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Figure 1: Smart Super Views: The relevance of the views is mapped to a super-elliptical shape and decreases from left to right. The subsequent
views are shown, starting from the left: The oblique slice view following the selected vessel in green, the coronal, sagittal and axial slice views in
white, the bone view in blue, the tissue view in yellow and the vessel view in red. The border colors additionally distinguish the different views.

ABSTRACT

Due to the ever growing volume of acquired data and information,
users have to be constantly aware of the methods for their explo-
ration and for interaction. Of these, not each might be applicable
to the data at hand or might reveal the desired result. Owing to
this, innovations may be used inappropriately and users may be-
come skeptical. In this paper we propose a knowledge-assisted in-
terface for medical visualization, which reduces the necessary effort
to use new visualization methods, by providing only the most rel-
evant ones in a smart way. Consequently, we are able to expand
such a system with innovations without the users to worry about
when, where, and especially how they may or should use them. We
present an application of our system in the medical domain and give
qualitative feedback from domain experts.

Keywords: Visualization, Fuzzy Logic, Interaction.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction styles; I.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving—Uncertainty, “fuzzy”, and prob-
abilistic reasoning; I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

With progress in data acquisition modalities, the amount of infor-
mation is increasing and more versatile data is available. In the
medical domain, these data have to be processed by clinicians,
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leading to a high workload and long reporting times. Various ap-
proaches try to reduce the number of images to inspect, but with
advancing technology new modalities are likely to come and lead
to even more images. Hence, the information must be structured
and brought to clinicians in a meaningful way.

Nowadays, there are several different kinds of visualization ar-
eas, each with its own set of techniques suited for specific purposes.
In the field of radiology, established methods such as Maximum
Intensity Projection (MIP) are widely applied and can be, for ex-
ample, extended by Maximum Intensity Difference Accumulation
(MIDA) [4]. Specific methods, such as Curved Planar Reformation
(CPR) [8] or Multipath Curved Planar Reformation (mpCPR) [9],
are tailored to the investigation of calcifications on vessel walls.
Clinicians must be aware of which technique fits to which region in
the data and to which purpose. For example, it may not be appro-
priate to use MIP for the assessment of a stent treatment, because
a vessel can appear completely blocked even if it is just calcified at
the vessel wall. However, blood might still be able to flow, which
could be revealed when inspecting a slice or a CPR. This possible
inadequate use should be avoided. It becomes more likely with an
increasing number of available visualization methods, because not
every physician might be aware of their intended application areas.
Clinicians may not know all possible pitfalls, potentially leading to
negative consequences.

Common user interfaces exhibit several problems. For example,
menus can become very long and cluttered and therefore it is often
difficult to find the desired option. Toolbars can contain too many
buttons and although one is able to adjust them manually, this is
quite cumbersome. Popup menus try to focus on the most important
option, but suffer from the same drawbacks if overloaded. With
increasing information and possibilities it has become more difficult
to choose the most relevant options. Furthermore, interfaces may
consist of a lot of technical terms and expressions not everyone is
aware of.

We propose a concept, where an image acts as a menu itself.
The visualization becomes the main user interface, by augmenting
it with dynamically generated integrated views. Once a user picks
a Region-of-Interest (ROI), the most suitable visualization tech-
niques are determined. We call this approach knowledge assisted
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Figure 2: Various aspects of our contribution.

sparse interaction. The subsequent section gives an overview of
related work concerning visualization, interaction and knowledge
representation. Our concept is outlined in Section 3 and detailed
in Section 4. Visual mapping and interaction are discussed in Sec-
tion 5 and results are presented in Section 6. Implementation de-
tails are provided in Section 7. Qualitative domain expert feedback
is given in Section 8 and discussed in Section 9. The paper is con-
cluded in Section 10.

2 RELATED WORK

Our approach aims to simplify the interaction with medical visu-
alization systems by including additional knowledge. We incorpo-
rate aspects of several different research directions in our approach
(Fig. 2).

Medicine/Radiology. Ota et al. [20] give a comprehensive eval-
uation concerning the reliability of multi-detector Computed To-
mography Angiography (CTA) in comparison to Digital Subtrac-
tion Angiography (DSA) as gold standard, by assessing the impor-
tance of observing axial images. They conclude that multi-detector
CTA is a reasonable alternative to common diagnostic techniques
for patients with lower extremity arterial occlusive diseases. Por-
tugaller et al. [21] analyze different visualization techniques for
quantitative lesion assessment in lower extremity arteries with an
area reduction of≥ 70%, such as stenoses or occlusions. The result
of their study shows that MIP together with axial images is most
accurate in detecting cross-sectional lesions. Northam et al. [19] as-
sess in their study the reduction of the field-of-view from the whole
data set to a specific region, in order to increase the spatial resolu-
tion. However, possible pathologies outside this limited view will
be missed. Schertler et al. [30] demonstrate in their study the sig-
nificant impact of non-vascular diagnosis even when using vessel
CPRs. They show that axial images must always be taken into con-
sideration. It is not enough to use CPR alone, as 27% of pathologies
would remain unrecognized.

Multi-View Visualization. Visualization applications frequently
make use of multiple linked views to simultaneously depict differ-
ent representations of the data. The concept of linking and brush-
ing connects these views by interactively highlighting selections in
all views [27]. We also draw inspiration from superviews, intro-
duced by Motro [17], which provide a homogeneous view while
accessing multiple databases. Any interaction with the superview
is decomposed into queries for each individual database. The out-
comes are then assembled to provide the result for the initial query.
Bier et al. [2] introduced toolglasses and magic lenses, which en-
able the depiction of alternative data representations in interactive
see-through widgets. In the context of volume visualization, differ-
ent types of magic lenses have been explored by LaMar et al. [14]
and Wang et al. [36]. Inspired by traditional illustrations, Bruck-

ner and Gröller [3] presented integrated contextual views in their
VolumeShop system. Based on this concept, Taerum et al. [32]
used contextual close-ups to present high-resolution sub-volumes
of medical volume data. Ropinski et al. [29] proposed interactive
close-ups for the visualization of multimodal data. Their work also
presented a layout algorithm for the placement of these views. Bal-
abanian et al. [1] describe integrated views in a graph layout in or-
der to navigate through a volume hierarchy. They combine various
types of interactions and visualizations in order to explore different
regions of interest. Smart views, as presented by Radloff et al. [23],
provide a refined view management in a multi-display environment.
Recent work by Steinberger et al. [31] visually links selections in
multiple applications to preserve context. In our work, we not only
focus on how alternative views are presented, but also which views
are best suited for different parts of the data.

Smart Navigation Techniques. As orientation can be difficult
when investigating three-dimensional data, several approaches have
been presented to simplify navigation. McGuffin et al. [16] used
deformations and a set of interactive widgets allowing users to vir-
tually browse through different tissues of a medical volume data
set. Tietjen et al. [33] presented LiftCharts as a simple tool for
easing navigation when interacting with slice views of segmented
medical data. Viola et al. [35] discussed a method for retaining con-
text while refocusing on different structures of interest in a volume
data set. Kohlmann et al. [11, 12] proposed LiveSync, a method for
interactively synchronizing a 3D view with 2D slice views. They
automatically determine a good 3D view for a position selected on
a 2D slice using local data properties. In further work, they also
describe how to determine a 2D slice position from a single posi-
tion on a 3D rendered image in different scenarios by matching ray
profiles against a database [13]. Diepenbrock et al. [6] used a fish-
eye view in combination with preview images to ease navigation in
virtual fly-throughs.

Knowledge-Assisted Visualization. The aim of knowledge-
assisted visualization approaches is to improve visual exploration
and analysis by utilizing information about the visualization pro-
cess itself (e.g., a user’s chosen visualization parameters and ab-
stractions), and information about the scientific data to be visual-
ized (e.g., high level abstract characterization and findings) [5, 37].
Tzeng et al. [34] use a painting metaphor to classify and visualize
volumetric data. They feed the extracted information to an intelli-
gent system, using a neural network or a support vector machine,
in order to apply the classification to a new data set in a similar
region. Rezk-Salama et al. [26] incorporated expert knowledge to
develop a high-level interface for transfer function design. Their
approach used a principal component analysis to extract high-level
parameters from a set of user-defined transfer functions. The work
of Nam et al. [18] proposed a method for extracting and index-
ing features to enable the automatic categorization of volume data
sets. A knowledge-assisted system for the analysis of geological
data was presented by Kadlec et al. [7]. Their approach captures
the properties of seismic features to improve segmentation. One
way to formalize domain knowledge is fuzzy logic [38, 40], which
enables the specification of rules and relations using linguistic vari-
ables. Rautek et al. [24], for example, used a fuzzy rule base to
map volumetric attributes to visual properties. They also extended
their approach to incorporate interaction [25]. We also employ a
fuzzy logic rule base, which enables us to represent the suitability
of certain types of visualizations for different spatial regions based
on domain expert knowledge.

3 OVERVIEW

We propose a smart user interface that intuitively presents only rel-
evant options in contrast to, for example, a list view showing all
possibilities. We are motivated by the fact that clinicians often base
their reporting on checking a large number of images. We enhance
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Figure 3: Usual workflow of medical reporting (black arrows). The clinician has to know which method is applicable to which region of the data
and for which purpose it has been designed. Our system (red arrows) supports clinicians by formalizing this expert knowledge as rules in the
input step. A smart processor decides for a user-specified ROI which visualizations are suited and should be presented. The clinician has then
the possibility to interact with those suggested views in order to inspect the ROI in more detail.

our views with knowledge in order to provide the user only relevant
visualizations for interaction. Fig. 3 presents the common work-
flow of medical reporting (black arrows) and shows how our pro-
posed system integrates therein (red arrows). We distinguish three
steps and each will be subsequently outlined briefly. The most im-
portant and most notable difference between the conventional and
our approach is that the user no longer needs to be aware which
method has to be used in a specific region, because this knowledge
is provided in a rule base defined by domain experts.

Information is acquired and gathered from different sources in
the first step. In addition to a volume data set, our application of-
fers as input a bone mask, a vessel mask and a vessel tree. The
bone and vessel segmentation is usually done by radiological assis-
tants in order to generate the respective masks. First, they create a
vessel tree by manually tracking vessels and specifying centerlines
and radii accordingly. These vessels consist of segments spanned
between branchings or endings, as shown with different colors in
the vessel tree image in the generated data in Fig. 3. This vessel
information is used to differentiate bones from vessels and sepa-
rate them. Since the automatic process might not produce a per-
fect separation, manual fine tuning is done afterwards. This step
is rather time consuming, but is done for every patient and there-
fore we can use this additional information. The most significant
difference compared to the conventional approach is that a domain
expert has to define a set of rules, which maps the input to specific
output. This offers a flexible solution of extending the output by
incorporating new rules and visualizations.

Based on all the input information, a user decides, in the sec-
ond step, where a ROI is located and which specific visualization
technique is applicable there. This requires significant expertise

from the user, because he or she must be aware of the algorithmic
internals and the intent. Our proposed approach assists the user
by employing an inference engine that processes the input together
with a knowledge base. If the user selects a ROI, the most suitable
visualization techniques are suggested automatically.

In the third step, the user interacts with the provided visual-
izations and inspects the ROI in more detail. In contrast to the
common scenario, where the user must choose a visualization tech-
nique for interaction, our system provides support by suggesting
suitable choices. Additionally, interaction is reduced, because only
a small set of relevant visualizations is suggested in each specific
case. Among these relevant techniques for medical diagnosis are
CPR, MIDA, MIP and Direct Volume Rendering (DVR) as well
as axial, coronal, sagittal slices and an oblique slice following the
currently selected vessel tree segment.

4 SMART VIEW INFERENCE

When the user is browsing through the three-dimensional data, our
system determines the most relevant visualization techniques in the
corresponding region. The processor shown in Fig. 3 outlines how
this is achieved by using four modules. Fig. 4 gives a more detailed
view of these modules, where the general workflow is top-down
following the black arrows. The thinner black lines illustrate the
dependency graph between the input and the output.

The first module is the data annotation, where semantic layers
are extracted from various sources of input. Rules are specified or
fetched from an external source, like a database, in the second mod-
ule. These rules define the connection between the input and output
for a specific region the user is currently exploring. The third mod-
ule bundles the information of the semantic layers according to the
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Figure 4: Workflow (black arrows) of the processor consisting of four modules. First, semantic layers are extracted by data annotation and,
second, a rule base is defined or loaded. In the third module, the information of every semantic layer is condensed to a single value, according
to user interaction. In the next module these values are fed to the Fuzzy Inference System (FIS) where they are fuzzified in order to evaluate
the rules. The results of these rules are aggregated and used to determine a ranking of suitable visualizations. The two thick lines in the view
ranking module indicate the input and output respectively. Once an output is derived and defuzzified, the resulting views are sorted. They exhibit
a super-elliptical shape with their relevance mapped to the exponent of the super-quadrics definition.

user interaction and feeds it to the fourth and final module, the view
ranking. In this module, a Fuzzy Inference System (FIS) combines
the condensed information using fuzzy logic and provides a ranking
of important views only.

4.1 Data Annotation
The goal of this module is to extract meaningful information in
the form of semantic layers from the raw input data. Examples
are given in the images in the data annotation of Fig. 4. The in-
put can either originate from data acquisition modalities such as
CTA or Magnetic Resonance Angiography (MRA), or can be man-
ually specified, like the bone and vessel masks, by, for example,
radiological assistants. Since these semantic layers (LBone, LVessel ,
LSlice and LVesselTree) are the basis of all subsequent operations,
they should be determined carefully.

Bone & Vessel Layers. For bones and vessels, we need to know
the depth value. Therefore we use ray-casting and determine the
first hit with the segmentation masks of bones and vessels during
rendering in real-time. These masks are provided by radiological
assistants in a semi-automatic procedure. We store the depth values
of the bone and vessel masks in separate semantic layers.

Slice Layer. We have two categories of slices. First, the axis
aligned slices such as the axial, sagittal and coronal slices, and,

second, the oblique slices that move along selected vessel tree seg-
ments. In the case of the axis aligned slices, we use ray-casting
and estimate the importance of a slice along a ray. This is done in
real-time by determining the first hit of a ray with an object, either
vessel or bone. Then, the dot product between the corresponding
slice axis and the gradient vector of the hit position determines the
importance. If the dot product equals zero, the importance is high-
est, because the gradient vector lies within the slice plane. Oth-
erwise the importance decreases with increasing dot product until
it reaches zero in case the gradient vector coincides with the slice
axis. The semantic layer for the axis aligned slices stores a 3D
vector for every pixel, where each coordinate depicts the maximum
importance of the corresponding slice along the ray. The (x,y,z) co-
ordinates represent the importance of the sagittal, coronal and axial
slices respectively.

Vessel Tree Layer. In order to determine the user-selected vessel
segment (the orange segment of the vessel tree of the data annota-
tion module in Fig. 4) color picking is performed. The vessel tree is
rendered by a mesh renderer where color encodes the segments. By
reading back the color at the pixel under the cursor in the current
frame buffer, the segment can be identified. The semantic layer for
the vessel tree is a binary mask that indicates if a segment was hit or
not. It is not important where the vessel is exactly located spatially,



but only if the user hovers over a vessel or not. This is the reason
why the spatial information is not used.

4.2 Rule Specification

The rule specification module concerns the definition of the connec-
tions between the input data and the output visualizations. In order
to model these connections we use a collection of if-then clauses
and store these rules in a human readable form in an external file.
The rules are defined by domain experts in order to provide spe-
cific mappings of input to output. These mappings should reflect,
of course, the clinical protocol of their daily routine.

The antecedents of the rules can contain several logical combi-
nations of the input semantic layers by using logic operations such
as and, or and not. The consequent of every rule consists of a set of
applicable visualizations. Linguistic variables, such as bone, ves-
sel or tissue, are used to define the rules in a human readable form.
This makes it easier to extend and maintain the system by non com-
puter scientists. Due to the fact that our linguistic variables do not
exhibit a binary state, either true or false, we use fuzzy logic [38] to
process them accordingly.

This externally stored domain knowledge offers the possibility of
incorporating changes easily, by simply adding or removing rules.
Another advantage is the exchange of this knowledge in order to
provide different modes for several application areas, for example,
interdisciplinary medical discussion rounds between radiologists,
clinicians and surgeons.

4.3 User Interaction

If the user interacts and requests suggestions for a specific region in
the data, the proposed visualization techniques should correspond
to the data contained therein. So far, we have the semantic layers
and a set of rules that define the input to output mapping. What we
still need to do is to determine the input for the rules themselves.
This input is a value that is subsequently fuzzified in order to be
used in the evaluation of the antecedents of the rules. To distinguish
between non-fuzzy and fuzzy values, the former ones are referred
as crisp values.

Region-of-Interest (ROI). The user defines a 2D Region-of-
Interest by the cursor position on the screen and a specified radius.
Taking a small neighborhood into account avoids high variational
changes of the suggested smart views due to data coherence.

The information of the semantic layers is used inside the ROI
to derive a single crisp input value in order to evaluate the rules.
However, not every value of the semantic layers inside this region
should have the same influence. The main focus should be at the
cursor position. Thus, the crisp scalar input values, Vi, for every
linguistic input variable are computed over the ROI by

Vi =
1
N
· ∑
(x,y)∈ROI

[Ci(x,y) ·S(x,y)] (1)

where (x,y) is a pixel inside the ROI, Ci(x,y) is a conditional term
for modeling correspondence of multiple semantic layers, S(x,y)
is a spatial influence function and N is the normalization factor,
the area of the region in pixels. The following equations show,
how the conditional term is computed at a pixel p(x,y) using the
information of the different semantic layers (LBone, LVessel , LSlice
and LVesselTree).

CBone(x,y) =

{
1, if LBone(x,y)≤ LVessel(x,y)
0, otherwise

(2)

CVessel(x,y) =

{
1, if LVessel(x,y)≤ LBone(x,y)
0, otherwise

(3)

CSagittalSlice(x,y) = LSlice(x,y).x ∈ [0,1] (4)

CCoronalSlice(x,y) = LSlice(x,y).y ∈ [0,1] (5)
CAxialSlice(x,y) = LSlice(x,y).z ∈ [0,1] (6)
CVesselTree(x,y) = LVesselTree(x,y), 0∨1 (7)

The value for bone, for example, needs the information of the ves-
sel and bone semantic layers, because both store the depth of the
respective masks. CBone will be one, only if the depth value in its
semantic layer is less than the one in the vessel semantic layer at
the same pixel position. In the case of the slices, only the value for
the corresponding axis is taken. For the vessel tree, either one or
zero is returned, because only a binary mask is stored. This mask
indicates if a vessel is located under the current pixel.

Spatial Influence. Not every position inside the ROI should have
the same influence on the result. Information close to the cursor po-
sition should contribute more. For example, when the user hovers
over the aorta, the ROI might contain some bone, such as the spine.
If the focus is on the aorta, then the bone should have less influence
than the vessel and this should be reflected in the output visualiza-
tions. We model this by computing a weight for every pixel p(x,y)
of the ROI, with cursor position c, according to the following func-
tion

S(x,y) =
1

(1+ λ

r ‖p− c‖2)σ
(8)

with r being the radius of the ROI in pixels, σ controlling the speed
of the influence decay and λ providing the weight at the boundary
pixels of the region. The influence decreases with distance from the
center. Experiments have shown that using σ = 2, λ = 0.3 together
with r = 10 provides a good response, where the suggested views
reflect the underlying data.

4.4 View Ranking
Once the crisp input values Vi (see Equation 1) have been deter-
mined for all linguistic input variables, they are fed to the inference
engine together with the rules. Since we use fuzzy logic, our infer-
ence engine is a Fuzzy Inference System (FIS) as outlined in Fig. 5.

Fuzzification. The crisp input values are fuzzified using fuzzy
membership functions. Such functions could have a triangular,
trapezoidal or Gaussian shape. Throughout this paper, triangular
membership functions are used.

Implication Evaluation. Fuzzy logic offers the possibility to
specify knowledge in the form of linguistic rules and terms rather
than with exact numbers [39]. For the specification of the rules,

Fuzzification Implication 
Evaluation Aggregation Defuzzification 

Figure 5: Workflow of our FIS. First, crisp input values are fuzzified
using fuzzy membership functions. Second, the antecedents of the
if-then rules are evaluated using fuzzy set operators. The implica-
tions are evaluated with the minimum operator [15]. Third, the fuzzy
implication results are aggregated and, fourth and finally, defuzzified
using the centroid method to provide a crisp output.



we use the concept of the if-then rule with fuzzy antecedents and
consequents. For every rule, its antecedent is evaluated using fuzzy
set operators and the consequent is computed using the minimum
operator [15].

Aggregation. Once all fuzzy consequents are obtained, they are
aggregated by combining their fuzzy membership functions. Again,
fuzzy set operators are used to aggregate the fuzzy consequents.
The result of the aggregation step is one fuzzy output.

Defuzzification. In order to obtain a crisp output value from the
aggregated fuzzy one, defuzzification is needed. Common defuzzi-
fication approaches are the centroid method, maxima decomposi-
tion, center of maxima calculation or height defuzzification. In all
subsequent examples of our work, the centroid technique is used.

The final crisp output value is used to determine the membership
value of every linguistic output variable. This membership value
is the relevance of the respective suggested visualization. Subse-
quently, the proposed views are sorted according to their relevance
and presented to the user.

5 VISUAL MAPPING AND INTERACTION

The output of the smart view inference is a ranked list of suggested
visualizations that need to be presented to the user in a suitable way.
Every visualization will be shown in a separate view, embedded into
the current user interface, analogue to a Head-up Display (HUD).

A HUD is a transparent display presenting data where the viewer
does do not need to look away from the usual focus area. It was
originally designed for pilots in order to alleviate them from looking
down on their instruments. It allows them to look forward with
the head positioned up. Hence the name Head-up Display. We
use this analogy to present the relevant views embedded into the
visualization the user is interacting with. This avoids interaction
with other windows or menus and the focus remains in the same
window. While the user is still able to see the ROI, the original view
is enriched by additional so called smart views. The term smart
view has been chosen to reflect that the views have been determined
in a knowledge-assisted, i.e., smart, way.

5.1 Visual Mapping
In order to visually convey relevance, we incorporate it into the
shape of a view. Several properties of glyphs, such as shape, size,
color and orientation are described by Ropinksi and Preim [28]
with regard to perception. They state that shape and size of glyphs
are perceived pre-attentively, within the first quarter of a second.
Hence, we propose to apply properties of glyphs to our smart
views as well. Concerning different shapes, Kindlmann [10] states,
that super-shapes convey information more clearly and precisely.
Therefore, we use a super-elliptical shape for our smart views and
additionally color the boundary of the shapes differently. Simul-
taneously, the relevance is encoded in the size of the area covered
by the shapes on the screen. This is intended to allow an unam-
biguous identification of the most relevant views. Combining all
these aspects, our views are suggested according to some underly-
ing knowledge and exhibit a super-elliptical form, hence the name
smart super views.

A super-ellipse is defined as the set of points (x,y) with

∣∣∣ x
a

∣∣∣n + ∣∣∣ y
b

∣∣∣n = 1 (9)

where a,b > 0. Since differences in shape and size are perceived
pre-attentively [28], we map the relevance of a visualization to the
exponent n of the super-ellipse. This leads to the following equation
for our views

∣∣∣∣x− xpos

size

∣∣∣∣m(rel)
+

∣∣∣∣y− ypos

size

∣∣∣∣m(rel)
≤ 1 (10)

where size is the chosen size of the view, m(rel) is the relevance
shape-mapping function with rel being the relevance of every sug-
gested view and (xpos,ypos) is the position of the view. We empiri-
cally determined mapping function m(rel) as

m(rel) = (0.5+2 · rel)α (11)

where α controls how fast the shapes of the suggested views be-
come rectangular. Using α = 1.5 covers most of the dominant
shapes, i.e., rectangles, circles and stars. Additionally, we omit
very thin star shapes by shifting with 0.5 and scaling the relevance
by two. Due to the α exponent, highly relevant views will have
a rectangular shape, whereas the least important ones will have a
star-like form. With this mapping, shape and area vary related to
the relevance obtained from the view ranking.

Spatial Arrangement. Once the shape of the views is deter-
mined to reflect their relevance, they need to be spatially arranged.
We have implemented two possible layout strategies:

• Linear Layout. All views are arranged along a horizontal
line, starting with the most relevant view at the left and pro-
ceeding to the right with decreasing relevance (Fig. 6). In
order to avoid overlapping with the ROI, they are positioned
at the bottom of the view they are embedded in.

• Radial Layout. The views are radially positioned around the
ROI. They are placed in a counter clockwise fashion. The
most relevant view is placed above the ROI. This avoids vi-
sual clutter in the case of many views. Fig. 7 shows an exam-
ple of views with varying relevance and their corresponding
arrangement.

5.2 Interaction

The user can hover over a specific smart super view and interact
with it in the same way as with the overview visualization they are
integrated in. No manual switching between the different views
is required. This makes the interaction sparse and allows the user
to immediately get more insight into a specific region. We distin-
guish between two states of interaction. In the overview state, the
user navigates in the overview visualization and identifies a ROI.
In order to explore this region in detail, the user can switch to the
inspection state. For every interaction in this state, the user gets
immediate feedback in the form of smart super views. If a view is
selected by hovering over it, the user is able to inspect the visual-
ization of the view by, for example, zooming, panning and rotating.
Additionally, the size and border of a selected view are enlarged in
order to give the user a visual feedback. When finished with inspec-
tion, pressing a key will return to the overview state and all smart
super views will disappear.

Legend. In order to provide an overview of the entire range of
the relevance, a legend of possible shapes is presented. This con-
veys the relevance visually and provides a context. If the user se-
lects a smart super view, the corresponding glyph is indicated in the
legend at the position of the respective relevance. Additionally, a
connection band between the glyph in the legend, the view and the
ROI is shown. Following this band, one will quickly perceive the
overall layout and arrangement. Fig. 6 shows smart super views ar-
ranged in a linear layout, together with the legend on the left. The
least relevant view (tissue) with the yellow border is selected and
following its connection band, one can clearly see the correspond-
ing relevance. The legend shows high relevance at the top and the
least relevance at the bottom. In order to see the position of the ROI
better, horizontal and vertical rulers are drawn (Fig. 6).
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Figure 6: Smart super views arranged in a linear layout at the bottom
of the window with the overview visualization being MIDA. The shape
of the views changes with decreasing relevance from left to right.
Tissue (yellow) is the least relevant view. It is selected and therefore
enlarged. The yellow band connects the selected view with the ROI
and the corresponding glyph in the legend.

6 RESULTS

Fig. 1 presents an overview of possible views in our system. The
relevance decreases from left to right. In this example, the most rel-
evant view is the oblique slice view that is followed by the coronal,
sagittal and axial slice views. Then, bone using DVR precedes tis-
sue using DVR and the last view is the vessel view showing a CPR.
High relevance leads to an almost rectangular shape, whereas the
least important view will look like a star. The border colors addi-
tionally distinguish the various views, whereas the coronal, sagittal
and axial slice views share the same color.

Fig. 7 shows a data set rendered with MIP together with the
vessel tree rendered in wire-frame mode. When hovering over the
aorta, it will be displayed in the suggested views, as shown in the
vessel view on the bottom of the image with the red border. This
smart super view offers the user the possibility to rotate the selected
part of the aorta using CPR. In this scenario, tissue is ranked the
least relevant view. This can be seen from the star-like shape of the
view. The other two views with the white border are slices with
almost identical relevance, reflected in their circular shape.

Fig. 8 gives an example where the user is moving over a stent.
Because MIP is the underlying overview visualization, it initially
seems that the stent completely blocks the vessel. However, when
inspecting the vessel in the corresponding view with the red border
using CPR, it is found out that this is actually not the case and the
blood is still able to flow.

Fig. 9 shows several smart super views for different regions of a
human lower extremity data set using MIDA as overview visualiza-
tion. If the user moves over the aorta, slice, vessel and tissue views
are suggested, as shown in Fig. 9(a). These views are placed around
the ROI in a radial layout and the sagittal slice is selected. The user
can interact with this view by, for example, scrolling through the
slices or changing the windowing function. Another suggestion is
given in Fig. 9(b), where the focus is on the pelvic bone. The bone
view (blue border) is selected and has the highest relevance, fol-
lowed by an axial and sagittal slice view. Only the bones defined
by the bone mask are shown with DVR. Next, moving to the knee
region, the vessel view and the selected oblique slice view (green
border) are shown in Fig. 9(c), because the user moves over a ves-
sel. If moving a bit away from the vessel, other types of tissue will
be taken into account. This leads to the example in Fig. 9(d), where
tissue and slice views are suggested. The tissue view (yellow) is
selected and the knee is inspected more precisely using DVR.

Figure 7: Smart super views presented in a radial layout around the
ROI, while moving over the aorta of a human lower extremities data
set. The overview visualization is MIP.

Figure 8: Detailed investigation of a stent in the vessel view (red
border) using CPR. The user is able to rotate the vessel and check
whether the blood can still flow through this vessel.

7 IMPLEMENTATION

We implemented our smart super view system into an angiography
framework written in C++ and taking Qt4 for the user interface.
The system provides functionality for loading data sets, defining
segmentation masks and semi-automatically tracking vessels. The
framework is used in the daily routine of two hospitals and we have
extended it by implementing a plugin for the proposed smart super
views. These are not used in the daily routine yet.

All visualizations, the overview one as well as the ones of the
smart super views, are rendered into separate frame buffer objects
using CUDA. The super-elliptical shapes together with the views
and the shape legend are rendered using GLSL shaders. The rulers,
the outline of the ROI and the connection bands are drawn using the
painting capabilities provided by Qt4.
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Figure 9: Several smart super views presented for various regions of a human lower extremity data set. The overview visualization is MIDA in all
examples. Selected is (a) the sagittal slice view, (b) the bone view, (c) the oblique slice view and (d) the tissue view.

The user can interactively move the ROI to obtain smart super
views and then inspect a specific one. The inspection can be done
in real-time by rendering the active view enlarged in order to pro-
vide more space for investigation. Rotating, zooming, panning and
changing the transfer and windowing functions are the default ca-
pabilities of every view.

We used the fuzzy-lite [22] library for integrating fuzzy logic
into our application, because it provides an intuitive and fast C++
interface. The linguistic input and output variables as well as the
membership functions are defined in the source code. The rules are
stored in a text file and loaded when the smart super view plugin of
our application starts.

8 EVALUATION

In discussions and semi-structured interviews with physicians, we
acquired qualitative feedback about the applicability of our smart
super views. We consulted two domain experts, i.e., radiologists.
They told us, that the initial goal of a visual workflow is to reduce
the number of slices to inspect. A common procedure is to inves-
tigate all slices of a patient data set in order to detect suspicious

regions. This works usually well, but consumes a considerable
amount of time. For vessel investigation, CPR [8] and mpCPR [9]
were proposed. They significantly reduce the number of images to
inspect by a clinician.

With the increased resolution of current scanners, the data sets
consist of more slices and the time that is required for an inspection
rises. Additionally, the number of images increases as well with
more techniques being available, even for specific purposes. For
blood vessels such techniques are, for example, various stretched,
straightened or untangled CPRs. For every technique images have
to be generated according to a given set of viewing directions. The
clinicians have to inspect all of these generated images, as some
pathologies, such as vessel occlusions might remain unrecognized
otherwise. This is a potential scenario of our proposed system, be-
cause it will automatically provide only relevant views. Addition-
ally, the clinicians are able to view the ROI from various viewing
directions, because smart super views offer more interaction than
static images.

According to the study by Portugaller et al. [21] specific com-
binations of views lead to more accurate reporting results. They



Lo
w

 

Hi
gh

 

0.25 0.5 0.75 1.0 

1.0 

0.0 
M

ed
iu

m
 

0.0 

(a)

Ve
ss

el
 

Ti
ss

ue
 

0.25 0.5 0.75 1.0 

1.0 

Bo
ne

 

0.0 
0.0 

(b)
0.2 0.4 0.6 1.0 

1.0 

0.8 

Ax
ia

l 

O
bl

iq
ue

 

Co
ro

na
l 

Sa
gi

tt
al

 

0.0 
0.0 

(c)

Figure 10: Linguistic variables with their terms and corresponding triangular membership functions used in the FIS. The left and right most
terms are shoulder terms. The colors correspond to those employed in the user interface. (a) Every linguistic input variable uses the terms Low,
Medium, High. (b) The linguistic output variable with the terms for the vessel, bone and tissue views. (c) The linguistic output variable with the
corresponding terms for the slice views.

conclude that using only axial images, CPR or MIP alone is not
sufficiently accurate to judge many pathologies. The outcome of
the study is that MIP together with an axial slice view is the most
accurate procedure. Our system is able to provide this by adapting
the rule base accordingly.

The domain experts also liked the possibility to additionally
blend specific views into their workflow. Their workplace usu-
ally includes four displays, where three of them are used for the
PACS workstation. The fourth and left most screen remains mostly
unused. Here they see some potential for our proposed system as
an extension of their current workstation. Having additional infor-
mation on suspicious regions and getting only relevant views, was
considered to be a promising extension. Concerning the discrimi-
nation of the various views, the domain experts mentioned that it is
intuitive for a user with some basic knowledge about the underlying
algorithms. Furthermore, the interaction is seen as fairly easy.

The domain experts see further potential of our proposed sys-
tem in interdisciplinary medical discussion rounds between radi-
ologists, clinicians and surgeons. Our system can be adapted to
their different requirements by providing individual rule bases. By
changing the rules, the system will immediately adapt to the desired
protocol. For example, a surgeon wants to see a vessel with DVR,
whereas a radiologist prefers CPR.

According to the study presented by Northam et al. [19] and as
a future extension, our system might use a high resolution but lim-
ited field-of-view for the overview visualization, while addition-
ally providing smart super views using the full field-of-view of the
underlying data. This would reduce the potential risk of missing
pathologies along with showing the ROI in a high resolution.

The study by Schertler et al. [30] investigates the impact of axial
slices on the localization of possible pathologies beyond the ves-
sels in the chest region. Our system can account for such cases
by defining an appropriate rule base. The potential risk to overlook
pathologies is reduced by guiding the radiologist to certain views in
specific regions. These views use only well-known and established
visualization techniques according to the application scenario.

Summarizing the evaluation, the domain experts see our system
as a promising addition to their current clinical workflow. They
especially see a potential in the possibility to guide the user to im-
portant views in order to reduce risk factors. A comprehensive user
study with the aim to investigate the impact of our proposed system
on the daily clinical routine is still open.

9 DISCUSSION

Among several possibilities of fuzzy membership functions, we
chose triangular ones for every linguistic variable. All linguistic in-
put variables exhibit the structure shown in Fig. 10(a) and consist of
the terms low, medium and high. These terms have triangular mem-
bership functions with the same area, but low and high are shoulder

Table 1: Outline of the if-then rules used in our system to determine
the relevance for the vessel, bone and tissue smart super views.

if VVessel is Low and VBone is High and VVesselTree is Low
then Suggestion is Bone

if VVessel is Medium and VBone is Low and VVesselTree is Low
then Suggestion is Tissue

if VVessel is High and VBone is High and VVesselTree is High
then Suggestion is Vessel

terms. The linguistic output variable for the vessel, bone and tissue
views has the corresponding visualizations as terms, as illustrated
in Fig. 10(b). The linguistic output variable for the slices consists
of four terms and is shown in Fig. 10(c). The colors are the same as
in the user interface of our system. Table 1 shows an outline of the
if-then rules used to create the result images throughout this work.
The values VVessel , VBone and VVesselTree are obtained by Equation 1.

Providing the FIS with meaningful information often requires a
considerable amount of information or even specific information,
such as the bone and vessel masks. In general, we cannot assume
that we have such annotated data available. However, our system is
implemented in a framework, which is used in the clinical routine
of two hospitals. Radiological assistants create such annotations in
their daily work. Hence, in our scenario, we have such data avail-
able. The tracking of the vessel tree is also done for every patient,
and we can use it in our system. This vessel tree does not contain
all vessels, but the clinical relevant ones are present. Concluding,
the required data, even the specific one, is usually available, without
the necessity of any user adaptation or changes to the workflow.

10 CONCLUSION

We proposed a knowledge-assisted user interface for medical visu-
alization. The user can hover over a specific region and gets only
relevant visualizations presented in the form of smart super views.
These views are integrated into the overview visualization and vi-
sually convey relevance by shape and color. In order to inspect a
view in detail, the user just needs to hover over it. He or she can
then interact in the usual manner. Knowledge is provided by do-
main experts in the form of if-then rules. These are evaluated using
fuzzy logic to obtain a ranking of suitable visualizations.

ACKNOWLEDGEMENTS

The work presented in this paper is part of the Knowledge Assisted
Sparse Interaction for Peripheral CT-Angiography (KASI) project,
supported by the Austrian Science Fund (FWF) grant no. TRP 67-
N23. The data sets are courtesy of the Kaiser-Franz-Josef Hospital
and the General Hospital of Vienna.



REFERENCES

[1] J.-P. Balabanian, I. Viola, and M. E. Gröller. Interactive illustrative
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deformed viewing spheres for knowledge-based navigation. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1544–
1551, Oct. 2007.

[12] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller.
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