historically received less attention. However, in
recent years there has been a change with more interest being shown
in such research [13, 6, 19, 30]. The focus has been on comparing 3D
renderings using different techniques and features to assess their per-
formance. The studies have mostly examined the utility of different
visualization techniques for determining and discriminating between
the depths of the objects [13, 6, 19], but also the identification of the
direction of surfaces [41]. These tasks have likely been chosen be-
cause they are relatively easy tasks to set up since the ground truth is
available in the data itself. The interest in evaluating the performance
of 3D renderings has been accompanying a larger empirical research
trend within the visualization community.
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It is also interesting to determine the difference between the perfor-
mance of interactive visualizations and static visualizations, since it
is generally assumed that interactive visualizations tend to outperform
static visualizations [37]. Some of the prior work has also looked into
this for 3D visualizations [19], but in general the influence of interac-
tion in visualization is not very well understood empirically [37]. Un-
like the interest in evaluating the performance of 3D renderings, cross
section based approaches remain a subject of lesser interest. However,
there are some earlier works examining the performance difference for
specialist medical tasks [16, 38].

Even though some empirical studies about the relative performance
of techniques have been done, there is a need to make an empirical
examination of whether there is a general performance difference be-
tween 3D renderings and cross sections. Motivated by this, the present
study aims to determine whether there is a performance difference be-
tween the two visualization techniques for the task of identifying a
known surface. To ensure that the study would measure general perfor-
mance, a simple and common task was chosen. Being able to correctly
identify features in a data set is considered to be a basic task for 3D
spatial data [26], but there is a lack of studies examining this task for
visualizations of 3D spatial data. We also examined both interactive
and static versions of the two techniques, to determine if the interactive
versions outperform the static versions, which is generally assumed in
the visualization community. When studying the usefulness of a visu-
alization technique, the experience required to use it in practice must
also be taken into account. It is often assumed that highly experi-
enced participants outperform those with little experience, particularly
with cross section visualizations [10]. Therefore, we also investigated
whether highly experienced participants with regards to using image
data perform better than those with comparatively little experience. An
empirical study of the performance difference between 3D renderings
and cross sections will result in a better understanding of when to use
the two techniques and serve as a basis for further investigation of how
to approach the question of 2D vs. 3D.

2 RELATED WORKS

2.1 3D Visualization and Graphics
There have been a number of studies in 3D visualization comparing
similar techniques for common tasks. Reaction time and number of
correct responses are commonly used measures for performance in
studies comparing different visualization techniques and approaches
[13, 4, 19, 36]. However, there are also some studies that measures the
participant’s subjective perception of the techniques [18, 5].

Pike et al. argued that when examining the performance of visu-
alization techniques, the relationship between method of interaction
and task must be investigated. This will enable the correct interaction
mode to be made available for each task [37]. For 3D spatial data
there is a lack of empirical research into the utility of interaction, with
some exceptions such as Grosset et al.’s study on depth of field [19]
and Baer et al.’s investigation of Ghosted Views for vascular structures
and embedded flow [5]. Further, Pike et al. identified quantitative
evaluation with interaction isolated as an experimental variable as an
important topic of research [37]. This should be measured according
to the following variables: efficiency, effectiveness and satisfaction
[21, 37]. Single experiments or studies usually measure either effi-
ciency and effectiveness with the reaction time (RT) and number of
correct responses (CORR) or the participant’s overall satisfaction with
each technique [29]. We expand the RT and CORR pair to include a
confidence (CONF) variable to measure the participant’s satisfaction
with each response. A similar approach was used by Baer et al. where
in addition to measuring CORR and RT, the participants were asked
on a questionnaire to state which techniques they preferred after the
experiment [5]. Kersten-Oertel et al. also presented a questionnaire at
the end of the experiment where the participants were asked to rate the
ease with which they could conduct the task [24]. Our approach was
an improvement over the questionnaire approach because it tests how
satisfied the participants are that they have successfully completed an
individual task. This is a more specific question than asking the par-
ticipants to judge an aggregate of a number of individual tests.

Another interesting work by Penney et al. examined the effect of
global vs. local illumination together with texture and motion on the
effectiveness of streamtube visualization [36]. Their experiment tested
26 participants on their ability to compare depth, continuity and inter-
sections with foreign objects. The results showed that the effect of
global vs. local illumination depended on the task. On the other hand
motion tended to increase the reaction time but lead to higher accu-
racy. The study expanded upon previous work by Weigle and Banks
[45]. However, they only examined local vs. global illumination and
had a relatively small sample size of 5 participants.

2.2 Medical Case Studies

Comparing different visualization techniques for medical Computa-
tional Tomography (CT) data has been a topic of interest for medical
researchers. Fox et al. presented a study comparing the performance
between CT slices, 3D reconstructions and Multi-Planar Reformation
(MPR) for identifying maxifillofacial (head and neck) fractures. They
found that the 3D and axial CT slice visualizations outperformed MPR
when it came to correctly identifying whether fractures were present,
with no difference between 3D and CT slice visualizations. The results
showed that the number of fractures detected resulted in a ranking with
the highest numbers correctly identified for CT slices, then 3D render-
ings and lastly MPR. However, the study could be considered a case
study since it only had three participants, although they had a large
number of stimuli per participant (108). Furthermore, the study inves-
tigated tasks that were highly dependent on medical knowledge and by
doing so confounded variation in professional expertise with the visu-
alization technique [16]. The same could be argued for a study by Dos
Santos et al. [15]. The study consisted of 2 participants, and 56 stimuli
were used to identify the performance differences between axial slices,
MPR and 3D renderings for the diagnosis of maxillofacial fractures.
This was examined by investigating the sensitivity and specificity of
the visualization techniques in identifying fractures. The study found
that the results depended on which anatomical region the test was per-
formed in. Axial CT slices and MPR outperformed 3D rendering for
sensitivity in the maxillary buttress and MPR and 3D renderings out-
performed CT slices for sensitivity in the orbit region. No significant
results were found for specificity. Remmler et al. conducted a study to
determine the utility of 3D CT and MPR for nasoorbitoethmoidal frac-
tures. Their results were more varied: 2D CT outperformed 3D CT in
inspections of the medial orbital wall and 3D CT outperformed 2D CT
for diagnosis in the medial maxillary buttress [38]. A questionnaire
based study examining the utility of 2D reformatted and 3D rendered
CT images was conducted by Alder et al. [1]. The study was per-
formed with 29 expert participants who reported their perceived utility
of the two techniques. They found that 97% of responders stated that
the 3D renderings were useful and provided additional information,
but only 34% stated that the 3D renderings were essential. It should
be noted that no comparison was made between the two techniques
in that study. A weakness with respect to the general applicability
of studies of 2D vs. 3D CT visualizations from the medical domain
is that there is a tendency to focus either on case studies [27] or the
perceived utility of techniques without direct comparison of the visu-
alization techniques [1]. Additionally, the use of expert tasks enforces
a reliance on prior experience which makes it difficult to generalize
from the results.

Based on the present studies, it could be argued that the perfor-
mance of 3D renderings vs. cross sections for general use is an open
question, particularly when considering non-expert users. The fact that
some studies, such as the one by dos Santos et al., showed varied re-
sults for the same task for different regions of the data set indicates
that to have a more generalizable result less complex data and tasks
should be examined [15]. It could also mean that no meaningful gen-
eral statement can be made about the actual performance, because it
is too dependent on the task and data. Furthermore, because the prior
studies use few participants, it is difficult to determine this without
conducting further studies using larger samples. These problems are
addressed in the present study by using a larger sample of participants,
comparing high experienced vs. low experienced participants and by

using a non-expert task.

2.3 Greebles
Some previous work from perceptual psychology has examined 3D
shape perception using physical ground truths. In particular abstract
physical shapes called Greebles have been used to research object and
facial recognition. However, their relation to general object and fa-
cial recognition remains controversial. As an example, Gauthier et al.
demonstrated that it was possible for patients with severe visual object
agnosia and dyslexia, but intact face recognition, to fail to recognize
Greebles [17]. Vuong et al. on the other hand, showed that incorrect
pigmentation of Greebles and faces resulted in longer reaction time
and a lower number of correct responses for both [44]. By using fMRI
scans of healthy participants, Brant et al. found evidence of an inver-
sion effect when examining the Greebles [8], which is most commonly
associated with face recognition. Based on the literature it is difficult
to determine the exact relation between facial and object recognition
for Greebles. However, there is a general consensus in the perception
community that faces and general objects are processed differently by
the brain [8]. To ensure that our objects would be processed through
object recognition rather than facial recognition, we chose common
objects that most people would be familiar with as our physical ground
truths.

2.4 Virtual Reality and 3D User Interfaces
It is generally held by the 3D interaction community that 3D input
based interaction outperforms 2D input for 3D renderings [7]. This
has been backed up by user studies. As an example, Hinckley et al.
[20] demonstrated that 3D trackers outperformed mouse and arc-ball
for 3D rotation tasks. Results from the Virtual Reality (VR) domain,
demonstrated that there is a difference between user performance in
3D VR and 3D projected onto a 2D surface (e.g. a screen). Especially
interesting are 3D interaction instruments that have been developed in
that field [34, 23, 22]. For instance, Jackson et al. presented a 3D
interaction instrument that was specialized towards the visualization
of fiber structures [23]. This could lead to different results from the
present study’s 2D input. Possible performance differences between
3D and 2D interaction were not taken into account by the present
study, but examining the performance of this and other 3D interaction
techniques could make for an interesting follow-up study.

3 METHOD

In order to test the assumption that 3D renderings are better at gain-
ing an overview of the data while cross sections are more suited for
detailed analysis of the data [28, 33], the present study examined the
performance of 3D renderings and cross sections for the task of iden-
tifying a known surface. An argument for using the identification of a
surface rather than depth tasks is that prior case studies comparing 3D
renderings with cross sectional views within the medical domain had
been carried out for other feature identification tasks [16, 15]. Regard-
ing prior work on depth perception, it is believed that high resolution
form and depth perception may utilize different neurological pathways
[31]. This means that results taken from the studies examining depth
perception may not be directly generalizable to tasks relating to the
identification of or location of shapes. Since it should be possible to
compare our findings to those of prior case studies [16, 15] this further
strengthens the argument for using a form identification type task for
the present study.

Because of the possibility of prior knowledge affecting the out-
comes, it was important to take into account the participants’ rele-
vant experience. In particular participants with extensive experience
working with image data may outperform participants with less ex-
perience, especially in the case of cross sectional or MPR views. To
determine the effect of experience with image data, the participants
were divided into a group with high and a group with low image data
experience. The objects for the identification task were chosen from
relatively common shapes such as hands, cups, etc. This was done to
ensure that differing user familiarity with shapes would not become a
confounding factor.

There is a general preference for interactive visualizations in the vi-
sualization community and an assumption of better performance for
interactive techniques. It could be argued that this is caused by mul-
timodal integration, which is the concept of how the integration of
several sensory modalities are used by perception to gain an under-
standing about an observed phenomenon [2]. The integration of mul-
tiple senses has been shown to be useful in other identification tasks,
such as the combination of facial and vocal information for person
identification [11]. By utilizing interaction, more sensory modalities
are made available. For the visualization community, interactivity is
often considered a key feature in the performance of many visualiza-
tion approaches, especially in fields like Visual Analytics [35, 14, 37].
In high throughput environments, such as the medical profession, it
has been more common to use static visualizations [10]. Since the
performance of interaction in visualization is not fully understood, the
present study was designed to test both interactive and static versions
of the visualizations.

An advantage of taking all of these factors into account in the same
experiment is that the results are based on data that have been collected
from the same participants under the same conditions. This reduces the
risk of incorrect results that may occur when comparing results from
multiple different studies with different conditions and assumptions.
It also reduces the statistical error rate from analyzing many different
experiments separately.

Based on the problem statement and reasoning above, the following
primary hypotheses were derived:

1.a Our first hypothesis was that 3D techniques should have im-
proved results over 2D techniques. This will be shown as a main
effect of visualization techniques.

1.b Furthermore, the interactive versions should be superior to their
static versions. This will be shown as a main effect of the degree
of interactivity.

1.c An interaction effect of technique by degree of interactivity was
expected to occur, resulting in a ranking of performance of the
different techniques, with interactive 3D better than static 3D,
then interactive 2D followed by static 2D.

2.a The second hypothesis was that highly experienced participants
should outperform the low experience participants. This will be
shown as a main effect of experience.

2.b Furthermore, we expect this to be most obvious when comparing
the slicing technique since it is the most commonly used tech-
nique by our expert users. This will be shown as an interaction
effect between degree of experience and visualization technique.

The experiment was set up by using physical objects as the known
surfaces (ground truth). A virtual version of the physical object and
similar virtual objects were used to provide a set of surfaces from
which the participant would do the identification. The experiment was
conducted as a series of four tests. For each test the user had to iden-
tify a surface based on a physical object. The tests showed four sur-
faces to choose from and used the same visualization technique for all,
which allowed the results of the each test to be examined on the basis
of the technique. To ensure that the experiment gives a full picture
of the participants’ performance, the measures of efficiency, effective-
ness and satisfaction [21, 37] were used. This was accomplished by
using the following three variables: 1. Whether the participant iden-
tified the correct (CORR) surface. 2. What the participant’s reaction
time (RT) for making the choice was. 3. How confident (CONF) the
participant was that the identification was correct.

3.1 Procedure
Before the participant started the experiment, (s)he began by filling
in a questionnaire registering background information. The question-
naire contained information about gender, the participant’s prior ex-
perience working with image data, educational background, age, pro-
fession, whether the participant was a trained radiographer and ratings
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It is also interesting to determine the difference between the perfor-
mance of interactive visualizations and static visualizations, since it
is generally assumed that interactive visualizations tend to outperform
static visualizations [37]. Some of the prior work has also looked into
this for 3D visualizations [19], but in general the influence of interac-
tion in visualization is not very well understood empirically [37]. Un-
like the interest in evaluating the performance of 3D renderings, cross
section based approaches remain a subject of lesser interest. However,
there are some earlier works examining the performance difference for
specialist medical tasks [16, 38].

Even though some empirical studies about the relative performance
of techniques have been done, there is a need to make an empirical
examination of whether there is a general performance difference be-
tween 3D renderings and cross sections. Motivated by this, the present
study aims to determine whether there is a performance difference be-
tween the two visualization techniques for the task of identifying a
known surface. To ensure that the study would measure general perfor-
mance, a simple and common task was chosen. Being able to correctly
identify features in a data set is considered to be a basic task for 3D
spatial data [26], but there is a lack of studies examining this task for
visualizations of 3D spatial data. We also examined both interactive
and static versions of the two techniques, to determine if the interactive
versions outperform the static versions, which is generally assumed in
the visualization community. When studying the usefulness of a visu-
alization technique, the experience required to use it in practice must
also be taken into account. It is often assumed that highly experi-
enced participants outperform those with little experience, particularly
with cross section visualizations [10]. Therefore, we also investigated
whether highly experienced participants with regards to using image
data perform better than those with comparatively little experience. An
empirical study of the performance difference between 3D renderings
and cross sections will result in a better understanding of when to use
the two techniques and serve as a basis for further investigation of how
to approach the question of 2D vs. 3D.

2 RELATED WORKS

2.1 3D Visualization and Graphics
There have been a number of studies in 3D visualization comparing
similar techniques for common tasks. Reaction time and number of
correct responses are commonly used measures for performance in
studies comparing different visualization techniques and approaches
[13, 4, 19, 36]. However, there are also some studies that measures the
participant’s subjective perception of the techniques [18, 5].

Pike et al. argued that when examining the performance of visu-
alization techniques, the relationship between method of interaction
and task must be investigated. This will enable the correct interaction
mode to be made available for each task [37]. For 3D spatial data
there is a lack of empirical research into the utility of interaction, with
some exceptions such as Grosset et al.’s study on depth of field [19]
and Baer et al.’s investigation of Ghosted Views for vascular structures
and embedded flow [5]. Further, Pike et al. identified quantitative
evaluation with interaction isolated as an experimental variable as an
important topic of research [37]. This should be measured according
to the following variables: efficiency, effectiveness and satisfaction
[21, 37]. Single experiments or studies usually measure either effi-
ciency and effectiveness with the reaction time (RT) and number of
correct responses (CORR) or the participant’s overall satisfaction with
each technique [29]. We expand the RT and CORR pair to include a
confidence (CONF) variable to measure the participant’s satisfaction
with each response. A similar approach was used by Baer et al. where
in addition to measuring CORR and RT, the participants were asked
on a questionnaire to state which techniques they preferred after the
experiment [5]. Kersten-Oertel et al. also presented a questionnaire at
the end of the experiment where the participants were asked to rate the
ease with which they could conduct the task [24]. Our approach was
an improvement over the questionnaire approach because it tests how
satisfied the participants are that they have successfully completed an
individual task. This is a more specific question than asking the par-
ticipants to judge an aggregate of a number of individual tests.

Another interesting work by Penney et al. examined the effect of
global vs. local illumination together with texture and motion on the
effectiveness of streamtube visualization [36]. Their experiment tested
26 participants on their ability to compare depth, continuity and inter-
sections with foreign objects. The results showed that the effect of
global vs. local illumination depended on the task. On the other hand
motion tended to increase the reaction time but lead to higher accu-
racy. The study expanded upon previous work by Weigle and Banks
[45]. However, they only examined local vs. global illumination and
had a relatively small sample size of 5 participants.

2.2 Medical Case Studies

Comparing different visualization techniques for medical Computa-
tional Tomography (CT) data has been a topic of interest for medical
researchers. Fox et al. presented a study comparing the performance
between CT slices, 3D reconstructions and Multi-Planar Reformation
(MPR) for identifying maxifillofacial (head and neck) fractures. They
found that the 3D and axial CT slice visualizations outperformed MPR
when it came to correctly identifying whether fractures were present,
with no difference between 3D and CT slice visualizations. The results
showed that the number of fractures detected resulted in a ranking with
the highest numbers correctly identified for CT slices, then 3D render-
ings and lastly MPR. However, the study could be considered a case
study since it only had three participants, although they had a large
number of stimuli per participant (108). Furthermore, the study inves-
tigated tasks that were highly dependent on medical knowledge and by
doing so confounded variation in professional expertise with the visu-
alization technique [16]. The same could be argued for a study by Dos
Santos et al. [15]. The study consisted of 2 participants, and 56 stimuli
were used to identify the performance differences between axial slices,
MPR and 3D renderings for the diagnosis of maxillofacial fractures.
This was examined by investigating the sensitivity and specificity of
the visualization techniques in identifying fractures. The study found
that the results depended on which anatomical region the test was per-
formed in. Axial CT slices and MPR outperformed 3D rendering for
sensitivity in the maxillary buttress and MPR and 3D renderings out-
performed CT slices for sensitivity in the orbit region. No significant
results were found for specificity. Remmler et al. conducted a study to
determine the utility of 3D CT and MPR for nasoorbitoethmoidal frac-
tures. Their results were more varied: 2D CT outperformed 3D CT in
inspections of the medial orbital wall and 3D CT outperformed 2D CT
for diagnosis in the medial maxillary buttress [38]. A questionnaire
based study examining the utility of 2D reformatted and 3D rendered
CT images was conducted by Alder et al. [1]. The study was per-
formed with 29 expert participants who reported their perceived utility
of the two techniques. They found that 97% of responders stated that
the 3D renderings were useful and provided additional information,
but only 34% stated that the 3D renderings were essential. It should
be noted that no comparison was made between the two techniques
in that study. A weakness with respect to the general applicability
of studies of 2D vs. 3D CT visualizations from the medical domain
is that there is a tendency to focus either on case studies [27] or the
perceived utility of techniques without direct comparison of the visu-
alization techniques [1]. Additionally, the use of expert tasks enforces
a reliance on prior experience which makes it difficult to generalize
from the results.

Based on the present studies, it could be argued that the perfor-
mance of 3D renderings vs. cross sections for general use is an open
question, particularly when considering non-expert users. The fact that
some studies, such as the one by dos Santos et al., showed varied re-
sults for the same task for different regions of the data set indicates
that to have a more generalizable result less complex data and tasks
should be examined [15]. It could also mean that no meaningful gen-
eral statement can be made about the actual performance, because it
is too dependent on the task and data. Furthermore, because the prior
studies use few participants, it is difficult to determine this without
conducting further studies using larger samples. These problems are
addressed in the present study by using a larger sample of participants,
comparing high experienced vs. low experienced participants and by

using a non-expert task.

2.3 Greebles
Some previous work from perceptual psychology has examined 3D
shape perception using physical ground truths. In particular abstract
physical shapes called Greebles have been used to research object and
facial recognition. However, their relation to general object and fa-
cial recognition remains controversial. As an example, Gauthier et al.
demonstrated that it was possible for patients with severe visual object
agnosia and dyslexia, but intact face recognition, to fail to recognize
Greebles [17]. Vuong et al. on the other hand, showed that incorrect
pigmentation of Greebles and faces resulted in longer reaction time
and a lower number of correct responses for both [44]. By using fMRI
scans of healthy participants, Brant et al. found evidence of an inver-
sion effect when examining the Greebles [8], which is most commonly
associated with face recognition. Based on the literature it is difficult
to determine the exact relation between facial and object recognition
for Greebles. However, there is a general consensus in the perception
community that faces and general objects are processed differently by
the brain [8]. To ensure that our objects would be processed through
object recognition rather than facial recognition, we chose common
objects that most people would be familiar with as our physical ground
truths.

2.4 Virtual Reality and 3D User Interfaces
It is generally held by the 3D interaction community that 3D input
based interaction outperforms 2D input for 3D renderings [7]. This
has been backed up by user studies. As an example, Hinckley et al.
[20] demonstrated that 3D trackers outperformed mouse and arc-ball
for 3D rotation tasks. Results from the Virtual Reality (VR) domain,
demonstrated that there is a difference between user performance in
3D VR and 3D projected onto a 2D surface (e.g. a screen). Especially
interesting are 3D interaction instruments that have been developed in
that field [34, 23, 22]. For instance, Jackson et al. presented a 3D
interaction instrument that was specialized towards the visualization
of fiber structures [23]. This could lead to different results from the
present study’s 2D input. Possible performance differences between
3D and 2D interaction were not taken into account by the present
study, but examining the performance of this and other 3D interaction
techniques could make for an interesting follow-up study.

3 METHOD

In order to test the assumption that 3D renderings are better at gain-
ing an overview of the data while cross sections are more suited for
detailed analysis of the data [28, 33], the present study examined the
performance of 3D renderings and cross sections for the task of iden-
tifying a known surface. An argument for using the identification of a
surface rather than depth tasks is that prior case studies comparing 3D
renderings with cross sectional views within the medical domain had
been carried out for other feature identification tasks [16, 15]. Regard-
ing prior work on depth perception, it is believed that high resolution
form and depth perception may utilize different neurological pathways
[31]. This means that results taken from the studies examining depth
perception may not be directly generalizable to tasks relating to the
identification of or location of shapes. Since it should be possible to
compare our findings to those of prior case studies [16, 15] this further
strengthens the argument for using a form identification type task for
the present study.

Because of the possibility of prior knowledge affecting the out-
comes, it was important to take into account the participants’ rele-
vant experience. In particular participants with extensive experience
working with image data may outperform participants with less ex-
perience, especially in the case of cross sectional or MPR views. To
determine the effect of experience with image data, the participants
were divided into a group with high and a group with low image data
experience. The objects for the identification task were chosen from
relatively common shapes such as hands, cups, etc. This was done to
ensure that differing user familiarity with shapes would not become a
confounding factor.

There is a general preference for interactive visualizations in the vi-
sualization community and an assumption of better performance for
interactive techniques. It could be argued that this is caused by mul-
timodal integration, which is the concept of how the integration of
several sensory modalities are used by perception to gain an under-
standing about an observed phenomenon [2]. The integration of mul-
tiple senses has been shown to be useful in other identification tasks,
such as the combination of facial and vocal information for person
identification [11]. By utilizing interaction, more sensory modalities
are made available. For the visualization community, interactivity is
often considered a key feature in the performance of many visualiza-
tion approaches, especially in fields like Visual Analytics [35, 14, 37].
In high throughput environments, such as the medical profession, it
has been more common to use static visualizations [10]. Since the
performance of interaction in visualization is not fully understood, the
present study was designed to test both interactive and static versions
of the visualizations.

An advantage of taking all of these factors into account in the same
experiment is that the results are based on data that have been collected
from the same participants under the same conditions. This reduces the
risk of incorrect results that may occur when comparing results from
multiple different studies with different conditions and assumptions.
It also reduces the statistical error rate from analyzing many different
experiments separately.

Based on the problem statement and reasoning above, the following
primary hypotheses were derived:

1.a Our first hypothesis was that 3D techniques should have im-
proved results over 2D techniques. This will be shown as a main
effect of visualization techniques.

1.b Furthermore, the interactive versions should be superior to their
static versions. This will be shown as a main effect of the degree
of interactivity.

1.c An interaction effect of technique by degree of interactivity was
expected to occur, resulting in a ranking of performance of the
different techniques, with interactive 3D better than static 3D,
then interactive 2D followed by static 2D.

2.a The second hypothesis was that highly experienced participants
should outperform the low experience participants. This will be
shown as a main effect of experience.

2.b Furthermore, we expect this to be most obvious when comparing
the slicing technique since it is the most commonly used tech-
nique by our expert users. This will be shown as an interaction
effect between degree of experience and visualization technique.

The experiment was set up by using physical objects as the known
surfaces (ground truth). A virtual version of the physical object and
similar virtual objects were used to provide a set of surfaces from
which the participant would do the identification. The experiment was
conducted as a series of four tests. For each test the user had to iden-
tify a surface based on a physical object. The tests showed four sur-
faces to choose from and used the same visualization technique for all,
which allowed the results of the each test to be examined on the basis
of the technique. To ensure that the experiment gives a full picture
of the participants’ performance, the measures of efficiency, effective-
ness and satisfaction [21, 37] were used. This was accomplished by
using the following three variables: 1. Whether the participant iden-
tified the correct (CORR) surface. 2. What the participant’s reaction
time (RT) for making the choice was. 3. How confident (CONF) the
participant was that the identification was correct.

3.1 Procedure
Before the participant started the experiment, (s)he began by filling
in a questionnaire registering background information. The question-
naire contained information about gender, the participant’s prior ex-
perience working with image data, educational background, age, pro-
fession, whether the participant was a trained radiographer and ratings



784  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 23, NO. 1, JANUARY 2017

of their experience using computer graphics. The participants self-
reported their image data and computer graphics experience according
to a Likert scale (1 to 5), where 1 meant no experience whatsoever and
5 meant very experienced.

A) B)

C) D)

Fig. 2. Examples of the four techniques used in the experiment; A)
Interactive 3D rendering (I3D), B) Interactive cross sections using Multi-
Planar Reformation (I2D), C) Static 3D rendering (S3D) and D) Static
cross sections (S2D). For each technique, four variations of the surface
were shown. Only one of the four techniques was used for each partic-
ipant per test. The participant selected the surface (s)he believed was
the correct one by pressing the option button below the visualization of
that surface. To make it easier for participants to distinguish between
the four alternatives, especially for the static version, the 3D renderings
were shown with different colored backgrounds.

Fig. 3. The figure shows the experiment setup during a static cross sec-
tions (S2D) test. The printed cup object was covered with a white sheet
prior to commencement of the test to avoid participants spending an
unequal time familiarizing themselves with the object beforehand. Once
the visualizations were finished loading the participant was allowed to
remove the white sheet and start the task of identifying the virtual ver-
sion of the object.

In the next step, the participant was given a short tutorial on how the
experiment was to be carried out. The tutorial took 3-5 minutes and
introduced the basics of how cross sections/MPR and 3D rendering
work, as well as how to interact with the visualizations. The tutorial
used an ear object as a physical ground truth. This object was not used
later in the experiment. All the alternatives for identification of the

surfaces were identical and correct, meaning that there was no actual
identification of surfaces during the tutorial. This was done because
the focus for the tutorial was not to teach the participants to identify
surfaces, but rather to familiarize them with the setup and the basics
of how the visualization techniques and interaction worked. The tu-
torial showed one example for each of the four versions of the tech-
niques. For each example the window was divided into four quadrants
with each quadrant visualizing one of the four versions of the surface.
The techniques used were interactive and static versions of cross sec-
tions/MPR and a 3D solid surface rendering. We use the following
abbreviations in the text: I3D for Interactive 3D, I2D for interactive
slices, S3D for static 3D and S2D for static slices. Examples can be
seen in Figure 2. The I3D tests had a single interactive 3D visualiza-
tion in each quadrant as can be seen in Figure 2.A. It could be rotated,
translated and scaled by mouse interaction. The original viewpoint
was chosen as a random side of the object. For the I2D, slice visual-
izations were shown with one Multi-Planar Reformation (MPR) visu-
alization per quadrant (see Figure 2.B). The slices were shown from
the three cardinal directions and were located inside a square with a
colored outline. Each slice also had a colored line representing the
intersection with the slice inside the square with that color. The partic-
ipant was able to move the slices with the mouse either by clicking and
dragging the colored lines to move the intersecting slice or by click-
ing and dragging inside of a slice to move that particular slice. The
original position of the slices was set as a random pre-chosen position
intersecting the object. For each of the four surfaces the S3D tests
showed static snapshots from the 3 cardinal directions (top, front and
side), as well as a snapshot of the object angled 45 degrees around
both the X and Y axes. This last direction was chosen because it was
found in prior studies that users prefer views from oblique angles [18].
Combined with the three cardinal directions this has the advantage of
very concisely presenting most of the surface, as can be seen in Fig-
ure 2.C. Lastly, for S2D the same visualization scheme as for the I2D
was used with the cross sections chosen manually beforehand by the
experimenters. The cross sections were chosen to best highlight the
differences between the surfaces (see Figure 2.D). The advantage of
choosing the same number of images as in I2D and S3D was that it
preserved a similar type of layout across the different visualizations.
This helped to ensure that the approaches were evaluated based on
the chosen visualization technique and not for instance the number of
views.

After the tutorial the participants performed the experiment. Each
test in the experiment was conducted using different surfaces in each of
the four quadrants and the participant had to identify which one of the
four corresponded to the physical object. For these tests the reaction
time (RT) was the time it took the participant (in milliseconds), from
when the visualizations were finished loading until (s)he selected a
surface. Then the participant had to rate his/her confidence (CONF)
from 1 (not confident) to 5 (completely certain). It was also registered
whether the participant selected the correct (CORR) surface. A total
of four tests were performed (see Figure 4 for the objects used in each
experiment).

To ensure that a complete picture was given, both for each test par-
ticipant as well as for each of the four surfaces, the visualization tech-
niques being presented were varied in a semi-random way for each
test. All participants were presented all techniques and all objects were
visualized.

The exact procedure of each individual test was that the partici-
pant begins the test by being shown a screen stating which type of
test will come next (I2D, I3D, etc.) and a ”Show Test” button. When
the participant pressed the ”Show Test” button the visualization started
loading. The physical object that was to be identified was located to
the participant’s right or left side in a queue, with a white sheet cov-
ering each physical object (see Figure 3). Once the visualization was
finished loading the timer started on the RT measure. The partici-
pant could now remove the white sheet and start to identify which of
the four visualizations corresponded to the physical object. For the
objects made by 3D printing the participant could pick them up and
move them around as (s)he wished. The Lego object was more fragile

1) 2)

3) 4)

Fig. 4. The physical ground truths shown in the order they were pre-
sented: 1. Printed fish, 2. Lego hand, 3. Printed cup and 4. Printed
brain.

and was therefore presented on a plate (see Section 3.4 for more infor-
mation on the 3D printed vs. Lego objects). The plate could be lifted
up and moved around, as well as rotated around the axis orthogonal to
its flat surface. Limited pitch and roll was also possible. In order to
record the CORR variable, the participant selected a surface by press-
ing one of the four option buttons under the four visualizations. The
RT variable was registered and the participants had to rate their con-
fidence (CONF) by pressing a button with a label between 1 and 5 to
represent their score. The test was then completed, the current object
moved out of the queue and the procedure was repeated for the next
test.

The participants were instructed to take as much time deciding as
they felt they needed to be comfortable with their selection. This was
done to reflect real life scenarios where people spend as much time
as needed to make an adequate response. It should be noted that due
to this instruction, the results are probably erring more on the side of
accuracy than speed.

3.2 Pilot Studies
Before the present study was carried out, two pilot studies were per-
formed with 8 participants in each of the two pilots. Although the pilot
samples were too small to perform statistical tests, they were helpful
in refining the process. Among the changes made was adding a tutorial
to familiarize the participants with the basics of how the visualization
techniques worked and how they were supposed to react to the prac-
tical portions of the experiment. This ensured that all the participants
knew the basics of what the techniques were and how they worked be-
fore they started. Also a question was added to the pre-experiment
questionnaire adding meta-data about prior graphics experience for
each participant. These improvements were mainly made after the
first pilot study, with the second pilot primarily serving to check that
the experiment was running as expected.

3.3 The Participants
The experiment was carried out on a total of 45 participants. Of these
a total of 16 where women and 29 were men. Thirty-two participants
were recruited primarily from the students and staff at the Department
of Informatics of the University of Bergen, as well as 13 domain ex-
perts from the Radiography Department at the University Hospital of
Bergen. The age of the participants examined ranged from 18 to 61
of which 1 was aged below 20, 22 between 20 and 29, 9 between 30
and 39, 4 between 40 and 49 and 9 above 50. Thus, the participants to
some degree reflected the general working population. The data were
gathered isolated from random noise at the offices of the Department
of Informatics University of Bergen and the Radiography Department
at the University Hospital of Bergen.

3.4 Setup
The visualization part was implemented using the standard ray cast-
ing and slicing plug-ins for VolumeShop [9]. The participants inter-
acted with the virtual part of the experiment through a setup using the
VolumeShop webserver for access to the VolumeShop visualization
capabilities and HTML and JavaScript for the questionnaire and ex-
periment setup. This made for a setup that could be rapidly altered to
suit our needs during the pilot studies.

The physical objects were made by a process of first extracting a
suitable surface from volumetric CT scans using Paraview [42]. The
surface was then either printed with a 3D printer or modeled in Lego.
It was converted to the Lego-format .ldr and edited into four versions
using Lego Digital Designer. The Lego Digital Designer’s Building
Guide Mode provided an interactive instruction set for building the
physical Lego object [32]. Lego models were chosen because they
are practical to use and because editing the surfaces in Lego Digi-
tal Designer was relatively straight forward. Approximately 500 indi-
vidual bricks ended up being needed for the model, even with heavy
down-sampling of the data-set. In the last step the four versions of
the surfaces, three of which had been edited, were converted back to a
voxelized representation and used for the visualizations. The original
Lego object was made because we originally had easier access to Lego
than to 3D printing. Because the identification of the Lego object did
not require pitch or roll, we do not believe that the limited ability to
manipulate the model influenced the results of the study.

Collection of data on the participants’ performance was done
through several means. The questionnaire and performance data were
stored in a MySQL database. The website interfaced with the MySQL
database through a Laravel-server based solution, which was accessed
by cross-site scripting from the visualization implementation on the
VolumeShop server. Screen capture videos of the participants entering
the answers to the questionnaires and working on the tests were used
as a backup solution.

The physical setup consisted of a Dell UltraSharp 2408WFP with
the dimensions 22x19.6 inches running at a 1920x1200 resolution and
59Hz. The programs were run on an Alienware Desktop PC with a
3.40 GHz CPU, 32 GB of RAM and GeForce GTX 660 graphics card
running Windows 10. The lighting setup and the location of the phys-
ical objects varied between the different experiment locations.

Assignment of participants to the high and low experienced group
was done based on the median split of the self evaluation of experience
with imaged data. There were 27 participants in the low experience
and 18 in the high experience group. All 13 participants from the
radiography department ended up in the high experience group. The
RT variable was square root transformed in order to achieve better
homogeneity of error variance, thus normalizing the scores [25].

4 RESULTS

The data were analyzed using a 2 (high vs. low degree of experi-
ence) × 2 (3D vs. 2D) × 2 (interactive vs. static) ANOVA design. A
separate ANOVA was run for each of the three variables that were in-
vestigated (CORR, RT and CONF). Fisher Least Squares Differences
(Fisher LSD) were used for post-hoc analysis. No post-hoc correc-
tions were performed, since only a few contrasts were of interest [3].
Since the hypotheses were defined with a direction of means, one-
tailed versions of the Fisher LSD tests were used where appropriate.
The one-tailed tests are marked one-tailed in the text. For the same
reason and because only a limited number of specific contrasts were
of interest, non-significant interaction effects were followed up with
Fisher LSD [46]. The results of the statistical tests are given with 5
decimal points of precision, if the value was lower than what can be
shown with 5 decimal points of precision the value set is shown as 0.

A visual summary of the findings can be seen in Figure 5. Tables 1
and 2 show the specific values of the tests.

A main effect of visualization techniques was found on the CORR
data with 3D outperforming 2D, F(1, 43) = 16.856, p = 0.00018. Also,
a main effect of the degree of interactivity on the CORR data was
found with interactive outperforming static, F(1, 43) = 4.3289, p =
0.04346. No interaction effect between visualization technique and
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of their experience using computer graphics. The participants self-
reported their image data and computer graphics experience according
to a Likert scale (1 to 5), where 1 meant no experience whatsoever and
5 meant very experienced.

A) B)

C) D)

Fig. 2. Examples of the four techniques used in the experiment; A)
Interactive 3D rendering (I3D), B) Interactive cross sections using Multi-
Planar Reformation (I2D), C) Static 3D rendering (S3D) and D) Static
cross sections (S2D). For each technique, four variations of the surface
were shown. Only one of the four techniques was used for each partic-
ipant per test. The participant selected the surface (s)he believed was
the correct one by pressing the option button below the visualization of
that surface. To make it easier for participants to distinguish between
the four alternatives, especially for the static version, the 3D renderings
were shown with different colored backgrounds.

Fig. 3. The figure shows the experiment setup during a static cross sec-
tions (S2D) test. The printed cup object was covered with a white sheet
prior to commencement of the test to avoid participants spending an
unequal time familiarizing themselves with the object beforehand. Once
the visualizations were finished loading the participant was allowed to
remove the white sheet and start the task of identifying the virtual ver-
sion of the object.

In the next step, the participant was given a short tutorial on how the
experiment was to be carried out. The tutorial took 3-5 minutes and
introduced the basics of how cross sections/MPR and 3D rendering
work, as well as how to interact with the visualizations. The tutorial
used an ear object as a physical ground truth. This object was not used
later in the experiment. All the alternatives for identification of the

surfaces were identical and correct, meaning that there was no actual
identification of surfaces during the tutorial. This was done because
the focus for the tutorial was not to teach the participants to identify
surfaces, but rather to familiarize them with the setup and the basics
of how the visualization techniques and interaction worked. The tu-
torial showed one example for each of the four versions of the tech-
niques. For each example the window was divided into four quadrants
with each quadrant visualizing one of the four versions of the surface.
The techniques used were interactive and static versions of cross sec-
tions/MPR and a 3D solid surface rendering. We use the following
abbreviations in the text: I3D for Interactive 3D, I2D for interactive
slices, S3D for static 3D and S2D for static slices. Examples can be
seen in Figure 2. The I3D tests had a single interactive 3D visualiza-
tion in each quadrant as can be seen in Figure 2.A. It could be rotated,
translated and scaled by mouse interaction. The original viewpoint
was chosen as a random side of the object. For the I2D, slice visual-
izations were shown with one Multi-Planar Reformation (MPR) visu-
alization per quadrant (see Figure 2.B). The slices were shown from
the three cardinal directions and were located inside a square with a
colored outline. Each slice also had a colored line representing the
intersection with the slice inside the square with that color. The partic-
ipant was able to move the slices with the mouse either by clicking and
dragging the colored lines to move the intersecting slice or by click-
ing and dragging inside of a slice to move that particular slice. The
original position of the slices was set as a random pre-chosen position
intersecting the object. For each of the four surfaces the S3D tests
showed static snapshots from the 3 cardinal directions (top, front and
side), as well as a snapshot of the object angled 45 degrees around
both the X and Y axes. This last direction was chosen because it was
found in prior studies that users prefer views from oblique angles [18].
Combined with the three cardinal directions this has the advantage of
very concisely presenting most of the surface, as can be seen in Fig-
ure 2.C. Lastly, for S2D the same visualization scheme as for the I2D
was used with the cross sections chosen manually beforehand by the
experimenters. The cross sections were chosen to best highlight the
differences between the surfaces (see Figure 2.D). The advantage of
choosing the same number of images as in I2D and S3D was that it
preserved a similar type of layout across the different visualizations.
This helped to ensure that the approaches were evaluated based on
the chosen visualization technique and not for instance the number of
views.

After the tutorial the participants performed the experiment. Each
test in the experiment was conducted using different surfaces in each of
the four quadrants and the participant had to identify which one of the
four corresponded to the physical object. For these tests the reaction
time (RT) was the time it took the participant (in milliseconds), from
when the visualizations were finished loading until (s)he selected a
surface. Then the participant had to rate his/her confidence (CONF)
from 1 (not confident) to 5 (completely certain). It was also registered
whether the participant selected the correct (CORR) surface. A total
of four tests were performed (see Figure 4 for the objects used in each
experiment).

To ensure that a complete picture was given, both for each test par-
ticipant as well as for each of the four surfaces, the visualization tech-
niques being presented were varied in a semi-random way for each
test. All participants were presented all techniques and all objects were
visualized.

The exact procedure of each individual test was that the partici-
pant begins the test by being shown a screen stating which type of
test will come next (I2D, I3D, etc.) and a ”Show Test” button. When
the participant pressed the ”Show Test” button the visualization started
loading. The physical object that was to be identified was located to
the participant’s right or left side in a queue, with a white sheet cov-
ering each physical object (see Figure 3). Once the visualization was
finished loading the timer started on the RT measure. The partici-
pant could now remove the white sheet and start to identify which of
the four visualizations corresponded to the physical object. For the
objects made by 3D printing the participant could pick them up and
move them around as (s)he wished. The Lego object was more fragile
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Fig. 4. The physical ground truths shown in the order they were pre-
sented: 1. Printed fish, 2. Lego hand, 3. Printed cup and 4. Printed
brain.

and was therefore presented on a plate (see Section 3.4 for more infor-
mation on the 3D printed vs. Lego objects). The plate could be lifted
up and moved around, as well as rotated around the axis orthogonal to
its flat surface. Limited pitch and roll was also possible. In order to
record the CORR variable, the participant selected a surface by press-
ing one of the four option buttons under the four visualizations. The
RT variable was registered and the participants had to rate their con-
fidence (CONF) by pressing a button with a label between 1 and 5 to
represent their score. The test was then completed, the current object
moved out of the queue and the procedure was repeated for the next
test.

The participants were instructed to take as much time deciding as
they felt they needed to be comfortable with their selection. This was
done to reflect real life scenarios where people spend as much time
as needed to make an adequate response. It should be noted that due
to this instruction, the results are probably erring more on the side of
accuracy than speed.

3.2 Pilot Studies
Before the present study was carried out, two pilot studies were per-
formed with 8 participants in each of the two pilots. Although the pilot
samples were too small to perform statistical tests, they were helpful
in refining the process. Among the changes made was adding a tutorial
to familiarize the participants with the basics of how the visualization
techniques worked and how they were supposed to react to the prac-
tical portions of the experiment. This ensured that all the participants
knew the basics of what the techniques were and how they worked be-
fore they started. Also a question was added to the pre-experiment
questionnaire adding meta-data about prior graphics experience for
each participant. These improvements were mainly made after the
first pilot study, with the second pilot primarily serving to check that
the experiment was running as expected.

3.3 The Participants
The experiment was carried out on a total of 45 participants. Of these
a total of 16 where women and 29 were men. Thirty-two participants
were recruited primarily from the students and staff at the Department
of Informatics of the University of Bergen, as well as 13 domain ex-
perts from the Radiography Department at the University Hospital of
Bergen. The age of the participants examined ranged from 18 to 61
of which 1 was aged below 20, 22 between 20 and 29, 9 between 30
and 39, 4 between 40 and 49 and 9 above 50. Thus, the participants to
some degree reflected the general working population. The data were
gathered isolated from random noise at the offices of the Department
of Informatics University of Bergen and the Radiography Department
at the University Hospital of Bergen.

3.4 Setup
The visualization part was implemented using the standard ray cast-
ing and slicing plug-ins for VolumeShop [9]. The participants inter-
acted with the virtual part of the experiment through a setup using the
VolumeShop webserver for access to the VolumeShop visualization
capabilities and HTML and JavaScript for the questionnaire and ex-
periment setup. This made for a setup that could be rapidly altered to
suit our needs during the pilot studies.

The physical objects were made by a process of first extracting a
suitable surface from volumetric CT scans using Paraview [42]. The
surface was then either printed with a 3D printer or modeled in Lego.
It was converted to the Lego-format .ldr and edited into four versions
using Lego Digital Designer. The Lego Digital Designer’s Building
Guide Mode provided an interactive instruction set for building the
physical Lego object [32]. Lego models were chosen because they
are practical to use and because editing the surfaces in Lego Digi-
tal Designer was relatively straight forward. Approximately 500 indi-
vidual bricks ended up being needed for the model, even with heavy
down-sampling of the data-set. In the last step the four versions of
the surfaces, three of which had been edited, were converted back to a
voxelized representation and used for the visualizations. The original
Lego object was made because we originally had easier access to Lego
than to 3D printing. Because the identification of the Lego object did
not require pitch or roll, we do not believe that the limited ability to
manipulate the model influenced the results of the study.

Collection of data on the participants’ performance was done
through several means. The questionnaire and performance data were
stored in a MySQL database. The website interfaced with the MySQL
database through a Laravel-server based solution, which was accessed
by cross-site scripting from the visualization implementation on the
VolumeShop server. Screen capture videos of the participants entering
the answers to the questionnaires and working on the tests were used
as a backup solution.

The physical setup consisted of a Dell UltraSharp 2408WFP with
the dimensions 22x19.6 inches running at a 1920x1200 resolution and
59Hz. The programs were run on an Alienware Desktop PC with a
3.40 GHz CPU, 32 GB of RAM and GeForce GTX 660 graphics card
running Windows 10. The lighting setup and the location of the phys-
ical objects varied between the different experiment locations.

Assignment of participants to the high and low experienced group
was done based on the median split of the self evaluation of experience
with imaged data. There were 27 participants in the low experience
and 18 in the high experience group. All 13 participants from the
radiography department ended up in the high experience group. The
RT variable was square root transformed in order to achieve better
homogeneity of error variance, thus normalizing the scores [25].

4 RESULTS

The data were analyzed using a 2 (high vs. low degree of experi-
ence) × 2 (3D vs. 2D) × 2 (interactive vs. static) ANOVA design. A
separate ANOVA was run for each of the three variables that were in-
vestigated (CORR, RT and CONF). Fisher Least Squares Differences
(Fisher LSD) were used for post-hoc analysis. No post-hoc correc-
tions were performed, since only a few contrasts were of interest [3].
Since the hypotheses were defined with a direction of means, one-
tailed versions of the Fisher LSD tests were used where appropriate.
The one-tailed tests are marked one-tailed in the text. For the same
reason and because only a limited number of specific contrasts were
of interest, non-significant interaction effects were followed up with
Fisher LSD [46]. The results of the statistical tests are given with 5
decimal points of precision, if the value was lower than what can be
shown with 5 decimal points of precision the value set is shown as 0.

A visual summary of the findings can be seen in Figure 5. Tables 1
and 2 show the specific values of the tests.

A main effect of visualization techniques was found on the CORR
data with 3D outperforming 2D, F(1, 43) = 16.856, p = 0.00018. Also,
a main effect of the degree of interactivity on the CORR data was
found with interactive outperforming static, F(1, 43) = 4.3289, p =
0.04346. No interaction effect between visualization technique and
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Fig. 5. The figure shows the means for Interactive 3D (I3D), Interactive 2D (I2D), static 3D (S3D) and Static 2D (S2D). The data were based on
the two-way interaction of visualization techniques by degree of interactivity (panels A-C). The figure also shows means separated for the high
(Red) and low (Blue) experienced group, based on the three-way interaction of Groups by visualization techniques by degree of interactivity (panels
D-F). The error bar denotes 95% confidence interval and the panels show the data for number of correct responses (CORR), degree of confidence
(CONF) and reaction time in milliseconds (RT).

degree of interaction was found, F(1, 43) = 1.634, p = 0.20806. A
follow-up of the interaction effect showed that I3D had a higher num-
ber of correct responses compared to I2D (p = 0.001378), S2D (p =
0.000765) and S3D (p = 0.025228, one-tailed).

Another main effect of the visualization techniques was found on
the CONF data with 3D outperforming 2D, F(1, 43) = 47.841, p =
0.00000. No main effect of the degree of interaction was found on
the CONF data, F(1, 43) = 0.69382, p = 0.40947. An interaction
effect between visualization technique and degree of interaction was
also found, F(1, 43) = 15.546, p = 0.00029. The follow up LSD test
revealed that participants reported higher confidence in their choices
with I3D as compared to I2D (p = 0.000000), S3D (p = 0.001542) and
S2D (p = 0.000000). Participants were shown to have higher confi-
dence in S3D than in I2D (p = 0.000001) and S2D (p = 0.002232).
Lastly, the participants demonstrated a higher confidence in S2D than
in I2D (p = 0.023913).

A main effect of the visualization techniques was also found on the
RT data with 3D outperforming 2D, F(1, 35) = 18.516, p = 0.00013.
No main effect of the degree of interaction was found on the RT data,
F(1, 35) = 3.8951, p = 0.05636. However, this constituted a borderline
significant effect, where static outperformed interactive. An interac-
tion effect between visualization technique and degree of interaction
was also found, F(1, 35) = 17.403, p = 0.00019. A follow up LSD
test showed that participants were slower using I2D than I3D (p =
0.000000), S2D (p = 0.000108) and S3D (p = 0.000008). It was also
demonstrated that participants were faster with I3D than with S2D (p
= 0.019957).

This means that hypothesis 1.a is well supported by our findings,
since a significant main effect of the visualization technique was found
for all three measures. We found some support for hypothesis 1.b,
since a main effect of the degree of interaction was identified for the
CORR measure and there was a borderline main effect for RT. There is
also some support for hypothesis 1.c, and this will be examined further
in the discussion section.

No main effect of degree of experience was found on the CORR

data, F(1, 43) = 2.128, p = 0.15191, CONF data, F(1, 43) = 0.043, p
= 0.83684 or RT data, F(1, 35) = 0.274, p = 0.60391. Because of this,
hypothesis 2.a was rejected. Also, no interaction effect between degree
of experience and visualization techniques was found on the CORR
data, F(1, 43) = 2.150, p = 0.14985, CONF data, F(1, 43) = 0.264,
p = 0.61025 or RT data, F(1, 35) = 2.115, p = 0.15474. However,
the non-significant interaction effects for hypothesis 2.b were followed
up with LSD post-hoc analysis due to a specific hypotheses of the
direction of means [46]. The results showed no significant difference
in performance between the high and low experience group on 2D
CONF (p = 0.883914) and RT (p = 0.762299). However, the high
experience group performed better on 2D CORR (p = 0.042643). No
significant differences between the groups were found for 3D CORR
(p = 0.851988), CONF (p = 0.635336), or RT (p = 0.235011).

No interaction effects between degree of experience and degree of
interactivity were found on the CORR data, F(1, 43) = 1.5584, p =
0.21866, CONF data, F(1, 43) = 0.93360, p = 0.33933 or RT data, F(1,
35) 0.4183, p = 0.522028. Also, no 3-way interaction effects were
found on the CORR data, F(1, 43) = 1.634, p = 0.90804, CONF data,
F(1, 43) = 0.0135, p = 0.051391 or RT data, F(1, 35) = 0.007, p =
0.93642.

4.1 Summary of Results

The results showed a main effect of visualization techniques with im-
proved performance of 3D techniques over 2D techniques. This was
the case for all dependent measures; CORR, CONF and RT. Further-
more, a main effect of interactivity with superior performance of the
interactive techniques was found for CORR. A follow-up of visualiza-
tion technique by degree of interactivity showed that there was indeed
a ranking of the techniques. No interaction effects of degree of ex-
perience by visualization techniques were found. However, a follow-
up of the non-significant interaction revealed that the high experience
group outperformed the low experience group on number of correct
responses for I2D.

From this it can be concluded that there was significant support for

I3D I2D S3D S2D

CORR CONF RT CORR CONF RT CORR CONF RT CORR CONF RT

I3D .001378 .000000 .000000 .025228 O .001542 .123922 .000765 .000000 .019957

I2D .001378 .000000 .000000 .166095 .002232 .000008 .841451 .023913 .000108

S3D .025228 O .001542 .123922 .166095 .000001 .000008 .114712 .002232 .394443

S2D .000765 .000000 .019957 .841451 .023913 .000108 .114712 .002232 .394443

Table 1. The matrix shows the significant results of the post-hoc Fisher Least Squares Distances based on the interaction effect between visualiza-
tion techniques and degree of interaction. In the first column and the first row are listed the four compared techniques. In the second row the three
variables that are being tested are listed. Each cell contains the p value of the individual comparison, and significant results are colored green for
the better results on the y-axis and yellow for better results on the x-axis. One-tailed tests are marked as O.

CORR CONF RT

DF = (1,43) DF = (1,43) DF = (1,35)

Analysis F p Obs. Power F p Obs. Power F p Obs. Power

Degree of Experience 2.128 .15191 .297106 .043 .83684 .054716 .274 .60391 .080206

Visualization Techniques 16.856 .00018 .979932 47.841 .00000 .666666 18.516 .00013 .986867

Degree of Interactivity 4.329 .04346 .529545 .694 .40947 .128767 3.895 .05636 .48353

Experience × Technique 2.150 .14985 .299665 .264 .61025 .079345 2.115 .15474 .293122

Experience × Interactivity 1.558 .21866 .230570 .934 .33933 .156844 .418 .52203 .096435

Technique × Interactivity 1.634 .20806 .239426 15.546 .00029 .970847 17.403 .00019 .981904

Experience × Technique ×
Interactivity

.014 .90804 .051480 .013 .91083 .051391 .007 .93642 .050700

Table 2. The table presents Degrees of freedom (DF), F and p values as well as observed Power for all main and interaction effects in the present
study. Instances with p ≤ 0.05 denote a significant effect.

3D outperforming 2D. There was also some support for interactive
outperforming static. The results revealed a ranking of the techniques
with I3D showing the best performance followed by S3D then S2D
and lastly I2D. Due to no significant main effect of degree of experi-
ence, no support was found for experience generally affecting perfor-
mance. However, some support was found for high experience users
outperforming low experience users with I2D in the follow up LSD
tests on the CORR variable.

5 DISCUSSION

Regarding hypothesis 1.a and 1.b we found that 3D renderings do in-
deed outperform cross sections. This was expected because 3D ren-
derings provide more information about surfaces per view than cross
sections. Hypothesis 1.b, that interactive outperforms static, was par-
tially supported. Specifically, support was found in number of correct
responses and a borderline significance in the reaction time. A possi-
ble reason for the more limited support of hypothesis 1.b was that the
task in the present experiment did not require complex investigation
since the physical objects in this experiment were of known objects.
Therefore an overview could be sufficient. This view is in line with
Munzner’s statement that the main advantage of interactivity is that it
allows investigation and analysis of complex data [33].

Further insights into this can be gained by examining the follow-
up of the significant interaction effect between visualization technique
and degree of interactivity. Figures 5.A-C shows that I3D consistently
outperformed or broke even with S3D, whereas I2D consistently ei-
ther underperformed or broke even with S2D. This could be because
manually picked slices present sufficient information and the extra in-
formation presented by the interactive version did not add to the users’

understanding of the object. I2D underperforming compared to S2D
was puzzling since it contradicts conventional wisdom that more in-
vestigation increases the participant’s understanding of the data [33].
A possible explanation for the underperformance of S2D was that the
average participant had low competence with I2D and that the interac-
tion did not provide further information. Some support for this expla-
nation was provided by the fact that the high experience group slightly
outperformed the low experience group in the number of correct iden-
tifications using I2D.

Hypothesis 1.c stated a ranking of the technique/degree of interac-
tivity. The ranking found based on the CONF data (Figure 5.B) was: 1.
I3D, 2. S3D, 3. S2D and 4. I2D. In general parallel results were found
for the CORR (Figure 5.A) and RT data (Figure 5.C). For CORR there
was no difference between I2D and S2D. This indicates that the partic-
ipants were able to correctly assess the performance of each technique.
It should also be noted that the relative ranking of S2D and I2D was the
opposite of what was expected, which could partially help to explain
why hypothesis 1.b was only partially supported.

This also backs up the common practice of using the participant’s
subjective perception of the techniques. The rankings, however, were
very clear compared to rankings found by Baer et al. [5]. Although
they found that Ghosted and Depth Enhanced Ghosted view outper-
formed non-Ghosted views in self-reported preference and the accu-
racy, they were unable to demonstrate similar results for Ghosted vs.
Depth Enhanced Ghosted views. A comparison between the present
study and Baer et al.’s study is shown in Table 3.

We did not find support for hypothesis 2.a that experience leads to
better performance. A likely reason for this result was that the tasks
and objects were chosen in such a way that the focus was on the visu-
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Fig. 5. The figure shows the means for Interactive 3D (I3D), Interactive 2D (I2D), static 3D (S3D) and Static 2D (S2D). The data were based on
the two-way interaction of visualization techniques by degree of interactivity (panels A-C). The figure also shows means separated for the high
(Red) and low (Blue) experienced group, based on the three-way interaction of Groups by visualization techniques by degree of interactivity (panels
D-F). The error bar denotes 95% confidence interval and the panels show the data for number of correct responses (CORR), degree of confidence
(CONF) and reaction time in milliseconds (RT).

degree of interaction was found, F(1, 43) = 1.634, p = 0.20806. A
follow-up of the interaction effect showed that I3D had a higher num-
ber of correct responses compared to I2D (p = 0.001378), S2D (p =
0.000765) and S3D (p = 0.025228, one-tailed).

Another main effect of the visualization techniques was found on
the CONF data with 3D outperforming 2D, F(1, 43) = 47.841, p =
0.00000. No main effect of the degree of interaction was found on
the CONF data, F(1, 43) = 0.69382, p = 0.40947. An interaction
effect between visualization technique and degree of interaction was
also found, F(1, 43) = 15.546, p = 0.00029. The follow up LSD test
revealed that participants reported higher confidence in their choices
with I3D as compared to I2D (p = 0.000000), S3D (p = 0.001542) and
S2D (p = 0.000000). Participants were shown to have higher confi-
dence in S3D than in I2D (p = 0.000001) and S2D (p = 0.002232).
Lastly, the participants demonstrated a higher confidence in S2D than
in I2D (p = 0.023913).

A main effect of the visualization techniques was also found on the
RT data with 3D outperforming 2D, F(1, 35) = 18.516, p = 0.00013.
No main effect of the degree of interaction was found on the RT data,
F(1, 35) = 3.8951, p = 0.05636. However, this constituted a borderline
significant effect, where static outperformed interactive. An interac-
tion effect between visualization technique and degree of interaction
was also found, F(1, 35) = 17.403, p = 0.00019. A follow up LSD
test showed that participants were slower using I2D than I3D (p =
0.000000), S2D (p = 0.000108) and S3D (p = 0.000008). It was also
demonstrated that participants were faster with I3D than with S2D (p
= 0.019957).

This means that hypothesis 1.a is well supported by our findings,
since a significant main effect of the visualization technique was found
for all three measures. We found some support for hypothesis 1.b,
since a main effect of the degree of interaction was identified for the
CORR measure and there was a borderline main effect for RT. There is
also some support for hypothesis 1.c, and this will be examined further
in the discussion section.

No main effect of degree of experience was found on the CORR

data, F(1, 43) = 2.128, p = 0.15191, CONF data, F(1, 43) = 0.043, p
= 0.83684 or RT data, F(1, 35) = 0.274, p = 0.60391. Because of this,
hypothesis 2.a was rejected. Also, no interaction effect between degree
of experience and visualization techniques was found on the CORR
data, F(1, 43) = 2.150, p = 0.14985, CONF data, F(1, 43) = 0.264,
p = 0.61025 or RT data, F(1, 35) = 2.115, p = 0.15474. However,
the non-significant interaction effects for hypothesis 2.b were followed
up with LSD post-hoc analysis due to a specific hypotheses of the
direction of means [46]. The results showed no significant difference
in performance between the high and low experience group on 2D
CONF (p = 0.883914) and RT (p = 0.762299). However, the high
experience group performed better on 2D CORR (p = 0.042643). No
significant differences between the groups were found for 3D CORR
(p = 0.851988), CONF (p = 0.635336), or RT (p = 0.235011).

No interaction effects between degree of experience and degree of
interactivity were found on the CORR data, F(1, 43) = 1.5584, p =
0.21866, CONF data, F(1, 43) = 0.93360, p = 0.33933 or RT data, F(1,
35) 0.4183, p = 0.522028. Also, no 3-way interaction effects were
found on the CORR data, F(1, 43) = 1.634, p = 0.90804, CONF data,
F(1, 43) = 0.0135, p = 0.051391 or RT data, F(1, 35) = 0.007, p =
0.93642.

4.1 Summary of Results

The results showed a main effect of visualization techniques with im-
proved performance of 3D techniques over 2D techniques. This was
the case for all dependent measures; CORR, CONF and RT. Further-
more, a main effect of interactivity with superior performance of the
interactive techniques was found for CORR. A follow-up of visualiza-
tion technique by degree of interactivity showed that there was indeed
a ranking of the techniques. No interaction effects of degree of ex-
perience by visualization techniques were found. However, a follow-
up of the non-significant interaction revealed that the high experience
group outperformed the low experience group on number of correct
responses for I2D.

From this it can be concluded that there was significant support for

I3D I2D S3D S2D

CORR CONF RT CORR CONF RT CORR CONF RT CORR CONF RT

I3D .001378 .000000 .000000 .025228 O .001542 .123922 .000765 .000000 .019957

I2D .001378 .000000 .000000 .166095 .002232 .000008 .841451 .023913 .000108

S3D .025228 O .001542 .123922 .166095 .000001 .000008 .114712 .002232 .394443

S2D .000765 .000000 .019957 .841451 .023913 .000108 .114712 .002232 .394443

Table 1. The matrix shows the significant results of the post-hoc Fisher Least Squares Distances based on the interaction effect between visualiza-
tion techniques and degree of interaction. In the first column and the first row are listed the four compared techniques. In the second row the three
variables that are being tested are listed. Each cell contains the p value of the individual comparison, and significant results are colored green for
the better results on the y-axis and yellow for better results on the x-axis. One-tailed tests are marked as O.

CORR CONF RT

DF = (1,43) DF = (1,43) DF = (1,35)

Analysis F p Obs. Power F p Obs. Power F p Obs. Power

Degree of Experience 2.128 .15191 .297106 .043 .83684 .054716 .274 .60391 .080206

Visualization Techniques 16.856 .00018 .979932 47.841 .00000 .666666 18.516 .00013 .986867

Degree of Interactivity 4.329 .04346 .529545 .694 .40947 .128767 3.895 .05636 .48353

Experience × Technique 2.150 .14985 .299665 .264 .61025 .079345 2.115 .15474 .293122

Experience × Interactivity 1.558 .21866 .230570 .934 .33933 .156844 .418 .52203 .096435

Technique × Interactivity 1.634 .20806 .239426 15.546 .00029 .970847 17.403 .00019 .981904

Experience × Technique ×
Interactivity

.014 .90804 .051480 .013 .91083 .051391 .007 .93642 .050700

Table 2. The table presents Degrees of freedom (DF), F and p values as well as observed Power for all main and interaction effects in the present
study. Instances with p ≤ 0.05 denote a significant effect.

3D outperforming 2D. There was also some support for interactive
outperforming static. The results revealed a ranking of the techniques
with I3D showing the best performance followed by S3D then S2D
and lastly I2D. Due to no significant main effect of degree of experi-
ence, no support was found for experience generally affecting perfor-
mance. However, some support was found for high experience users
outperforming low experience users with I2D in the follow up LSD
tests on the CORR variable.

5 DISCUSSION

Regarding hypothesis 1.a and 1.b we found that 3D renderings do in-
deed outperform cross sections. This was expected because 3D ren-
derings provide more information about surfaces per view than cross
sections. Hypothesis 1.b, that interactive outperforms static, was par-
tially supported. Specifically, support was found in number of correct
responses and a borderline significance in the reaction time. A possi-
ble reason for the more limited support of hypothesis 1.b was that the
task in the present experiment did not require complex investigation
since the physical objects in this experiment were of known objects.
Therefore an overview could be sufficient. This view is in line with
Munzner’s statement that the main advantage of interactivity is that it
allows investigation and analysis of complex data [33].

Further insights into this can be gained by examining the follow-
up of the significant interaction effect between visualization technique
and degree of interactivity. Figures 5.A-C shows that I3D consistently
outperformed or broke even with S3D, whereas I2D consistently ei-
ther underperformed or broke even with S2D. This could be because
manually picked slices present sufficient information and the extra in-
formation presented by the interactive version did not add to the users’

understanding of the object. I2D underperforming compared to S2D
was puzzling since it contradicts conventional wisdom that more in-
vestigation increases the participant’s understanding of the data [33].
A possible explanation for the underperformance of S2D was that the
average participant had low competence with I2D and that the interac-
tion did not provide further information. Some support for this expla-
nation was provided by the fact that the high experience group slightly
outperformed the low experience group in the number of correct iden-
tifications using I2D.

Hypothesis 1.c stated a ranking of the technique/degree of interac-
tivity. The ranking found based on the CONF data (Figure 5.B) was: 1.
I3D, 2. S3D, 3. S2D and 4. I2D. In general parallel results were found
for the CORR (Figure 5.A) and RT data (Figure 5.C). For CORR there
was no difference between I2D and S2D. This indicates that the partic-
ipants were able to correctly assess the performance of each technique.
It should also be noted that the relative ranking of S2D and I2D was the
opposite of what was expected, which could partially help to explain
why hypothesis 1.b was only partially supported.

This also backs up the common practice of using the participant’s
subjective perception of the techniques. The rankings, however, were
very clear compared to rankings found by Baer et al. [5]. Although
they found that Ghosted and Depth Enhanced Ghosted view outper-
formed non-Ghosted views in self-reported preference and the accu-
racy, they were unable to demonstrate similar results for Ghosted vs.
Depth Enhanced Ghosted views. A comparison between the present
study and Baer et al.’s study is shown in Table 3.

We did not find support for hypothesis 2.a that experience leads to
better performance. A likely reason for this result was that the tasks
and objects were chosen in such a way that the focus was on the visu-
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Comparisons Present Study Fox et al. [16] dos Santos et al. [15] Baer et al. [5]

Number Of Participants 45 3 2 86

Number of Stimuli 4 108 56 Surface Orientation Task: 36
Flow Task: 32
Depth Task: 36

3D vs. 2D Techniques 3D Superiority Mixed Results Based on
Layered Study

Contradictory Results Based on
Layered Study

Not Examined

Interactive vs. Static Interactive somewhat better Only examined static Not compared Mixed Results

Experienced users have better
results

Only for Interactive 2D Not Examined Not Examined Not Examined

Confidence Predicts
Performance

Yes Partially Discussed Not Examined Inconclusive

Variables CORR, RT & CONF CORR, RT & CONF CORR & CONF CORR, RT & Preference

Table 3. The table compares the results of the of the present study with the studies by Fox et al. [16], dos Santos et al. [15] and Baer et al. [5].
The studies by Fox et al. and dos Santos et al. investigated the participants’ performance identifying maxifillofacial (head and neck) fractures for
multiple regions. Baer et al. investigated the influence of ghosted views for determining depths, surface orientation and detection of flow. When
referring to techniques the table refers to Multi-Planar Reformation marked as 2D and 3D rendering marked as 3D. The preference that Baer et
al. measured was part of a survey after the experiment where the participants were asked to rate their preference of the examined techniques
against each other. This differs from CONF in that whereas Preference measures the compared impressions after a number of different stimuli and
techniques, CONF measures the participants’ certainty that the individual decision was correct. An important consequence of this is that since the
CONF measure is part of the experimental data itself it can be included in an ANOVA with CORR and RT and that it reflects each individual data
point rather than the overall impression.

alization techniques and that prior knowledge was controlled for. This
means that when looking at a task and data that novices and experts
within the field are equally familiar with, equal performance should on
average be expected. This could arguably represent a positive aspect
of the techniques, since it indicates that they can be mastered quickly.
An exception from this was found for number of correct answers us-
ing I2D. As seen in Figure 5.D, the high experience group slightly
outperformed the low experience group. This finding was in line with
hypothesis 2.b, that any difference would be particularly visible for the
slice technique since this was the most commonly used method by our
domain experts.

A general take-away from this study was the importance of choos-
ing the correct visualization technique. Of the two techniques we
tested, the technique that showed highest performance was 3D render-
ing. For interactive vs. static, which approach worked best depended
on which of the two visualization techniques were used and previous
experience was not important.

5.1 Comparison With Case Studies

There have been some prior studies within the medical domain exam-
ining the differences between 2D and 3D renderings of CT data. Table
3 compares results from two of these studies with results from the
present study. Fox et al. used three expert participants in radiology,
with the task of examining CT data of the skulls from nine cadavers, to
attempt to identify fractures [16]. The reaction time for making a diag-
nosis in this study was shown to be shorter with 3D compared to axial
CT slices. MPR performed similar to axial CT slices when fractures
were absent and similar to 3D when the fractures were present. The
findings were supported by our study, since no difference was found
between the reaction time of S2D and S3D. Because their axial CT
slices are not directly comparable with our MPR slices, only 3D vs.
MPR will be considered from here on.

For the orbit region, 3D renderings were shown to detect the pres-
ence of injuries with higher accuracy than MPR, although no differ-
ence was found in the maxilla. This is in line with the present study
finding that S3D outperformed S2D for the CORR variable (see Fig-
ure 5.A). The same relationship was observed when participants were
asked to count the number of fractions. S3D outperformed S2D both

in the present study and in Fox et al.’s study, which strengthens the
conclusion that there is little support for a difference in how the per-
formance of the visualization techniques ranks between participants
with high and low experience. The fact that the same ranking between
S3D and S2D was shown in a case study using an expert task and re-
quiring expert domain knowledge also indicates that our results have
a degree of generalizability.

Fox et al.’s results for the axial CT images were more complex. In
general they found that slices tend to outperform both the 3D rendering
and the MPR. However, slices are similar to the MPR and it seems rea-
sonable to assume that they will perform similarly. A possible reason
for the axial CT slices’ performance could be that radiologists have
expert knowledge on how to perform this particular task using slices
sampled along an axis. Further studies would be needed to clarify
why the axial CT slices outperform MPR in diagnosing maxillofacial
trauma [16].

Fox et al. also ranked the techniques according to confidence. For
the orbit region they found a ranking of the reported confidence go-
ing from axial CT slices, 3D renderings, to the poorest ranking of
MPR. The rankings of the 3D renderings and the MPR corresponded
to the correct detection rate for the orbital region. These findings are in
agreement with our own results. However, it should be noted that the
study by Fox et al. did not present a ranking of confidence between 3D
rendering and MPR for the remaining three regions. This means that
it is hard to draw conclusions about possible differences in confidence
and performance from Fox et al.’s study.

Another interesting case study by dos Santos et al. also used ex-
pert participants to identify fractures in skulls [15]. Even though the
two studies compared the same three methods (axial CT slice, 3D and
MPR), the results were quite different. The study examined both sen-
sitivity and specificity, which required the authors to measure both
number of correct responses and confidence ratings. Since the present
study has been looking at a positive identification task, we will only
be discussing the sensitivity.

In the maxillary buttress, dos Santos et al. found that both axial
slices and MPR outperformed 3D renderings. This stands in contrast
to Fox et al.’s work which found that CT slices and 3D renderings
tended to outperform MPR [16]. In the orbit region dos Santos et

al. found 3D renderings and MPR to outperform CT slices and in the
zygomatic-maxillary complex very little or no difference was found.
The results of dos Santos et al.’s study seemed to vary more between
the regions than was the case with Fox et al. and the results in general
run contrary to the findings of the present study. It is not readily appar-
ent why the two studies differ in their results. A possible reason could
be that since the case studies are conducted with few participants, an
outlier may have been affecting the results. Other possibly confound-
ing variables are differences in the experimental setups, differing data
sets or variation in professional competence of participants. Because
of the similarities in the results we conclude that Fox et al.’s study [16]
was more representative of the findings of the present study. The re-
sults of dos Santos et al.’s study differed from our own in a more sub-
stantial way, in particular because the relative performance of MPR
and 3D rendering was dependent on in which region the tests were
conducted [15].

6 CONCLUSION

In the current experiment we examined the utility of slices vs. 3D
renderings for identifying surfaces, as well as the effect of interactiv-
ity. A novel approach of using a physical object as a ground truth was
employed to ensure a good basis for evaluating the task according to
the variables reaction time, confidence and whether the correct sur-
face was selected. Based on their prior experience with image data,
participants were divided into high and low experience groups and we
examined whether the experience affected the results. The physical
objects were chosen to be items that all the participants should have a
similar degree of familiarity with. This controlled for the confounding
factor of the variation in the participants’ prior domain specific exper-
tise. This ensures that the tests are measuring the performance of the
actual technique. We found support for 3D renderings outperforming
slice renderings. Some support was also found for interactive visual-
izations outperforming static visualizations. We also found a ranking
of the techniques: 1. interactive 3D, 2. static 3D, 3. static 2D and 4.
interactive 2D. The only significant result for the low vs. high experi-
ence groups was that the high experience group showed more correct
results for interactive 2D slices. This indicates that the best technique
for identifying surfaces was 3D rendering. The use of interactive ver-
sions of the techniques was found to be beneficial for 3D renderings,
but the opposite effect was found for static cross sections vs. MPR.
The experience of the participants was found to be largely unimpor-
tant for this task.
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Comparisons Present Study Fox et al. [16] dos Santos et al. [15] Baer et al. [5]

Number Of Participants 45 3 2 86

Number of Stimuli 4 108 56 Surface Orientation Task: 36
Flow Task: 32
Depth Task: 36

3D vs. 2D Techniques 3D Superiority Mixed Results Based on
Layered Study

Contradictory Results Based on
Layered Study

Not Examined

Interactive vs. Static Interactive somewhat better Only examined static Not compared Mixed Results

Experienced users have better
results

Only for Interactive 2D Not Examined Not Examined Not Examined

Confidence Predicts
Performance

Yes Partially Discussed Not Examined Inconclusive

Variables CORR, RT & CONF CORR, RT & CONF CORR & CONF CORR, RT & Preference

Table 3. The table compares the results of the of the present study with the studies by Fox et al. [16], dos Santos et al. [15] and Baer et al. [5].
The studies by Fox et al. and dos Santos et al. investigated the participants’ performance identifying maxifillofacial (head and neck) fractures for
multiple regions. Baer et al. investigated the influence of ghosted views for determining depths, surface orientation and detection of flow. When
referring to techniques the table refers to Multi-Planar Reformation marked as 2D and 3D rendering marked as 3D. The preference that Baer et
al. measured was part of a survey after the experiment where the participants were asked to rate their preference of the examined techniques
against each other. This differs from CONF in that whereas Preference measures the compared impressions after a number of different stimuli and
techniques, CONF measures the participants’ certainty that the individual decision was correct. An important consequence of this is that since the
CONF measure is part of the experimental data itself it can be included in an ANOVA with CORR and RT and that it reflects each individual data
point rather than the overall impression.

alization techniques and that prior knowledge was controlled for. This
means that when looking at a task and data that novices and experts
within the field are equally familiar with, equal performance should on
average be expected. This could arguably represent a positive aspect
of the techniques, since it indicates that they can be mastered quickly.
An exception from this was found for number of correct answers us-
ing I2D. As seen in Figure 5.D, the high experience group slightly
outperformed the low experience group. This finding was in line with
hypothesis 2.b, that any difference would be particularly visible for the
slice technique since this was the most commonly used method by our
domain experts.

A general take-away from this study was the importance of choos-
ing the correct visualization technique. Of the two techniques we
tested, the technique that showed highest performance was 3D render-
ing. For interactive vs. static, which approach worked best depended
on which of the two visualization techniques were used and previous
experience was not important.

5.1 Comparison With Case Studies

There have been some prior studies within the medical domain exam-
ining the differences between 2D and 3D renderings of CT data. Table
3 compares results from two of these studies with results from the
present study. Fox et al. used three expert participants in radiology,
with the task of examining CT data of the skulls from nine cadavers, to
attempt to identify fractures [16]. The reaction time for making a diag-
nosis in this study was shown to be shorter with 3D compared to axial
CT slices. MPR performed similar to axial CT slices when fractures
were absent and similar to 3D when the fractures were present. The
findings were supported by our study, since no difference was found
between the reaction time of S2D and S3D. Because their axial CT
slices are not directly comparable with our MPR slices, only 3D vs.
MPR will be considered from here on.

For the orbit region, 3D renderings were shown to detect the pres-
ence of injuries with higher accuracy than MPR, although no differ-
ence was found in the maxilla. This is in line with the present study
finding that S3D outperformed S2D for the CORR variable (see Fig-
ure 5.A). The same relationship was observed when participants were
asked to count the number of fractions. S3D outperformed S2D both

in the present study and in Fox et al.’s study, which strengthens the
conclusion that there is little support for a difference in how the per-
formance of the visualization techniques ranks between participants
with high and low experience. The fact that the same ranking between
S3D and S2D was shown in a case study using an expert task and re-
quiring expert domain knowledge also indicates that our results have
a degree of generalizability.

Fox et al.’s results for the axial CT images were more complex. In
general they found that slices tend to outperform both the 3D rendering
and the MPR. However, slices are similar to the MPR and it seems rea-
sonable to assume that they will perform similarly. A possible reason
for the axial CT slices’ performance could be that radiologists have
expert knowledge on how to perform this particular task using slices
sampled along an axis. Further studies would be needed to clarify
why the axial CT slices outperform MPR in diagnosing maxillofacial
trauma [16].

Fox et al. also ranked the techniques according to confidence. For
the orbit region they found a ranking of the reported confidence go-
ing from axial CT slices, 3D renderings, to the poorest ranking of
MPR. The rankings of the 3D renderings and the MPR corresponded
to the correct detection rate for the orbital region. These findings are in
agreement with our own results. However, it should be noted that the
study by Fox et al. did not present a ranking of confidence between 3D
rendering and MPR for the remaining three regions. This means that
it is hard to draw conclusions about possible differences in confidence
and performance from Fox et al.’s study.

Another interesting case study by dos Santos et al. also used ex-
pert participants to identify fractures in skulls [15]. Even though the
two studies compared the same three methods (axial CT slice, 3D and
MPR), the results were quite different. The study examined both sen-
sitivity and specificity, which required the authors to measure both
number of correct responses and confidence ratings. Since the present
study has been looking at a positive identification task, we will only
be discussing the sensitivity.

In the maxillary buttress, dos Santos et al. found that both axial
slices and MPR outperformed 3D renderings. This stands in contrast
to Fox et al.’s work which found that CT slices and 3D renderings
tended to outperform MPR [16]. In the orbit region dos Santos et

al. found 3D renderings and MPR to outperform CT slices and in the
zygomatic-maxillary complex very little or no difference was found.
The results of dos Santos et al.’s study seemed to vary more between
the regions than was the case with Fox et al. and the results in general
run contrary to the findings of the present study. It is not readily appar-
ent why the two studies differ in their results. A possible reason could
be that since the case studies are conducted with few participants, an
outlier may have been affecting the results. Other possibly confound-
ing variables are differences in the experimental setups, differing data
sets or variation in professional competence of participants. Because
of the similarities in the results we conclude that Fox et al.’s study [16]
was more representative of the findings of the present study. The re-
sults of dos Santos et al.’s study differed from our own in a more sub-
stantial way, in particular because the relative performance of MPR
and 3D rendering was dependent on in which region the tests were
conducted [15].

6 CONCLUSION

In the current experiment we examined the utility of slices vs. 3D
renderings for identifying surfaces, as well as the effect of interactiv-
ity. A novel approach of using a physical object as a ground truth was
employed to ensure a good basis for evaluating the task according to
the variables reaction time, confidence and whether the correct sur-
face was selected. Based on their prior experience with image data,
participants were divided into high and low experience groups and we
examined whether the experience affected the results. The physical
objects were chosen to be items that all the participants should have a
similar degree of familiarity with. This controlled for the confounding
factor of the variation in the participants’ prior domain specific exper-
tise. This ensures that the tests are measuring the performance of the
actual technique. We found support for 3D renderings outperforming
slice renderings. Some support was also found for interactive visual-
izations outperforming static visualizations. We also found a ranking
of the techniques: 1. interactive 3D, 2. static 3D, 3. static 2D and 4.
interactive 2D. The only significant result for the low vs. high experi-
ence groups was that the high experience group showed more correct
results for interactive 2D slices. This indicates that the best technique
for identifying surfaces was 3D rendering. The use of interactive ver-
sions of the techniques was found to be beneficial for 3D renderings,
but the opposite effect was found for static cross sections vs. MPR.
The experience of the participants was found to be largely unimpor-
tant for this task.
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[9] S. Bruckner and M. E. Gröller. VolumeShop: An interactive system for
direct volume illustration. In Proceedings of IEEE Visualization, pp. 671–
678, 2005.

[10] S. Bruckner, P. Kohlmann, A. Kanitsar, and M. E. Gröller. Integrating
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