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Abstract in English

Medical visualization is one of the most application-oriented areas of visualization re-
search. Close collaboration with medical experts is essential for interpreting medical
imaging data and creating meaningful visualization techniques and visualization ap-
plications. Cancer is one of the most common causes of death, and with increasing
average age in developed countries, gynecological malignancy case numbers are ris-
ing. Modern imaging techniques are an essential tool in assessing tumors and produce
an increasing number of imaging data radiologists must interpret. Besides the number
of imaging modalities, the number of patients is also rising, leading to visualization
solutions that must be scaled up to address the rising complexity of multi-modal and
multi-patient data. Furthermore, medical visualization is not only targeted toward med-
ical professionals but also has the goal of informing patients, relatives, and the public
about the risks of certain diseases and potential treatments. Therefore, we identify the
need to scale medical visualization solutions to cope with multi-audience data.

This thesis addresses the scaling of these dimensions in different contributions we
made. First, we present our techniques to scale medical visualizations in multiple
modalities. We introduced a visualization technique using small multiples to display
the data of multiple modalities within one imaging slice. This allows radiologists to ex-
plore the data efficiently without having several juxtaposed windows. In the next step,
we developed an analysis platform using radiomic tumor profiling on multiple imag-
ing modalities to analyze cohort data and to find new imaging biomarkers. Imaging
biomarkers are indicators based on imaging data that predict clinical outcome related
variables. Radiomic tumor profiling is a technique that generates potential imaging
biomarkers based on first and second-order statistical measurements. The application
allows medical experts to analyze the multi-parametric imaging data to find potential
correlations between clinical parameters and the radiomic tumor profiling data. This
approach scales up in two dimensions, multi-modal and multi-patient. In a later ver-
sion, we added features to scale the multi-audience dimension by making our applica-
tion applicable to cervical and prostate cancer data and the endometrial cancer data the
application was designed for. In a subsequent contribution, we focus on tumor data on
another scale and enable the analysis of tumor sub-parts by using the multi-modal imag-
ing data in a hierarchical clustering approach. Our application finds potentially inter-
esting regions that could inform future treatment decisions. In another contribution, the
digital probing interaction, we focus on multi-patient data. The imaging data of multi-
ple patients can be compared to find interesting tumor patterns potentially linked to the
aggressiveness of the tumors. Lastly, we scale the multi-audience dimension with our
similarity visualization applicable to endometrial cancer research, neurological cancer
imaging research, and machine learning research on the automatic segmentation of tu-
mor data. In contrast to the previously highlighted contributions, our last contribution,
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ScrollyVis, focuses primarily on multi-audience communication. We enable the cre-
ation of dynamic scientific scrollytelling experiences for a specific or general audience.
Such stories can be used for specific use cases such as patient-doctor communication or
communicating scientific results via stories targeting the general audience in a digital
museum exhibition.

Our proposed applications and interaction techniques have been demonstrated in
application use cases and evaluated with domain experts and focus groups. As a result,
we brought some of our contributions to usage in practice at other research institutes.
We want to evaluate their impact on other scientific fields and the general public in
future work.



Abstract in Norwegian

Medisinsk visualisering er en av de mest applikasjonsrettede områdene av visualiser-
ingsforsking. Tett samarbeid med medisinske eksperter er nødvendig for å tolke me-
disinsk bildedata og lage betydningsfulle visualiseringsteknikker og visualiseringsapp-
likasjoner. Kreft er en av de vanligste dødsårsakene, og med økende gjennomsnittsalder
i i-land øker også antallet diagnoser av gynekologisk kreft. Moderne avbildning-
steknikker er et viktig verktøy for å vurdere svulster og produsere et økende antall
bildedata som radiologer må tolke. I tillegg til antallet bildemodaliteter, øker også an-
tallet pasienter, noe som fører til at visualiseringsløsninger må bli skalert opp for å
adressere den økende kompleksiteten av multimodal- og multipasientdata. Dessuten er
ikke medisinsk visualisering kun tiltenkt medisinsk personale, men har også som mål
å informere pasienter, pårørende, og offentligheten om risikoen relatert til visse syk-
dommer, og mulige behandlinger. Derfor har vi identifisert behovet for å skalere opp
medisinske visualiseringsløsninger for å kunne håndtere multipublikumdata.

Denne avhandlingen adresserer skaleringen av disse dimensjonene i forskjellige
bidrag vi har kommet med. Først presenterer vi teknikkene våre for å skalere visualis-
eringer i flere modaliteter. Vi introduserer en visualiseringsteknikk som tar i bruk små
multipler for å vise data fra flere modaliteter innenfor et bildesnitt. Dette lar radiologer
utforske dataen effektivt uten å måtte bruke flere sidestilte vinduer. I det neste steget
utviklet vi en analyseplatform ved å ta i bruk «radiomic tumor profiling» på forskjel-
lige bildemodaliteter for å analysere kohortdata og finne nye biomarkører fra bilder.
Biomarkører fra bilder er indikatorer basert på bildedata som kan forutsi variabler re-
latert til kliniske utfall. «Radiomic tumor profiling» er en teknikk som genererer mulige
biomarkører fra bilder basert på første- og andregrads statistiske målinger. Applikasjo-
nen lar medisinske eksperter analysere multiparametrisk bildedata for å finne mulige
korrelasjoner mellom kliniske parameter og data fra «radiomic tumor profiling». Denne
tilnærmingen skalerer i to dimensjoner, multimodal og multipasient. I en senere versjon
la vi til funksjonalitet for å skalere multipublikumdimensjonen ved å gjøre applikasjo-
nen vår anvendelig for livmorhalskreft- og prostatakreftdata, i tillegg til livmorkreft-
dataen som applikasjonen var designet for. I et senere bidrag fokuserer vi på svulstdata
på en annen skala og muliggjør analysen av svulstdeler ved å bruke multimodal bilde-
data i en tilnærming basert på hierarkisk gruppering. Applikasjonen vår finner mulige
interessante regioner som kan informere fremtidige behandlingsavgjørelser. I et annet
bidrag, en digital sonderingsinteraksjon, fokuserer vi på multipasientdata. Bildedata
fra flere pasienter kan sammenlignes for å finne interessante mønster i svulstene som
kan være knyttet til hvor aggressive svulstene er. Til slutt skalerer vi multipublikumdi-
mensjonen med en likhetsvisualisering som er anvendelig for forskning på livmorkreft,
på bilder av nevrologisk kreft, og maskinlæringsforskning på automatisk segmenter-
ing av svulstdata. Som en kontrast til de allerede fremhevete bidragene, fokuserer vårt
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siste bidrag, ScrollyVis, hovedsakelig på multipublikumkommunikasjon. Vi muliggjør
skapelsen av dynamiske og vitenskapelige “scrollytelling”-opplevelser for spesifikke
eller generelle publikum. Slike historien kan bli brukt i spesifikke brukstilfeller som
kommunikasjon mellom lege og pasient, eller for å kommunisere vitenskapelige resul-
tater via historier til et generelt publikum i en digital museumsutstilling.

Våre foreslåtte applikasjoner og interaksjonsteknikker har blitt demonstrert i bruk-
stilfeller og evaluert med domeneeksperter og fokusgrupper. Dette har ført til at noen
av våre bidrag allerede er i bruk på andre forskingsinstitusjoner. Vi ønsker å evaluere
innvirkningen deres på andre vitenskapelige felt og offentligheten i fremtidige arbeid.
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«The place to improve the world is first in one’s own heart and head and hands, and
then work outward from there.»

Robert M. Pirsig
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Chapter 1

Introduction

Novel techniques, medical research, and advanced clinical practice in the medical do-
main partially drive medical visualization research. There has been a significant in-
crease in available medical imaging modalities, sequences, and data per patient in re-
cent years. A single tissue analysis conducted under the microscope is now often fully
digitized, and one investigation can potentially deliver hundreds of gigabytes of data
that must be analyzed. Finding efficient and effective data analysis methods to cope
with the sheer amount of data is an ongoing endeavor involving multiple scientific dis-
ciplines.

Medical visualization is mainly a domain-driven science. Visualization researchers
can envision novel and exciting techniques for visualizing medical imaging data inde-
pendently. However, often these do not meet the requirements of the domain experts
for use in clinical practice or research. Close contact with medical researchers is there-
fore essential to create medical visualizations that have the potential to impact the pa-
tients the data is derived from. Involving domain experts is challenging as they have
their own vocabulary, and often time is limited, but it is the only path to results that
may finally be used in practice. Radiologists mainly conduct medical image analysis
under time pressure. Therefore, the main criterion for bringing medical visualization
research into clinical practice is the efficiency and effectiveness of the created algo-
rithm or application. The rest of the criteria can be summarized as follows: it is good
if the radiologists can conduct their work faster with your application or tool. If not,
it has to have a significant impact on the patient. This rule can be altered when apply-
ing medical visualization to medical research. In research, time is not the most crucial
aspect. Visualization should instead allow for exploration and hypothesis formation.
Besides visualization where the human in the loop is essential, machine learning is
another answer to difficult questions in medical image analysis.

In recent times machine learning has evolved into a general problem solver. How-
ever, while artificial intelligence can be beneficial for many scenarios, it struggles in
cases where, e.g., additional context is needed, problem definitions are unclear, or eth-
ical value judgments are involved. Furthermore, medical experts must still review the
results created by machine learning algorithms for quality assurance. People also have
the right in EU law under the General Data Protection Regulation (GDPR) to receive an
explanation for every decision made by an automated or machine learning created de-
cision [46]. Visualization is therefore still valuable and essential either to accompany
machine learning or to show that more straightforward solutions may also be good
enough, following Occam’s razors.
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1.1 Problem Statement

Medical Visualization is a multidisciplinary application-oriented field where visualiza-
tion researchers often work closely with domain experts. Such interdisciplinary re-
search frequently results in applications addressing specific medical image analysis
problems. The increasing complexity in imaging results from modern magnetic reso-
nance imaging (MRI), X-ray computed tomography (CT), or functional MRI (fMRI)
introduces challenging data analysis problems. For example, multi-sequential image
series are the result of using different imaging sequences within an MRI, and multi-
modal images are derived by combining different imaging techniques such as MRI and
CT. Visualizing such data is a challenge and one of the primary endeavors in this thesis.

Medical research often involves the analysis of data from multiple patients, so-
called cohorts, to explore patterns that can later be used for individual cases and treat-
ment decisions. Such cohorts have varying sizes ranging from a handful of patients up
to thousands depending on the frequency of the illness being studied and the size of the
hospital or consortium that carries out the study. Data compatibility issues are one of
the most common problems when working with cohorts. In general, data derived from
a CT investigation is more accessible to analyze than MRI data that is not based on
a shared value range. Both modalities further share comparison challenges when data
is derived from machines of different vendors or protocols. The analysis of MRI im-
ages within a cohort relies on comparing statistical data features. One problem can be
linked to differences between scanner manufacturers, especially in studies across hos-
pitals. Furthermore, acquisition protocols can change over time or between institutions,
making the data even less comparable. Many of these problems arise in multi-patient
data analysis which is an additional central aspect of this thesis.

Finally, research results which are often funded by public resources, are communi-
cated within the research community but also to the public. There are inherent differ-
ences in communicating such findings based on the target audience. The first pathway
of sharing scientific findings is via scientific papers presented at conferences or pub-
lished in journals. Scientific papers often follow a strict pattern and deliver insights
in a structured way which is efficient if the consumers are used to the format. When
communicating findings with a broader audience such as the general public, other me-
dia is more favorable as the general public is often not trained to gather information
from structured manuscripts. This form of communication is often called outreach and
can consist of blog posts, videos, (newspaper) articles, or even television appearances
and interviews. When addressing multiple audiences, many challenges have to be
addressed to reach the goal of a common understanding. Such challenges include dif-
ferent knowledge levels, different vocabularies, and cultural differences. One central
part of this thesis is finding efficient ways to communicate scientific results to multiple
audiences, from peers to the general public.

1.2 Scope and Contributions

The research conducted in the course of this Ph.D. study has the goal of scaling medical
visualization in three different dimensions, namely: multi-modal, multi-patient, and
multi-audience. We contributed three application papers and one technique-oriented
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paper. We solve several problems when dealing with multi-modal medical imaging
data of multiple patients or even cohorts while fulfilling the needs of experts working
in multiple different scientific fields. To show the utility of our approaches, three out
of our four contributions have been evaluated with qualitative user studies. The main
contributions of this thesis can be summarized as follows:

Multi-Modal

We contribute the following methods and applications to the area of multi-modal med-
ical visualization:

Stixels: Star Glyph Pixels We introduce the so-called Stixels (Start glyph pixels), a vi-
sualization method to visualize the values of multiple MRI sequences within a single
slice view. With this method, we allow, e.g., medical researchers to analyze the value
distribution of multiple medical imaging sequences in only one view.

Interactive Clustering Exploration We propose an application called ICEVis (Interactive
clustering exporation Visualization) which enables medical researchers to perform sub-
tumor analysis based on the result of a multiparametric hierarchical clustering ap-
proach.

Multi-Patient

Within this thesis, we contribute the following techniques and applications to the area
of multi-patient medical visualization.

Interactive Visual Probing Within ParaGlyder (the name reflects the probing interaction),
we propose a technique to interactively probe multi-modal medical images, facilitating
a digital biopsy of the available data. This technique can be used to compare tumor
tissue characteristics to the properties of surrounding tissue. Compared to ICEVis, the
probing interaction does not need a pre-processing step of clustering and allows for
interactive on-demand data exploration. Furthermore, such biopsies can also be used
to compare the tumors of different patients to gather generalizable tumor describing
features.

Integrated Visual Exploration of Multiparametric Studies We introduce the application RadEx
(Radiomic tumor profiling Exploration), which enables medical researchers to explore
multi-parametric studies of radiomic tumor profiling results visually. The application
includes calculating radiomic tumor profiling features of a whole cohort of patients,
including several imaging sequences. In addition, the application enables hypothesis
formulation and hypothesis investigation for such data by combining dimensionality
reduction techniques with interactive visual analysis.
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Multi-Audience

We propose the following techniques and presentation methods to target multiple differ-
ent audiences within the field of visualization in general and, more specifically, medical
visualization.

Multiparametric Similarity Visualization Within ParaGlyder, we introduce a multi-parametric
similarity visualization that takes the digital biopsy described earlier as a reference
and presents a highlights voxel-based multi-parametric similarity to this digital biopsy
within a medical imaging sequence. The similarity visualization enables radiologists to
highlight the extent of the tumor and potential cancer spreading more quickly than by
only using single imaging sequences. In addition, it allows for the assessment of tumor
extent and inflammatory regions after tumor surgery, as demonstrated in a brain tumor
case. Lastly, it allows machine learning experts to assess which imaging sequences are
most informative for the development of automatic segmentation methods.

Interactive Visual Authoring of Guided Dynamic Narratives With ScrollyVis (Scrollytelling Vi-
sualization), we enable authors to share either scientific or general stories with a broader
audience, e.g., the public. Scrollytelling (stories that progress based on the scrolling in-
teraction of the reader) is a storytelling format where content is revealed by a scrolling
interaction of the story consumer. Our application allows for the creation of guided
dynamic narratives and creates a ready-to-deploy website that enables scrollytelling
by focusing on a non-code approach. With this contribution, we enable scientists and
other story authors to create stories about scientific contributions or everyday stories
like a trip on the weekend. We target multiple audiences to act both as an author of
compelling stories and as a story consumer.

1.3 Thesis Structure

This thesis consists of two main parts. The first part provides an overview of the re-
search conducted in the thesis, while the second part consists of the individual publica-
tions. The format of the individual contributions was adjusted to fit the thesis layout.
Furthermore, the bibliographies of the individual papers were merged into a unified
bibliography.

Chapter 1 is an introduction to the covered topics in this thesis. Chapter 2 surveys
state of the art related to our contributions and present how our approaches differ from
previously conducted research. Chapter 3 outlines the contributions included in this
thesis. We present the three scaling dimensions and relate the contributions within the
individual papers to them. Chapter 4 demonstrates how our scientific contributions are
used or will soon be used in practice. Chapter 5 provides a discussion and an outlook on
possible future work. The second part of the thesis includes the four papers providing
further details on the contributions of this Ph.D. thesis.
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«It’s said that a wise person learns from his mistakes. A wiser one learns from others’
mistakes. But the wisest person of all learns from others’ successes.»

John C. Maxwell
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Chapter 2

Related Work

Application Driven
Visualization

Multi-Modal Multi-Patent Multi-Audiences Evaluating
Visualization
Applications

Becker et al. [6] Preim et al. [125] Angelelli et al. [3] Ma et al. [100] Ellis et al. [39]

Buja et al. [19] Klippet et al. [85] Klemm et al. [83] Ma et al. [100] Munzner [108]

Schneiderman [142] Klippel et al. [84] Bernard et al. [8] Kosara et al. [89] Isenberg et al. [65]

Card et al. [22] Glaßer et al.[47] Raidou et al. [130] Dahlstorm [31] Sedlmair [139]

Baldonado et al. [168] Ropinski et al. [133] Preim et al. [124] Seyser et al. [141] Glasßer [48]

Tory et al. [159] Kehrer and Hauser [78] Jönssen et al. [73] Conlen et al. [29] Smit et al. [144]

Brehmer and Munzner [16] Raidou et al. [128] Tong et al. [158] Preim et al. [122]

Preim et al. [123] Jäckle et al. [66] Joubert et al. [70] Preim et al. [126]

Miksch et al. [103] Stoppel et al. [150] Hohmann et al. [61]

Munzner [109] Lawonn et al. [95] Conlen et al. [30]

Opach et al. [115] Stornaway [151]

Gillman et al. [46] Twine [161]

Tableau Stories [42]

Table 2.1: The related work of this thesis is categorized into five sections: (1) application-
driven visualization design, (2) multi-modal, (3) multi-patient, (4) multi-audience, and (5)
related work on how to evaluate visualization applications.

In this chapter, we summarize research related to this thesis. In Table 2.1 the related
work is listed, categorized by which research aspect this relates to, and ordered by the
year of publication. Furthermore, we differentiate between work related to the specific
aspects of this thesis, i.e., multi-modal, multi-patient, and multi-audience. In addition
to the specific areas we cover within this thesis, we present more general related work
regarding the application-driven design of visualization applications and the evaluation
of visualization applications.

2.1 Application Driven Visualization

Munzner [109] defined visualizations as tools to enhance the cognitive capabilities of
humans, which are particularly suitable in cases where the users would like to explore
and discover new knowledge from the data and processes they analyze. There are
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various application fields where visualization is applicable. One field of interest for this
thesis is medical visualization [123]. Medical visualization covers a vast and complex
domain where pre-knowledge is essential as it may be applied to areas like anatomy,
pathology, and biomedical engineering. Preim and Botha [123] delivered a thorough
overview of challenges and opportunities within the field of medical visualization. In
a more recent publication by Gillman et al. [46] ten open challenges in the field of
medical visualization are discussed, including multi-modal visualization, the focus of
this thesis.

Tory et al. [159] defined a common taxonomy of visualization based on the data be-
ing used. They introduced the terms Scientific Visualization which deals with data with
inherent spatial information and Information Visualization which works with abstract,
nonphysical data [159]. Furthermore, Visual Analytics combines the two visualization
fields and further incorporates concepts like data mining and analysis of data using
statistics. The human in the loop is an essential concept within visual analytics [109].
Within this thesis, we will present new approaches in scientific visualization and visual
analytics platforms to enable experts from different fields to investigate their data and
formulate hypotheses.

General Concepts and Techniques

Many design choices can be effective in various scenarios of visual analytics applica-
tions. In this section, we highlight the most important ones for this thesis.

The Information Seeking Mantra was introduced by Schneiderman [142] and is de-
fined as follows: Overview first - Zoom and filter - Details-on-demand. The whole
process should be enabled via interaction. The mantra is valid for the whole field of vi-
sualization research, and an expanded version has been introduced by Keim et al. [79]:
Analyze first, Show the Important, Zoom, filter and analyze further, Details on demand.
Following the mantra [142] and the adaption by Keim et al. [79], visual analytics en-
ables an optimal workflow for users without overloading them with information.

The Data-Users-Tasks Design Triangle introduced by Miksch et al. [103] defines
three different aspects as the most important when it comes to the implementation of
visual analytics platforms, namely: characteristics of the data, users, and the users’
tasks.

A Multi-Level Topology of Abstract Visualization Tasks by Brehmer and Mun-
zner [16] defines the central questions: why, how, and what. Why is a task performed,
how is a task executed, and what are the inputs and outputs of the task.

Multiple (Coordinated) Views are often used within visual analytics platforms and
were first described by Baldonado et al. [168]. Their work proposed guidelines on how
to design multiple view systems effectively.

Brushing and Linking is a concept enabling filtering of data by selecting interest-
ing sub-parts of data in various views, first shown within scatterplots [6] and later in a
more general approach discussed by Buja et al. [19].
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Figure 2.1: Stoppel et al. [150] presented primitives for the visualization of time-dependent
spatial data presenting volumetric changes. Traditionally animated volume renderings are
used to visualize time-dependent data (left). While showing all time-intensity curves together,
a cluttered plot is a result (middle). They used small multiples combined with interaction
methods, resulting in a less cluttered, more informative, and usable approach (right).

Focus + Context aims to visualize a focus object perceivable while illustrating the
surrounding context without distracting the focus. Techniques to facilitate this include
unsaturated colors for shading, different shading methods per object class to varying
entire rendering concepts [95].

2.2 Multi-Modal

Kehrer and Hauser [78] stated that visualization and visual analysis is of high impor-
tance in exploring, analyzing, and presenting scientific data. Multifaceted data is used
more frequently either from different data sources (multi-modal data), from multiple
simulation runs (multi-run data), or multi-physics simulations of interacting phenom-
ena (multi-modal data from coupled simulation models). To analyze such data, visu-
alization is more often combined with computational analysis. The authors analyzed
existing methods and showed opportunities for new research directions to cope with
such data sources.

Lawonn et al. [95] presented a survey on multi-modal medical data visualization.
Multi-modal is an ambiguous term in medical visualization and either describes differ-
ent imaging techniques resulting from different scanners or different imaging sequences
within the same machine. An example of the former is MRI and CT imaging, while
an example of the latter are different acquisition parameter weighting strategies in MRI
imaging, such as T1 or T2. Visualizing multi-modal imaging data is still one of the ten
open challenges highlighted by Gillman et al. [46]. Lawonn et al. [95] stated that the
goals of multi-modal medical data visualization are the following:

• reduction of complexity and cognitive load

• enabling, improving, or accelerating the decision making processes

• providing tailored visualizations for specific applications

Glyph Based Approaches

Standard visualization methods often reach limitations when combining more than
three different imaging modalities. There are different methods of solving this limita-
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tion, e.g., by presenting multivariate data, ranging from scatterplot matrices and parallel
coordinate plots to glyph-based visualization techniques [66]. One possible solution is
to place glyphs or primitives on top of medical images to present multi-dimensional
data while keeping the context of the medical data available, following the focus-and-
context visualization pattern. One example of such a method is presented by Stoppel
et al. [150] named Graxels, and shown in Figure 2.1. The method provides informa-
tion regarding temporal developments as small multiples placed in their spatial context.
Furthermore, the authors allow for multiple interactions in both the spatial and value
domain.

Ropinski et al. [133] presented a survey on glyph-based visualization techniques for
spatial multivariate medical data. They proposed a classification of glyph techniques
into two main groups: those supporting pre-attentive and attentive processing. Further-
more, the authors proposed guidelines to support improved glyph-based visualizations
for the medical domain. One of the essential aspects of glyphs is their shape which
should be easily perceivable and unambiguous [133]. Therefore, the authors differenti-
ate two different types of glyph shapes:

• Basic glyph shapes are geometric shapes that are modified by their geometric
properties like size and orientation. Examples of basic glyph shapes are spheres,
cuboids, and ellipsoids.

• Composite glyph shapes are composed of basic glyph shapes. They are more
specialized and defined by mapping functions, e.g., parameters are mapped to
geometric properties such as radius and length. Composite glyphs are often used
to display multivariate data.

One example of such composite glyphs was presented by Jäckle et al. [66]. The
authors used so-called star-glyph insets to achieve overview preservation while visu-
alizing multivariate data. Although star glyphs can be presented in many ways, the
authors chose to use a design where data lines radiate from the center, and the ends
are then connected by a contour line forming the glyphs. Essential aspects to consider
when using star glyphs are discussed by Klippel et al. [84, 85] including how to shape
characteristics to influence classification tasks and also how color enhances star plot
glyphs. When thinking about glyph designs, one crucial aspect is defining glyph shape.
Opach et al. [115] proposed a guide to help decide between polyline-based glyphs as
used by Stoppel et al. [150] and star glyphs in a grid plot. They concluded that it is
task-dependent: polyline glyphs are better when datapoint values must be read within
the glyphs, and star glyphs are better when the task involves a visual search among
glyphs.

We also introduce a star glyph-based grid layout that is designed according to the
glyph design guidelines by Opach et al. [115]. It enables radiologists to analyze mul-
tiple sequences simultaneously without having to display them in multiple juxtaposed
views. In comparison to prior work, we use multi-parametric imaging data of one pa-
tient at one timepoint and do not visualize data changes over time. Furthermore, our
design is focused on identifying pattern differences and not reading individual values.
Therefore, we decided to use star-glyphs colored by similarity to a probed area within
the data following the guidelines of Klippel et al. [84, 85].
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Figure 2.2: Raidou et al. [128] presented a visual tool for the exploration and analysis of the
feature space defined by imaging-derived tissue characteristics. They further support knowl-
edge discovery and hypothesis generation, and confirmation. The Figure presents a case study
on prostate cancer patient.

Visual Analytics

Besides considering how to visualize multivariate medical imaging data, one also must
consider the analysis tasks medical experts must carry out using the data. Raidou et
al. [128] presented a visual analytics platform for tumor tissue characterization. An ex-
ample use case of their approach is presented in Figure 2.2. They proposed an applica-
tion that enables exploration and visual analysis of image-derived tissue characteristics
that enables hypothesis discovery, generation, and confirmation. Clinical researchers
can analyze tumor tissue characteristics in high-dimensional feature space by including
multiple linked interactive views.

Similar to their approach, Glaßer et al. [47] presented a visual analytics application
for breast tumor analysis in dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) that facilitates a voxel-wise glyph-based overview and region-based anal-
ysis. Their approach is depicted in Figure 2.3. In contrast to the approach of Glaßer et
al. [47] we visualize multiple sequences on top of one imaging slice. Preim et al. [125]
published a survey on visual exploration and analysis of perfusion data. Their work
outlined how 2D parameter maps, 3D visualizations of parameter volumes, and explo-
ration techniques can be combined. In addition, they discussed related work based on
three major application areas: ischemic stroke diagnosis, breast tumor diagnosis, and
the diagnosis of coronary heart diseases.

We further enable the exploration of medical imaging data by interactive probing
and allow for the analysis of radiomic tumor profiling data within a cohort of patients
while focusing on the imaging data. The experts can still inspect the imaging data of
all patients while analyzing statistical features of the whole tumor data throughout the
cohort.

2.3 Multi-Patient

In contrast to the previous section, where we focused on visualization techniques and
visual analytics applications mainly targeted at multi-modal medical imaging data, this
section focuses on the analysis of the data of multiple patients. In medical research,
groups of patients are also called cohorts. Preim et al. [124] showed an extensive
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Figure 2.3: Glaßer et al. [47] presented a glyph-based visualization of two lesions. The rela-
tive enhancement and the relative enhancement curves, based on contrast-enhanced MRI, are
mapped to the voxels of the images using a rainbow colormap.

Figure 2.4: Bernard et al. [8] introduced a system enabling physicians to define and analyze
cohorts of prostate cancer patients. All the visualizations used in the application are syn-
chronized, and a centered list-based visualization delivers an overview of large sets of patient
histories.

overview of visual analytics solutions aiming to support public health professionals in
analyzing public health-related data. They described requirements, tasks, and visual
analytics techniques often used in public health-related applications.

Angelelli et al. [3] presented a visual analytics approach that enables the visual
exploration and analysis of large amounts of heterogeneous data to help generate and
validate hypotheses. They implemented data-cube-based models to handle overlapping
data subsets and seamlessly integrate data during visualization, linking spatial and non-
spatial data views.

In contrast to Angelelli et al.’s work [3], which targeted data on cognitive aging,
Bernard et al. [8] developed a visual-interactive system for prostate cancer cohort anal-
ysis. Their application is visible in Figure 2.4. It was developed in close collaboration
with medical researchers and helped the clinical experts to efficiently and effectively
analyze single and multiple patient histories at a glance. They used several linked views
and information visualization techniques combined with guidance concepts.

Klemm et al. [83] focused on epidemiological data, which enables experts in the
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Figure 2.5: Jönsson et al. [73] introduced an application for the interactive visual analysis
of brain imaging data and clinical measurements. Targeted toward neuroscientists, the au-
thors enable the analysis of correlations between active brain regions and physiological and
psychological factors.

field to investigate their data pool for hypothesis validation and generation. The au-
thors combined image-based and non-image data in a visual analytics platform that
extensively features interaction methods to analyze lower back pain-related studies.
In contrast to Klemm et al. [83], Raidou et al. [130] focused on the exploration of
radiotherapy-induced bladder toxicity in a cohort study. The authors introduced an in-
teractive application that provides multiple linked views where inter-patient and tempo-
ral exploration, analysis, and comparison are supported. They evaluated their approach
with clinical experts who positively assessed the functionality and the design of the
visualizations.

Jönssen et al. [73] focused on the analysis of brain imaging and clinical measure-
ments as shown in Figure 2.5. They introduced VisualNeuro, a hypothesis formation
and reasoning application for multivariate brain cohort study data. The authors used
a parallel coordinate plot to enable effective subject group selection. Furthermore,
they employed the Welch’s t-test for brain region filtering and multiple visualizations
based on the Pearson correlation between brain regions and clinical parameters to en-
able correlation analysis. Finally, they performed a qualitative user study with three
neuroscientists from different domains.

Our work further enables cohort data analysis by using multiple linked views pre-
senting both imaging data and clinical parameters. In contrast to the presented ap-
proaches, we deal with multi-sequential MRI data for each patient within the cohort
and enable the radiologists to drill down to the imaging level for each patient while
keeping the context of the whole cohort available. Furthermore, we allow for the anal-
ysis of radiomic tumor profiling data, a recent research field that aims to find new
imaging biomarkers correlated to outcome-related variables.
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Figure 2.6: From storyboard to visualization: the story of NASA’s Lunar Reconnaissance
Orbiter. Scientific Storytelling Using Visualization referred by Ma et al. [100].

2.4 Multi-Audience

This section focuses on multi-audience-related approaches related to scientific story-
telling, which is writing about scientific observations to create a captivating story and
scrollytelling where a digital story progresses by a scrolling interaction of the story
viewer. Storytelling is the soul of scientific communication, according to Joubert et
al. [70]. The authors stated that we must go beyond presenting facts and evidence.
Instead, we must create emotional connections between scientists and the public. Ac-
cording to Joubert et al. [70], storytelling can be a powerful way to increase engagement
in science and stories to help people understand, process, and recall science-related in-
formation.

Storytelling is rapidly gaining momentum within the field of visualization, and with
this trend, techniques are introduced which enhance understanding [158]. As a result,
more and more storytellers integrate complex visualizations into their narratives. The
authors presented a classification of literature on storytelling in visualizations in two
different dimensions. The first dimension is defined by the questions: Who?, How?
and Why?. The following shows the first category for each of the first dimensions:

• Authoring-Tools: This class addresses the question who creates the story and the
narrative.

• Narrative: Narratives define how an author tells a story.

• Memorability: Memorability of the presented information defines why we use
storytelling.

The second dimension of How? mainly focuses on the possibilities for a story
viewer to traverse the story, which can be dynamic, static, or random access based.
The authors also provide an extensive overview of visualization methods used within
storytelling and note that almost all use information visualization and very little use of
scientific visualization methods.

Ma et al. [100] stated that there is a clear need to consider how storytelling and
visualization can make scientific findings more comprehensible and accessible to the
public. The authors point out that scientific visualization can learn from information vi-
sualization as it is already broadly used in storytelling, whereas scientific visualization
is less often used. Ma et al. [100] outline that visualization and storytelling is one key
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concept at the Scientific Visualization Studio at NASA’s Goddard Space Flight Center,
as also shown in Figure 2.6. Furthermore, when producing visualizations for science
museums, storytelling is a crucial aspect [100].

Kosara et al. [89] wrote already in 2013 that storytelling could be the next big step
for visualization. It allows a natural flow from exploration to analysis and finally to
presentation. The presentation should be seen with at least equal importance to explo-
ration and analysis. The authors mention that based on the maturing of the visualization
research field, researchers must focus on presentation as visualization is increasingly
used for decision making.

Dahlstorm [31] argued that narratives and storytelling are essential instruments to
communicate to a non-expert audience as one of their main channel of science informa-
tion is mass media content based on narrative formats. The author also raises awareness
that narratives are intrinsically persuasive, which can be used to persuade resistant au-
diences but could also raise ethical concerns. Dahlstrom emphasizes the importance of
scientific communication in a new media environment, especially on the web.

Narratives and Storytelling on the Web

Seyser et al. [141] analyzed visual storytelling in online journalism and concluded that
storytelling and, more explicitly, scrollytelling mainly use text in combination with
multimedia content. Most authors use infographics to visualize complex data in long-
form journalism published online. The authors found two main categories of such ar-
ticles: text-based, where multimedia content enhances the text with further contextual
information, and image-centric, where text complements photos, graphics, and anima-
tions. The authors also mention that the Gestalt laws should be considered to structure
visual elements to be easily understood.

Hohmann et al. [61] examined the design of interactive articles in their article. The
authors state that interactive articles are applicable in many domains, e.g., research
dissemination, journalism, education, and policy and decision making. Each of these
domains comes with its opportunities and challenges. In Figure 2.7, the authors pre-
sented an extensive overview of interactive articles published on the web. Hohmann et
al. [61] further discuss the theory and practice of interactive articles based on several
online articles and found the following aspects fundamental:

Connecting People and Data: Such a connection can be facilitated in many ways, includ-
ing animation, which can also be used to improve engagement. Animations effectively
communicate state transitions, uncertainty, causality, and constructive narratives. Unit
visualizations evoke empathy in the reader, and games efficiently convey information
and build empathy.

Making Systems Playful: Interactive visualizations can allow readers to build an intuition
about the behavior of a described system which ultimately leads to a fundamentally
different understanding compared to looking at a static set of equations. In addition,
sandbox simulations featuring multiple changeable parameters allow readers to expe-
rience the behavior changes on the fly and therefore get a deeper understanding of the
underlying processes.
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Figure 2.7: Hohman et al. [61] presented exemplary interactive articles from around the web.
The authors described the essence of interactive articles and reflected critically on their own
experience of publishing interactive open source at scale. They further discuss challenges and
open research directions in the authoring, designing, and publishing interactive articles.

Prompting Self-Reflection: Asking story or article consumers to reflect on reading or stud-
ied material back on themselves is known to impact learning outcomes positively. This
mechanism can also be used in interactive articles by letting readers make predictions
or reflect on the material presented.

Personalizing Reading: One option is to personalize the story’s content based on the
reader’s input, e.g., date of birth. Text and multimedia can change automatically based
on the readers’ input creating an individualized story for every story consumer. Such
techniques have been shown to increase engagement and learning outcomes for the
readers. Segmenting information into smaller pieces and letting readers consume it at
their own pace is another way to facilitate personalized reading.

Reducing Cognitive Load: Authors must bear in mind the readers’ expertise and not over-
load them. Details on demand are vital in reducing the readers’ cognitive load.

The following section will discuss research in story authoring tools and the develop-
ment of an extensive story that is part of a museum exhibition.

Interactive Visualization Story in a Museum Exhibition

Ma et al. [99] presented Living Liquid: Design and Evaluation of an Exploratory Vi-
sualization Tool for Museum Visitors. The authors faced several challenges during the
development of their interactive visualization. First, it must engage visitors personally,
and visitors often lack the background to interpret visualizations of scientific data. Of-
ten time to spend at an individual exhibits within a museum is limited. The authors
conclude the following lessons learned which they derived from visitor evaluations: do
not distract visitors from the data they should explore, include background information
about the visualizations, making visualizations understandable is more important than
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Figure 2.8: Ma et al. [99] present Living Liquid: Design and Evaluation of an Exploratory Vi-
sualization Tool for Museum Visitors. The authors designed an interactive visualization about
simulated marine microbes using an iterative development process and provided guidance on
how to best design visualizations for public audiences.

scientific accuracy, and layer data accessibility to structure inquiry. A picture of their
visualization is presented in Figure 2.8.

Story Authoring Applications

Conlen et al. [29] introduced Idyll, a novel "compile-to-the-web" language targeted at
web-based interactive narratives. They allow authors to control document style, layout,
reader-driven events, and a structured interface to JavaScript components. By eval-
uating their approach with undergraduate computer science students, they were able
to show that Idyll reduces the effort of creating interactive articles. As an extension,
Conlen et al. [30] later introduced Idyll Studio, a structured editor for authoring inter-
active and data-driven articles. An image of the Idyll Studio framework is visible in
Figure 2.9. They now support reflective documents which enable inspection and mod-
ification of their programs at runtime. The authors conclude that Idyll Studio enables
non-technical users to complete tasks more rapidly than expert users using tools they
are familiar with while having a reduced cognitive demand compared to existing tools.

Two additional well known authoring tools are Stornaway [151] and Twine [161].
Stornaway enables authors to create dynamic narratives which can be exported as
videos and can be embedded in websites. Dynamic narratives allow the story viewer
to decide on the fly which direction the story should pursue. Twine allows for dynamic
narratives and creates stories that are web-based and mainly focus on text and image
integration. Tableau [42] stories are another compelling way to tell data stories that can
be defined directly in the Tableau software, which is often used to analyze and explore
data. The stories created with the application are presented in a slideshow fashion and
allow for interactivity.

We contribute an editor for guided dynamic narratives, and in contrast to the afore-
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Figure 2.9: Conlen et al. [30] presented Idyll Studio: A Structured Editor for Authoring
Interactive & Data-Driven Articles. Idyll Studio enables non-technical users to author data-
driven articles in a shorter time than expert users using standard tools.

mentioned approaches, we use scrollytelling as a storytelling format. This allows users
to choose the story’s path and enables authors to include various media formats, in-
cluding scientific visualizations such as 3D volume rendering. In addition, our editor is
based on a non-code paradigm and exports the website ready-to-deploy with the web-
site code still available to the author to adapt if needed.

2.5 Evaluation of Visualizations

When developing visualization applications, one crucial aspect is the evaluation of de-
sign and implementation choices. In this section, we discuss several publications on
how to perform evaluations in the visualization domain and, more specifically, in med-
ical visualization. Munzner [108] introduced a model for visualization design and val-
idation which consists of four layers:

• characterize tasks and data in the words of the problem domain

• abstract tasks and data into operations and data types

• design the visual encoding and interaction techniques

• create algorithms to execute techniques efficiently

She further provides guidance to determine which evaluation approaches are appro-
priate based on the different levels of the visualization design. Ellis et al. [39] dis-
cussed why evaluation of visualization applications is complex and proposed explo-
rative evaluation to discover new things about visualization techniques. The authors
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further provide practical guidance on how to evaluate visualization applications. Isen-
berg et al. [65] outlined current and historical evaluation practices and developments
and concluded that there was an increased emphasis on user experience and user perfor-
mance in contrast to algorithmic performance and qualitative result inspection through
images. Furthermore, they conclude that there is an increasing interest in how new
visualizations help in data analysis and reasoning. More recently, Sedlmair [139] pro-
posed seven guiding scenarios which aim to characterize better different contributions
resulting from design study projects. Furthermore, these scenarios should help provide
better guidance on designing the evaluation of design study contributions.

In the field of medical visualization, one problematic aspect is that often there is
no ground truth to compare to [48]. This results in the limitation that medical visual-
izations can often only be evaluated in a qualitative comparison that neglects objective
measures like accuracy and task completion time and focuses more on user preference.
The authors use guidance to enrich qualitative evaluations by presenting quantitative
analysis in their work. Preim et al. [122, 126] discussed how evaluation practice in
medical visualization should be conducted carefully and should be performed over a
more extended period. The authors argued that individual situations must be assessed,
and the adaption to new techniques should be analyzed.



3

«I cannot guarantee that my answer causally correlates with your question.»
Eduard M. Gröller



33

Chapter 3

Contributions

Multi-Modal Multi-Patient Multi-Audience

I II III

IV

VI

E

V

Chapter 4

Chapter 5

Figure 3.1: Overview of the contributions contained in this thesis. The contributions are posi-
tioned according to the dimensions they scale in. Part I, II, and III are contributions introduced
in paper A. Image IV depicts paper B, and V represents paper C in this thesis. Lastly, image
VI represents paper D. The gray images to the right of image IV present the extension of paper
B for making our contribution ready to be used for cervical and prostate cancer data described
in Chapter 4. The region between images V and VI presents the area which we describe as
future work of the related papers and this thesis discussed in Chapter 5.

The contributions described in this thesis can be grouped according to the scale di-
mensions they focus on. Overall, this thesis aims to scale up medical visualization
in the dimensions of number of modalities, number of patients, and number of target
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audiences. An overview of the contributions and their categorization is shown in Fig-
ure 3.1. Paper A proposes an application that allows for the exploration and analysis
of multi-parametric studies targeting multiple audiences, including gynecological and
neurological cancer imaging experts and machine learning researchers. The contribu-
tions of the paper are presented in components I, II, and III in Figure 3.1. Paper A scales
up across all three dimensions. Paper B builds upon paper A and describes an applica-
tion that allows clinical experts to formulate and prove hypotheses based on multiple
imaging modalities and clinical parameters. Dimensions one and two are therefore tar-
geted in paper B and visualized by component IV in Figure 3.1. The focus of paper C is
to make scientific communication more accessible both for the storytellers and the story
consumers. Our proposed technique enables the creation and authoring of guided inter-
active scrollytelling websites targeted at scientific communication. Paper C focuses on
the multi-audience dimensions intending to reach various communities, including sci-
entists as well as the general public, as visible in component V in Figure 3.1. Paper D
describes an application to enable interactive sub-tumor analysis in gynecological can-
cer data. In the application, multiple modalities are used in a hierarchical clustering
approach, as seen in component VI in Figure 3.1. The gray images to the right of part
IV represent an unpublished extension of RadEx described in Chapter 4 and the area
between components V and VI represents future work we discuss in Chapter 5. In the
following, we will present details about the individual contributions.

3.1 Multi-Modal

When analyzing medical imaging data in endometrial cancer research, medical re-
searchers review multiple sequences they must analyze simultaneously. For example,
the MRI imaging results of a single investigation of a cancer patient deliver different
pictures of the same structures depicting different metabolic properties based on the
imaging protocol. These properties hold information necessary for risk stratification
and treatment decisions. However, analyzing up to seven image stacks simultaneously
is not easy and could be improved by advanced visualization methods. Interesting data
exploration and analysis avenues include tumor homogeneity, sub-tumor analysis, and
tumor texture exploration with radiomic tumor profiling.

3.1.1 Tumor Homogeneity

Reflecting on the related work in multi-modal medical visualization, we developed a
visualization method that visualizes multiple sequences overlaid on a single slice. We
call this method Stixels which stands for Star Glyph Pixels, and we show an example
in Figure 3.2. Stixels are glyphs presented on top of a single image slice in a regular
grid, representing the data given by all sequences available for analysis within a single
grid cell per glyph. With this technique, we present multi-sequential imaging data as
non-spatial data on top of spatial data allowing for the exploration of imaging patterns.

The basis of the Stixels is a radial chart represented in B in Figure 3.2. First, we
place a regular grid on top of the imaging slice where the size of the grid cells is variable
and defined by the radiologist on the fly. Next, we consider every pixel within the grid
cell and calculate the mean value of every sequence. Afterward, we mark the values on
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A B C D

Figure 3.2: In ParaGlyder, we introduce a visualization method using star glyphs to present
multiple multi-modal imaging sequences within one slice. As presented in A, the grid in which
the glyphs are placed is adaptable. In B, the radial boxplot used to create the glyphs is shown,
which appears when hovering over one glyph. C and D show Stixels colored by similarity to
a selected region in two different patients highlighting the capability of showing multi-modal
heterogeneity within the tumor.

every axis within the radial chart presented in B in Figure 3.2. Finally, the marks are
connected and thereby form the Stixel figure.

To enable a more detailed analysis of a grid cell of interest, hovering the presented
Stixels reveals the underlying radial plot as shown in image B of Figure 3.2. In addition,
we also enable the radiologists to probe areas of interest within the medical imaging
data for further analysis. This feature is discussed in more detail in Section 3.2 as it
also enables radiologists to compare the tumor data of different patients with each other.
Furthermore, the Stixels can also be colored, reflecting similarity to a probed area when
probing the data as depicted in image C and image D in Figure 3.2. Radiologists can
use this to analyze the homogeneity of the tumor and how it differs throughout the
whole imaging volume.

Depending on the type of cancer, tumor tissue can be either homogeneous or het-
erogeneous. When comparing image C and image D in Figure 3.2 one can note that
the two tumors differ in their imaging value homogeneity. All Stixels within the tumor,
within the outline marked in D, have a similar shape. In contrast, the Stixels within the
tumor in C are different. Tumor homogeneity is potentially linked to aggressiveness
within the tumor [171]. The Stixels are an easy and potentially effective visualization
to depict homogeneity within the tumor and could therefore influence treatment de-
cisions. Furthermore, they might identify relevant regions within the tumor where a
biopsy should be performed for further tissue analysis.

3.1.2 Sub-Tumor Analysis

In the case of endometrial cancer or cervical cancer, tumor tissue is often quite het-
erogeneous. Tumor tissue homogeneity might be linked to aggressiveness, making it
a vital characteristic to study in cancer imaging research. Besides statistical measures
based on the imaging characteristics of the whole tumor, another way to analyze it is
by deriving sub-tumor parts. Our medical collaborators informed us that tumors of-
ten consist of multiple parts, such as necrotic cores, i.e., parts of the tumor consisting
of dead tissue. Furthermore, the tumor could also be surrounded by inflamed tissue.
These tumor parts could also be linked to the tumor’s aggressiveness and can be used
to predict outcomes and influence treatment decisions.
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Figure 3.3: ICEVis consists of a 3D tumor view and calculated cluster information. A parallel
coordinate plot, a dendrogram, a silhouette plot, and a t-SNE representation of the tumor
segmentation are embedded to support the clustering exploration process.

We introduce an interactive clustering exploration for tumor sub-region analysis in
multi-parametric cancer imaging to analyze such sub-tumor parts. ICEVis (paper D)
enables medical researchers working in cancer imaging research to analyze sub-parts
of tumors. A screenshot of the application is visible in Figure 3.3. Our tool facilitates a
hierarchical-clustering approach to derive up to ten tumor sub-parts displayed in various
linked visualizations. Furthermore, the results can be used in cohort analysis in the
future to investigate if specific patterns can be linked to outcome-related indicators.

3.1.3 Radiomic Tumor Profiling

In addition to the already mentioned methods for analyzing tumor imaging data, ra-
diomic tumor profiling is one of the most promising methods in cancer outcome
prediction-related research based on imaging data. Radiomic tumor profiling is a
method that is based on statistical measurements derived from tumor imaging results
linked to clinical variables to find meaningful predictors. It follows the following steps,
as depicted in Figure 3.4. First, a segmentation of the tumor is needed, as only data
belonging to the tumor should be considered, and typically, the method is applied to
multiple sequences. Then, statistical measurements of different levels are derived from
the segmented tumor in multiple modalities, resulting in various parameters ready for
further analysis. These parameters hold information about the homogeneity of the tu-
mor tissue and more superficial measurements such as the variance or mean value for
each sequence. The next and final step in the analysis pipeline is the correlation of the
derived biomarkers to clinical variables such as survival time or whether the patient
died from active disease.

To support radiomic tumor profiling analysis and, in particular, the analysis of ho-
mogeneity measurements as they might be linked to tumor aggressiveness, we devel-
oped RadEx presented in paper B. RadEx allows medical experts to analyze cohort
tumor imaging data within one application using visual analytics. First, the applica-
tion incorporates pre-processing steps for data cleaning, creating the radiomic tumor
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Figure 3.4: The radiomic tumor profiling pipeline, adapted from Fasmer et al. [41]. The
process begins with MRI data capturing structures of interest. Secondly, a segmentation of
the tumor data is required to calculate statistical features, only taking the target structure into
account. The third step in the pipeline calculates the statistical features that can range from
first-level statistics such as the mean value and the variance of the data up to higher-level
statistics such as the gray level co-occurrence matrix and the gray level runtime matrix. As the
last step, the features are correlated with the clinical outcome variables to find correlations of
interest.

profiling measurements and visual representations for each tumor. Second, it enables
data analysis by providing a visual analytics dashboard. As this method is designed for
analyzing cohort data, we describe further details of the approach in Section 3.2.

3.2 Multi-Patient

While treatment decisions and diagnoses are primarily based on the data of single pa-
tients, research often relies on cohorts of patients and therefore involves the analysis of
multi-patient data. Within paper A which presents ParaGlyder, we introduced a novel
technique to probe the imaging data and visualize the probing result in a radial box-
plot as visualized in Figure 3.5. We enable the radiologists to place one or two spheres
within the medical imaging result and analyze the voxels located within the placed
spheres. Radiologists can now compare the data within the tumor and its surroundings
or data describing the tumor of different patients. In paper B, which presents RadEx,
we presented a multi-parametric tumor analysis platform for analyzing tumor texture
features of medical cohort data.
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A B C D

Figure 3.5: The probing interaction implemented in ParaGlyder (paper A) performs a digital
biopsy within the patient’s imaging data. In A, two spheres are placed within the imaging data
of one patient probing the tumor and its surroundings. We present the resulting radial boxplot
in B. In C, an additional sphere is placed in the tumor data of another patient. D presents the
result of comparing the tumor within the first patient (A) and the second patient (C).

3.2.1 Interactive Probing for Tumor Pattern Analysis

Analyzing tumor patterns within a patient and across multiple patients is an essential
part of gynecological cancer imaging research. Such patterns might help character-
ize tumors based on imaging, leading to better outcome predictions. Comparing the
imaging statistics of the tumor in all sequences within a defined probing area forms a
digital biopsy of the data presenting an imaging footprint of the tumor and its surround-
ings. With this feature, colleagues who work in machine learning mentioned they could
use the feature to find out which imaging sequences are the most important for devel-
oping automatic tumor segmentation methods. For this reason, this contribution also
addresses multiple audiences, which we will discuss further in Section 3.3.

Besides analyzing the data within one patient, the probing feature within ParaGly-
der can also be used to compare the imaging characteristics of tumors between two or
more patients. However, this approach faces one challenge: MRI data is difficult to
compare as data ranges vary more than CT data. Therefore, we decided to use pharma-
cokinetic parameter maps provided by our medical collaborators. These maps contain
physiological parameters such as the blood flow within the tissue and make the data
comparable. Our approach also works with standard modalities but makes the compar-
ison between patients less accurate and more dependent on overall shape differences
within the radial boxplot and less on absolute values.

3.2.2 Multi-Parametric Tumor Analysis Platform

As mentioned in Section 3.1.3, we developed RadEx to enable the analysis of multi-
parametric tumor data across a cohort. In this section, we focus on the visual analytics
platform we developed. RadEx is presented in Figure 3.6 and consists of three major
parts. A scatterplot presents every patient as a circle with a glyph representing the
patient’s tumor. A slice view is shown as a tooltip when hovering one of the patient’s
circles, including additional slice views for every imaging sequence available. While
hovering over the patient’s circle, the slice views are scrollable enabling viewing the
whole image stack. At the bottom center, we present all available clinical parameters in
either a unit chart or a parallel coordinate plot, depending on whether it is categorical
or numerical data. We have a settings section on the right that allows the user to make
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Figure 3.6: RadEx consists of three different components: the scatterplot (center top), the
parameter visualizations (bottom row), and the settings section (right panel). The scatterplot
represents all patients in the cohort visualized by a circle. Within these, a glyph represents the
tumor of the patient. All important clinical variables are visualized in either unit charts or a
parallel coordinate plot. On the right relevant settings and options are available.

group selections or change the scatterplot settings. RadEx allows group selections in
every visualization to enable hypothesis formulation and checks. One novel feature
which has not been used before in similar analysis platforms is the implementation of
a 1D dimensionality reduction used for one axis of the scatterplot. This allows the
radiologists to use multiple radiomic tumor features of interest within one scatterplot
axis. In contrast, the other axis can be used to show, e.g., clinical outcome-related
parameters of interest. Compared to a 2D dimensionality reduction, the benefit of our
approach is that one axis still has clinical meaning and a meaningful value range.

One hypothesis that the medical experts involved in the development of RadEx
wanted to investigate within our application was the possible connection between the
homogeneity of the tumor and the survival of the patient. The two parameters are be-
lieved to correlate with each other. One exciting aspect of this analysis is that many
parameters measure the homogeneity of tissue data within radiomic tumor profiling.
Therefore, we decided to implement an animated transitioning method when selecting
the parameters to present on the scatterplot axes. One example is presented in Fig-
ure 3.7, the change of the data is animated between states A and B. The radiologists
can now define groups of interest and see how the data changes when analyzing dif-
ferent homogeneity measurements. Overall, RadEx received positive feedback from
the medical experts involved in evaluating the application. As we further discuss in
Section 4.2, it is currently being used in research practice at another institute.
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A B

Figure 3.7: Changes of the scatterplot axes within RadEx are animated, and in this example,
A represents the state before and B after the change. We animate the transition to simplify the
perception of how the data changed from A to B.

3.3 Multi-Audience

Medical applications are often developed for a very targeted specialized audience, in
our case, medical researchers. Nevertheless, this does not always have to be the case, as
we show with our application ParaGlyder, which further targets machine learning ex-
perts. By involving experts of each specific field in the development of the application,
we were able to provide a helpful tool, as demonstrated in the evaluation Section A.6
of ParaGlyder. Furthermore, when communicating medical or general research results,
the target audience ranges from science peers to the general public, making the task
even more challenging. Paper C presents ScrollyVis to fulfill these communication
goals.

3.3.1 Similarity Visualization for Parameter Exploration

We introduced the similarity visualization in ParaGlyder to show areas of interest for
different target audiences. The similarity visualization is based on the probing mecha-
nism we discussed in Section A.4. The user first defines an area of interest, for example,
within tumor tissue. We then define a new volume with the same extent as the imag-
ing volumes given, and for each voxel within this volume, we calculate how similar it
is to the probed area. Next, we take the multi-parametric Euclidean distance between
the original voxel and the mean value within the probed area. This results in a new vol-
ume where each voxel value reflects how similar it is in the multi-sequential data space
to the multi-sequential probing area of the user. Finally, we present the similarity vol-
ume by coloring it with the Viridis colormap, as we did before with the Stixels 3.1.1.
Several results of this approach can be seen in Figure 3.8.

The radiologists use this feature to analyze the tumor’s shape and extent. By placing
a sphere within the tumor, the similarity visualization highlights all similar regions in
the images, such as the whole tumor, presented in part A of Figure 3.8. Furthermore,
cancer spread, also known as metastases, can share the same imaging characteristics as
the tumor leading to highlighting in the similarity visualization as shown in Figure 3.8
A.

Machine learning experts who research how to segment tumors automatically are
interested in finding the sequences with the most prominent information about the tu-
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A B C D

Figure 3.8: The similarity visualization in ParaGlyder enables different target audiences the
analysis of their tissues of interest. For example, radiologists can analyze the tumor and can-
cer spread (A). Machine learning experts can use the same functionality to determine which
imaging sequences best describe the tumor (B). Users can select which imaging sequences are
part of the similarity calculation. An image presented in B will be displayed when selecting
those who do not provide sufficient information to describe the tumor. Finally, neurological
cancer imaging experts may find inflammatory regions within the brain after tumor removal
surgery (C) and (D). Inflammation occurs when the body sends out first responder cells to cure
an injury or to fight agents like viruses.

mor. Therefore, we enable them to select and de-select which sequences should be
considered for the similarity calculation. Using only the essential sequences in the
calculation, the tumor is still nicely visible. However, when too few sequences or se-
quences that do not describe the tumor sufficiently are selected, a result as visible in
Figure 3.8B is displayed. In this example, the similarity visualization is not exclusively
highlighting the tumor anymore as there is not enough information to distinguish it
from the surrounding image information.

Neurological tumor imaging experts are, besides studying brain tumors, interested
in visualizing inflammatory regions within the brain, which can occur after surgery to
remove the tumor. We present such a case in Figure 3.8 C and D. In this case, the simi-
larity visualization has the benefit of being able to differentiate between data represent-
ing the skull and data representing the inflammatory region when placing the probing
sphere in the region of interest. By using the data of all sequences, differentiation is
possible.

3.3.2 Scientific Scrollytelling for Diverse Audiences

With ScrollyVis (paper D), we introduce a novel approach for authoring, editing, and
presenting data-driven scientific narratives. Our system connects story authors and
story viewers. As shown in Figure 3.9, we enable authors to edit their stories in our in-
teractive ScrollyVis story editor. The editor, in turn, creates an XML representation of
the created story and hands it over to the ScrollyVis compilation pipeline. This pipeline
provides a ready-to-deploy web page that can finally be presented in any standard web
browser. Furthermore, the generated code enables dynamic stories where the view-
ers can decide which path they would like to traverse. Therefore, our system allows
fast, incremental, and reversible scrollytelling experiences. It also provides the oppor-
tunity of building dynamic narratives where the viewer is involved in story traversing
decisions.
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Figure 3.9: ScrollyVis consists of three parts namely, story editing, story compilation and story
presentation. Authors edit their story, afterwards the story gets compiled within the ScrollyVis
system to a ready-to-deploy website, and finally the website is presented in any standard web
browser to the story viewer.

Story Editing

With ScrollyVis, we enable data types that have not been used before in scrollytelling
editors and allow for rapid and intuitive creation of stories. The editor interface is
depicted in Figure 3.10. Novel media types include volume visualization, slice visu-
alization, and surface representations. In comparison to traditional node-link diagrams
as also used by well-known editors such as Twine [161], our editor presents the story
author with previews wherever possible. This is reminiscent of a storyboard design
where authors would sketch scenes before they are finally filmed, animated, or pro-
grammed. The previews are also interactive, e.g., a surface visualization can be turned
and zoomed by the author to define the viewport they would like to present interac-
tively. All parameter modifications update the previews on the fly, and therefore the
author always knows what the result on the deployed website will look like.

By defining different pathways within the editor, namely a main path and a sub-path,
we allow for intuitive layering of content. Content replaces preceding content while
traversing the main path (the blue connection between nodes see Figure 3.10). Con-
necting nodes on the sub-path presents content on top of the already displayed content.
Story content can now be presented dynamically without complex linking interactions
within the editor. One additional key aspect unique to ScrollyVis is the integration of
decision nodes where the story path can split into several different directions. This con-
cept has not been shown in combination with scrollytelling experiences before. Within
the editor, a decision node allows the author to define a story splitting point. One path
leads into such a decision node, but several paths emerge, depending on the number of
answer possibilities. A split path can stay split and present different stories in parallel;
the path can join a common path at some point or lead to dead ends.

Story Compilation

After the editing, we introduce the story compilation, split into two different steps. The
first step deals with the story contents, and the second step with the story transitions.
At the end of the story compilation step, the website is ready-to-deploy in HTML, CSS,
and Javascript code. This allows for further editing of web developers and customiza-
tion if desired. Our compilation phase is unique because the websites we create are
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Figure 3.10: Screenshot of the ScrollyVis editor. Various media formats are supported and can
be layered to combine them. Decision nodes allow the story flow to split into different paths
and a context menu allows for quick and intuitive story editing.

not static. The story flow defined within the created website is dependent on the story
viewer interaction. If a story contains decision nodes, the traversal of the representing
code must be flexible as well. We solved this by defining the story traversal on the fly
within the code in real-time while the story viewer consumes the narrative. Based on
the story graph defined by the author, we create code that handles the transitioning be-
tween the contents. When traversing on the main path, previous nodes will be blended
out, and new ones will be blended in. While traversing on the sub-path previous nodes
will not be blended out, and new content will be presented on top of the old one.

Story Presentation

Finally, we can present the created stories in any standard web browser. ScrollyVis
enables the traversing of dynamic narratives and presents the story viewer with an ab-
stract visualization of the story to keep track of the traversed path. With ScrollyVis, we
introduce story node transitions based on the content presented. We feature adaptive
transition methods for complex content like map views, direct volume rendering, slice
views, and 3D surface visualizations, including camera movement, parameter adaption,
and slice index changes. This allows for the easy and intuitive creation of animations
by just defining critical points within the editor. In addition, we use opacity change as
a transition method for standard content like images and videos. Finally, we enable dy-
namic narratives by defining successor story nodes on the fly while the story viewer
consumes the story.

Kosara [88] discussed that it is vital for scrollytelling viewers to keep in mind the
overall story length and where within the story they are currently. Therefore, we in-
troduce an abstract depiction of the overall story within the final website where the
viewer can see the current position within the story and the decisions they have made.
The story tree view also replaces the standard scrollbar as it does not have any mean-
ing within dynamic scrollytelling experiences. We present an example in Figure 3.11.
Left, the story within the editor is presented, and right, the tree on the final website is
shown.

With ScrollyVis, we introduce an editor for dynamic scientific scrollytelling, which
allows experts from various fields to tell their research questions or outcomes in an
appealing way to target other scientists and reach the public. Furthermore, ScrollyVis
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Figure 3.11: Example showing the story tree view of a created story. On the left the story in
the ScrollyVis editor is presented and, on the right, we show the resulting story tree on the
final website.

can also be an interesting application for scientists and everybody who would like to
tell a story on the web.
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Chapter 4

Demonstration and Use in Practice

With our work, we contributed to the field of medical visualization and focused mainly
on application-driven research. In this chapter, we reflect on using our tools in practice
and the steps we carried out to get them there. Furthermore, we discuss how specific
techniques we introduced are planned to be used and evaluated in the future.

Main Tumor

Metastases

3D VIBE Visualization Similarity VisualizationA B

Figure 4.1: Our introduced similarity visualization has the potential to highlight the primary
tumor as well as metastases within the same imaging volume. On the right, the original 3D
visualization is shown. After probing the data with our probing interaction, the right visual-
ization presents the similarity of each voxel within the volume to the probed area using the
Viridis colormap and opacity adjustments.

4.1 Similarity Visualization

Paper A (ParaGlyder) introduced two different visualization methods to work with
multi-modal medical imaging data. Our clinical collaborators were especially inter-
ested in the similarity visualization. We identified cases where the similarity visual-
ization revealed the tumor and the associated metastases in the same MRI image. Our
collaborators told us that they had never seen such a clear representation of metas-
tases and the tumor before, without prior segmentation of the structures. An example is
shown in Figure 4.1. Our collaborators are interested in exploring the possible impact
further in a cohort of patients. We received similar feedback from tumor imaging re-
searchers from the Netherlands Cancer Institute (NKI) when presenting the application
at their facility.

To evaluate the impact of our approach, we are planning to conduct a study on
similarity visualization and its potential for clinical impact. The study is planned at the
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Figure 4.2: We improved the original tumor glyph design used in RadEx with a new design
visible on the right side of the image. We create the new glyph by taking the outline of the
tumor data across all slices, coloring it with the plasma colormap by the depth within the
volume, and stacking the lines. This allows for complete tumor visualization and visualizes
the size and shape of the tumor.

Mohn Medical Imaging and Visualization (MMIV) center in Bergen, Norway. It will
include several patients with metastases in the same imaging volume as the primary
tumor and several patients without. The goal is to define the extent to which similarity
visualization can consistently highlight metastases in the same imaging volume as the
primary tumor across patients. Therefore, several radiologists will be invited to use the
tool and afterward define if there are metastases in the same imaging volume, where
they are located, and how many are present. The results will then be compared to the
initial reading of the same imaging volume and with the outcomes of surgery which is
the standard procedure for endometrial cancer patients.

The potential impact of the similarity visualization is manifold. We see the most
significant potential in highlighting metastases close to the tumor. If such metastases
are present, they must be considered during surgery, and a biopsy is typically carried
out. Currently, small metastases are hard to see on the MRI images as the resolution is
also limited. Typically, PET-CT imaging is used to define if the tumor has spread and
confirm metastasis throughout the whole body. This imaging technique uses radiation
and may be harmful to the body if carried out too often. Metastases in lymph nodes
near the tumor indicate a spread throughout the whole body. In case the similarity
visualization can be used to define if there is a spread in the close circumference of
the tumor, this could also be used as an indicator if a PET-CT scan is necessary or not.
Our collaborators generally see great potential in the similarity visualization shown in
paper A, ParaGlyder, and plan to evaluate the potential further.

4.2 Integrated Visual Exploration of Multiparametric Studies

We developed the application RadEx (paper B) in close collaboration with experts in
cancer imaging research at the MMIV in Bergen, Norway. The application was tailored
to their needs and expectations and fulfilled the requirements we defined together. This
is also reflected in the results of the user evaluation we conducted together with the
experts involved in developing the application. We involved four additional experts
in evaluating the usefulness of our approach and received positive feedback. Applica-
tions developed for a targeted use case, endometrial cancer imaging research, are often
difficult to apply within other institutes or other datasets as they are within a Ph.D.
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OLD

NEW

Figure 4.3: The parallel coordinate plot and unit chart visualizations have been extended by
split box plot visualizations and bar charts to summarize group information. This allows for
effective group comparison while still retaining the same interaction possibilities as before.

project often developed as a prototype application serving specific needs. In the case
of RadEx, radiologists at the MMIV researching cervical cancer and researchers of the
Netherlands Cancer Institute (NKI) working on prostate cancer data also showed inter-
est in working with RadEx. We assessed the customization needed to make it ready
to work with the new data and at another facility and implemented them. This section
discusses which steps were necessary to make the tool usable for new use cases.

In general, the analysis workflow in RadEx is split into two phases: the data quality
check and the search and query phase. Phase one starts with pre-processing the data.
In this phase, radiomic tumor profiling data is calculated, and a tumor thumbnail image
and glyph are created. We adapted the glyphs to be more representative and show more
information about the tumor. In Figure 4.2 the original version is visible on the left and
the new design on the right. The first glyph design represented a slice of the tumor in
one of the MRI sequences at the slice position where the tumor has the largest extent.
This represents the shape and the size of the tumor. As we have the 3D data available
and the shape of the cancer is unique for each patient, we introduce a new glyph design
which is calculated as follows: 1) The outline of the tumor is calculated in each slice, 2)
the outlines are colored using the magma colormap which represents the depth within
the volume and finally 3) the outlines are stacked on top of each other. This glyph
design allows them to see the tumor shape and size in 3D and delivers more contextual
information than the initial glyph design. The pre-processing pipeline worked without
changes for both the cervical and prostate cancer data to accommodate different data.

After adapting the pre-processing phase, we also made the visual analytics appli-
cation more flexible to suit the use cases of the NKI and other institutes. As a first
step, we increased the flexibility of axis data selection. We now enable the selection of
dimensionality reduction for each axis independently or combined as a 2D dimension-
ality reduction. Furthermore, both axes can also show single parameters. This supports
a broader range of analysis tasks and better suits the needs of different radiologists.
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Figure 4.4: During a meeting with the Netherlands Cancer Institute (NKI), the improved ver-
sion of RadEx was used in a live setup. A published hypothesis has been validated on the data
of the NKI. The researchers of the NKI found the application effective and easy to use and will
use the tool in the future to work with their prostate cancer data.

In addition to the scatterplot, we also adapted the bottom section of the application,
namely the parallel coordinate plot and the unit chart section. First, we enable the users
to select which data they want to see in these sections. For our initial use case, data
availability was limited. At the same time, we were able to show all available data.
However, too much data was available for the NKI use case to visualize effectively
without scrolling. To address this, we implemented data selection settings that differ-
entiate automatically between categorical and numerical data. In addition, we inte-
grated boxplots in the parallel coordinate plot to enhance group comparison and added
bar charts to the unit charts. The results are visualized in Figure 4.3. These features
are mentioned as future work in the original publication as our medical collaborators at
MMIV already expressed interest in improved group comparison capabilities.

The researchers at NKI currently use RadEx to analyze prostate cancer data and
aim to find new imaging biomarkers to include in the prostate cancer diagnosis staging
process. One indicator of the usability and usefulness of our application was the live
usage of the tool during a cancer imaging research meeting at NKI to test a hypothesis.
Figure 4.4 shows a screenshot of this meeting.

4.3 Co-Registration Validation

Radiomic tumor profiling, as discussed in RadEx, is shown to be an effective indicator
for survival in both cervical and endometrial cancer imaging [41, 62]. To perform
such an analysis, the tumor must be segmented. This process can be performed either
manually or with machine learning algorithms. In most cases, the segmentation is
only available on one modality since a manual segmentation is rather time-consuming,
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Figure 4.5: ICEVis is primarily designed for the analysis of tumor sub-parts that might be
linked to interesting regions within the tumor. However, this case shows that it can also find
incorrect co-registrations, as seen in the parallel coordinate plot and the imaging data. The two
clusters differ significantly in one of the sequences and one of the coordinate axes. Further-
more, in the slice view, the viewer can see that the segmentation mask is misplaced.

and the machine learning algorithms are, in their current state, not well suited for a
transfer learning approach. As the radiomic tumor profiling data of more than one
sequence might be necessary to find predictive patterns, the medical images must be
co-registered [62]. Co-registration aligns the images, so they perfectly fit on top of
each other. This enables the usage of only one tumor mask for several co-registered
imaging sequences or modalities.

Co-registration is not an easy task to carry out automatically as the medical se-
quences differ in contrast and image content. There are many automatic methods
to solve the problem, but they are often not working correctly or deliver unsatisfac-
tory results. A landmark-based method, including manual steps, can be used in such
cases. However, before putting the human in the loop, one must determine if the co-
registration has gone wrong. This can again be performed manually by visually inspect-
ing the results or automatically. There are different strategies for finding cases where
the co-registration has gone wrong, and some work better than others. We can also
identify co-registration issues with our ICEVis application (paper D). Besides defin-
ing interesting pathological patterns within the tumor, ICEVis shows a clear pattern in
the parallel coordinate plot of the given multi-sequential data in cases where the co-
registration did not work. We present such a result in Figure 4.5. This pattern inspired
us to tackle the co-registration problem in a follow-up project we are currently working
on. We will use the segmentation mask aligned with one of the available sequences as a
landmark source and align it with the other imaging sequences by rotating and translat-
ing it. This allows us to perform a landmark-based co-registration without the medical
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expert needing to place landmarks on medical images, which is an untypical work for
them.

After discussing with our medical collaborators, we know that movements during
the imaging process cause the images not to be perfectly aligned. This includes moving
the body within the scanner, inducing translation and rotations, bowel movement, and
bladder filling during the investigation, further shifting structures of interest. However,
as the tumor is a relatively hard tissue, the tumor itself will not be deformed signifi-
cantly. Keeping this in mind, we know that the tumor segmentation mask does not have
to be changed in its shape to be applied to other modalities but must be shifted and ro-
tated. We follow up on this hypothesis in future work and hope to find a satisfactory
solution across imaging sequences.

4.4 Dynamic Narratives for Scientific Scrollytelling

Our research on dynamic narratives for scientific scrollytelling is practically-oriented
work. We aimed to enable researchers from various areas of expertise to tell stories
about their science. We designed ScrollyVis as an abstract extensible system and re-
alized it with our ScrollyVis editor. ScrollyVis can facilitate the creation of a wide
variety of stories in various domains. In Figure 4.6 we present snippets of different sto-
ries we created together with experts in their respective fields. For example, as shown
in Figure 4.6 A, we created a story with an expert in anatomical education research.
The group she is working with has surface scans of various bones uploaded to Sketch-
fab, a platform providing surface rendering capabilities and annotations. Our approach
also delivers the possibility of creating a dynamic story about the data. The profes-
sor can add auditive narrations for specific bones they would like to describe in detail.
Furthermore, a quiz about specific parts of the bone can also be included. The ex-
pert creating the story with us will use ScrollyVis to analyze further the differences
in learning outcomes when using a free exploration form as Sketchfab provides or a
guided scrollytelling approach as we introduce ScrollyVis.

Figure 4.6 B presents a story that we created together with an osteological expert
who works at the natural history museum in Bergen. The story’s topic is the polar bear.
Specific about this story is the usage of direct volume rendering techniques, making it
unique and different from other scrollytelling approaches available on the web. With
ScrollyVis, storytellers can quickly create direct volume renderings, switching between
a 3D visualization of the data or a slice view-based one. The expert particularly liked
the possibility of using stories created with ScrollyVis to accompany museum exhibi-
tions where visitors can share their experiences with others and gather more insight into
the skulls while visiting the museum. Another significant benefit is that creating a story
with ScrollyVis does not involve multiple people like developers and designers. There-
fore, our approach is cost-efficient as the scientist can already create appealing stories
alone.

In part C of Figure 4.6, we present two snippets of a story we created together with a
meteorological visualization expert. Hurricane data is presented on the left, and there is
hail data on the right. This shows how versatile our approach is as our expert provided
the data, and we adapted the map view of ScrollyVis specifically to present their data.
The collaborating expert plans to use ScrollyVis to research communication methods
and their effect on the public.
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A B

C D

Figure 4.6: Four different story examples we created together with experts of the various fields.
A presents a story about anatomical education facilitating the animated camera transition be-
tween different views. B is a story about the polar bear by an expert in osteological research
and presents a 3D iso-surface visualization of the bear’s skull and a slice view of the same
skull. C presents two snippets of a story we created with a meteorological visualization expert
presenting hurricane and hail data. Finally, D presents a story by the Economist about archae-
ological science where we show that our editor can reproduce the story without the need for a
team of developers.

Medical Narratives

Medical narrative visualization has gained interest in recent times, and target au-
diences of such narratives include patients, their relatives, and people interested in
medicine [102]. After presenting ScrollyVis on different occasions, two different col-
laborations to use and further develop the features of the ScrollyVis editor and the
story compilation were established. Two example stories that will be created using
ScrollyVis are presented in Figure 4.7.

The first story is called: "Is there a tornado in Alex’s blood?" developed by a mas-
ter’s student in close collaboration with the Otto von Guericke University in Magde-
burg, Germany, and the University Leipzig center for heart-related diseases. The story
is about developing an aneurism in the bloodstream of an artificial patient called Alex.
The story’s target audience consists of patients and people who would like to learn
more about the disease, the factors that lead to the formation of an aneurism, and pre-
vention. In creating the story, the ScrollyVis editor will be extended with additional
functionalities, including creating slide-like presentations within a scrollytelling-based
presentation format. The story will be presented at the "Lange Nacht der Forschung" in
Leipzig, Germany, and the educational effect of the story will be evaluated during the
exhibition. This demonstrates that ScrollyVis might impact patient and public commu-
nication and serve research and science dissemination purposes.
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Figure 4.7: Two stories about common diseases which aim to teach a general audience. Both
stories include medical visualization and facilitate guided dynamic narratives with the goal of
increasing learning outcome over basic non interactive story design.

The second story presented in Figure 4.7 focuses on electroconvulsive therapy
(ECT) used in cases of severe depression and is developed by a master’s student. ECT
therapy is an active research area at the MMIV. It is an effective but controversial ther-
apy where electrical currents are applied to some regions of the brain to relieve patients
of severe depression [14, 116, 166]. To enable patients to form an informed decision
about this treatment, Sofia is creating a story about the therapy in close collaboration
with researchers from the MMIV. She will evaluate how different story components af-
fect the experience of the story viewers. The research goal is to find the most effective
ways to convey information about the therapy, so readers are adequately informed but
not misled.
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«You look at where you’re going and where you are and it never makes sense, but then

you look back at where you’ve been and a pattern seems to emerge.»
Robert M. Pirsig
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Chapter 5

Conclusion and Future Work

We scaled up medical visualization in multi-modal, multi-patient, and multi-audience
dimensions with our work. We contributed three design studies focusing on different
target areas of medical visualization and one interaction and presentation technique for
scientific outreach. Visualizing multi-modal imaging data with more than three dimen-
sions without dimensionality reduction is still a challenging problem and an open re-
search field. With our Stixels, we contributed a visualization technique based on small
multiples and radar charts. Our Stixels enable researchers to view the imaging data of
several modalities, in our case, seven on one slice, without juxtaposed views. This al-
lows pattern analysis to find heterogeneous and homogeneous regions within a tumor
and inform treatment decisions. We further contribute an interactive probing interaction
that facilitates a digital biopsy of the imaging data and can be used in a similarity vi-
sualization highlighting tumor tissue and metastases in the same imaging volume. The
same feature allows for examining inflammatory brain regions and machine learning
experts to evaluate the contribution of different imaging modalities to the segmentation
of tissue belonging to the tumor.

Next, we contributed an interactive analysis platform for radiomic tumor profiling
data on a cohort level consisting of several linked views. Using a 1D t-SNE allows an-
alyzing the high dimensional radiomic tumor profiling data while still having one axis
of the scatterplot free to present single clinical variables. This allows for interactive
and practical hypothesis generation and hypothesis validation within a single applica-
tion. We further retain the imaging data context by allowing radiology researchers to
display every individual tumor in all available imaging modalities on demand. Our ap-
plication RadEx was further adapted to not only be used for endometrial cancer but
also for cervical cancer and in another research institute in the Netherlands for prostate
cancer. This shows us the practical relevance of our approach. In addition, we focused
on sub-tumor analysis using all available imaging modalities of tumor regions within
the endometrium in a hierarchical clustering approach. The first results show good
alignment between discovered clusters and interesting histopathology regions, such as
a necrotic core within the tumor and a potential inflammatory area at the tumor bor-
der. Our final contribution proposes a data-driven narrative editor. It allows for the
efficient creation of dynamic narratives to allow for immersive scientific scrollytelling
on the web by employing a no-code paradigm. ScrollyVis allows scientists and the
public to create stories about any topic of interest and creates a ready-to-deploy scrol-
lytelling experience without writing code. The presentation of ScrollyVis on different



5

50 Conclusion and Future Work

occasions showed us that there is a great interest in using such tools. Purposes include
anatomy education, education about meteorological phenomena, osteological research
dissemination, medical visualization narratives, and the creation of stories about re-
search results to a general and specific audience.

This thesis delivers a new answer to visualizing multi-modal spatial data for joint
exploration and analysis. We introduced a novel imaging probing interaction helping
to find global patterns, especially interesting when applied to cancer imaging data. Fur-
thermore, the novel application of a 1D t-SNE dimensionality reduction allows present-
ing several relevant imaging markers on one scatterplot axis while the other axis still
retains a meaningful representation of clinical parameters. With our ScrollyVis contri-
butions, we combined scrollytelling and scientific storytelling. We provided a powerful
editor for scientists to distribute their work in an intuitive and accessible way to their
peers and the general public. The work in this thesis revealed that there are more ques-
tions to answer than before we started with our research. Therefore, in this section of
the thesis, we elaborate on potential future avenues that could potentially impact the
work of the visualization community.

First, the similarity measurement and visualization we used in ParaGlyder could
potentially help define a general measurement of similarity between different patients.
Besides radiologists who examine the imaging data of a tumor, general practitioners
could benefit from comparing patient histories to form informed decisions about the
treatment of the patients and the expected quality of life after treatment. Comparing
patients on a cohort scale helps find intriguing patterns and brings the insights back
to the level of an individual patient. Cohort analysis is often done in a research con-
text, and after publication, there are opportunities for clinical impact by revising treat-
ment guidelines. More detailed predictions about possible treatment outcomes could
be formed by directly comparing patients with similar tumors within the same hospital,
geographical region, and perhaps even of similar age.

In recent research, global tumor characteristics are an effective measure for risk
stratification [60]. ICEVis (paper D) shows a potential use case of applying hierarchical
clustering on multi-parametric medical imaging data and finding potentially interesting
regions within the tumor, such as a necrotic core of inflammatory regions. Further-
more, by correlating the clusters with the result of a microscopic investigation of the
removed tumor, we could validate if our findings correlate in the future. This could aid
more personalized treatment strategies and influence either to which extent the tumor
will be removed or, in the case of cervical cancer or prostate cancer, influence treatment
decisions if surgery is performed or not. Furthermore, patterns found with hierarchi-
cal clustering could be analyzed on a cohort level and might be correlated to patient
survival.

Radiomic tumor profiling is a promising predictor of survival in both endometrial
cancers and cervical cancer patients [41, 62]. Predictive imaging biomarkers have been
discovered by analyzing whole tumor characteristics based on first- and second-order
statistics. With RadEx, we contributed to interactive visual analysis of radiomic tumor
profiling information widely employed in cancer research. In addition to calculating
these parameters, these textural features should also be visualized concerning the pa-
tient’s imaging and clinical data. The radiologist should be able to see the textural
features of the tumor beyond reading one value derived by the radiomic tumor profiling
analysis.
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As the last avenue of future work, scientific storytelling is still a wide-open field
with increased attention to visualization for communication in recent times. With
ScrollyVis, we present an essential step towards making dynamic storytelling in a scrol-
lytelling form more widely available. In the future, we would like to enhance our editor
further to make it more flexible and generally applicable. Examples would be the free
placement of elements within the webpage and combined previews of nodes. Every sci-
entist should be able to tell a story about their research for different audiences like their
peers up to a vast audience such as the general public. The recent pandemic showed us
how vital science communication is to present different concepts behind scientific find-
ings. Making research outcomes available in an engaging and meaningful way is just
the beginning of this field of research.
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Abstract

Multiparametric imaging in cancer has been shown to be useful for tumor
detection and may also depict functional tumor characteristics relevant for
clinical phenotypes. However, when confronted with datasets consisting of
multiple values per voxel, traditional reading of the imaging series fails to
capture complicated patterns. These patterns of potentially important imag-
ing properties of the parameter space may be critical for the analysis, but
standard approaches do not deliver sufficient details. Therefore, in this pa-
per, we present an approach that aims to enable the exploration and analysis
of such multiparametric studies using an interactive visual analysis appli-
cation to remedy the trade-offs between details in the value domain and in
spatial resolution. This may aid in the discrimination between healthy and
cancerous tissue and potentially highlight metastases that evolved from the
primary tumor. We conducted an evaluation with eleven domain experts
from different fields of research to confirm the utility of our approach.

A.1 Introduction

Multiparametric medical imaging scans are commonly used in screening procedures
and in targeted diagnostics. Basing decisions on the analysis of these datasets is not
an easy task and often involves visual inspection of different juxtaposed representa-
tions [40]. Multiparametric datasets are generated in medical imaging by, e.g., Mag-
netic Resonance Imaging (MRI) scanners, by varying acquisition parameters result-
ing in imaging data with varying contrasts. In the analysis of medical imaging data,
the main task is usually to identify discernible patterns to distinguish pathologic from
healthy tissue, and identify, e.g., malignant tumors. The identification of metastases,
likely to share characteristic imaging properties with the primary tumor, may be diffi-
cult to spot only using one modality, although identifying them at primary diagnostic
work-up is essential to develop more tailored and targeted treatment strategies in var-
ious cancers. In order to improve the workflow of tumor diagnosis and metastases
identification, we have developed a tool for analyzing multiparametric medical imag-
ing data together with gynecological cancer, machine learning and neurological cancer
research experts. By employing different views displaying multiparametric data at dif-
ferent levels of detail, we can present imaging data without having to visually compare
several modalities in side-by-side views. We enable highlighting of target structures,
based on multiparametric similarity, which was not possible before. Medical experts
are used to working with 2D slice views. Overlaying multiparametric data on top of
these views produces insights which are easy for them to put into a spatial context.
Showing multiparametric images in one view reduces the cognitive load and allows the
medical experts to see the relevant information at a glance. Our main contributions are
the following: (1) We present visualizations that remedy the trade-offs between reveal-
ing details in the multiparametric value domain and spatial resolution by introducing a
multiparametric star glyph map-based visualization. (2) We present an interactive anal-
ysis application primarily targeting cancer imaging, as well as additional workflows
in different application areas. (3) We evaluate our system with eleven experts using
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Figure A.1: The ParaGlyder prototype application, featuring a subject overview (A), central
view (B), Stixels view (C), and radial boxplot view (D).

the System Usability Scale (SUS) [17] and a qualitative evaluation to demonstrate the
utility of our approach.

Modern imaging techniques are routinely used at many centers in the preoperative
diagnostic work-up in endometrial cancer. Imaging markers derived from these ad-
vanced MRI techniques have been shown to be linked to endometrial cancer subtype
and stage [7, 40, 55–57]. According to previous findings, low tumor blood flow and
a low rate constant for contrast agent intravasation, meaning the backflow of injected
contrast into the close vessels, based on dynamic contrast-enhanced (DCE)-MRI, are
associated with high-risk histologic subtypes and poor prognosis. Gathering informa-
tion from parametric maps based on DCE-MRI is usually done using juxtaposed images
of the same slice in the different modalities. These maps are derived from a single dy-
namic acquisition and are therefore co-registered by nature. Examining the images in-
volves comparing the images mentally or by using a manually placed region of interest
(ROI). If advanced imaging methods can be utilized to validly predict the aggressive-
ness of a tumor, this could lead to better risk-stratified treatment algorithms that may be
beneficial for the patients. Less invasive treatment regimens may then be given in low-
risk patients, and the more invasive treatments can be reserved for high-risk patients in
whom the expected survival benefit justifies the increased side effects.

A.2 Related Work

Lawonn et al. [95] provide an extensive overview of different visualization techniques
for multimodal medical imaging datasets. Gleicher et al. [49] introduced a taxonomy
of visual comparison approaches and surveyed existing methods according it. Friendly
et al. [43] proposed radial boxplots, as a means to visualize data variations. Ropinski et
al. [133] provide a thorough overview of different glyph-based visualization techniques
in the field of multivariate medical data visualization. Wickham et al. [169] introduced
a visualization technique called glyph maps. Opach et al. [115] described that the ef-
fectiveness of polyline versus star glyphs is task-dependent. The effective combination
of star glyphs presenting non-spatial data and geospatial data has been demonstrated
by Friendly et al. [43] and more recently by Jäckle et al. [66]. In contrast to this, we
use star glyphs to present an abstract version of multiparametric spatial data on top of
spatial data. Smit et al. [146] presented a method to spatially query data by placing a
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sphere in a 3D view, and interaction techniques to effectively place spheres in volume
renderings [145]. Bruckner et al. [18] introduced a probing tool for enabling visual
queries. Mlejnek et al. [105] presented interactive glyphs for probing tissue character-
istics in medical data. In contrast to these approaches, we provide a probing interaction
that acts like a digital biopsy of our multiparametric medical imaging datasets. More
closely related to our approach, Stoppel et al. [150] used small multiples to visualize
spatio-temporal data in a spatial context. Malik et al. [101] introduced a comparative
visualization technique that visualizes up to five modalities together in one view. Jöns-
son et al.[74] presented a visual environment for hypothesis generation using spatial
and abstract data. In contrast to these related publications, our approach enables the
exploration and analysis of multiparametric medical imaging datasets of more than five
modalities. We provide targeted functionality for the analysis of pathology, which al-
low for inspection of the multiparametric imaging data in linked spatial and non-spatial
data visualizations.

A.3 Requirement Analysis

Following the nested model for visualization design by Munzner [108], we charac-
terized the problem domain. To meet the requirements and the demands of the target
audience, we consulted experts in gynecological cancer imaging, neurological imaging,
and machine learning. We identified application related challenges they face in their
research practice. Cancer imaging is performed to assess tumors and metastases, in gy-
necological cancer imaging in the pelvic area and for neurological imaging in the brain.
Cancerous tissue is discernible because it differs from its surrounding healthy tissue.
Besides analysis of the extent and size of the tumor, analyzing different sub-regions
within a tumor may be of interest. Finding abdominal lymph node metastases is a chal-
lenging task, as the metastases have variable size, ranging from a few millimeters to
sizes exceeding the primary tumor. Metastases often share some of the characteristic
imaging features of the primary tumor. Based on our analysis we present the following
requirements for our interactive analysis application:

• R1: Visual analysis of multiparametric imaging data in a single view

• R2: Multiparametric inhomogeneity analysis

• R3: Comparing regions within the multiparametric imaging data

• R4: Comparing multiparametric imaging data of multiple subjects

• R5: Multiparametric similarity analysis based on a digital biopsy

• R6: Interactive parameter selection for automatic multiparametric segmentation
tasks

When satisfying these requirements, we support gynecological imaging researchers,
neurological imaging experts and machine learning experts in their research or clinical
routine with the ultimate goal of improving patient care by providing better diagnostic
tools that can guide tailored and individual treatment strategies.
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Figure A.3: The Stixels view reveals an inhomogeneous tumor in one subject (a) and a more
homogeneous tumor in another subject (b). The outline in red shows the tumor extent for
illustration purposes. A tooltip provides details on demand in a radial boxplot (c), The Stixels
view reveals oedema in the brain after surgery (d).

A.4 ParaGlyder

In this section, we present our visualization and interaction design decisions based on
the requirement analysis. In Figure A.2, we present the different components of our
method and their interplay. Our design combines spatial and non-spatial visualizations,
linked by a view combining a non-spatial visualization in spatial context. Our approach
consists of several visualization and interaction methods for the interactive analysis of
multiparametric data described in the following.

A.4.1 Data Processing

Our method relies on multidimensional co-registered volumetric data. Our gy-
necological cancer experts already deliver co-registered volumes due to the na-
ture of the data source. Co-registration is therefore not part of our application
but may be performed by using state of the art applications such as Elastix [82].

spatial non-spatial

Interactive probing 
in volume view

Tumor and metastases 
detection support

Comparison between 
patients

Comparison within 
patient

Multiparametric homogeneity analysis

Similarity calculation

Multiparametric probing

Figure A.2: The ParaGlyder application com-
bines spatial (volumetric view) and non-spatial
(radial boxplot) visualization to enable mul-
tiparametric analysis and exploration. In be-
tween, the Stixels view depicts a combination
of both.

Standard MRI imaging data cannot be
converted to physical units and therefore
is highly dependent on the scanner and
sequences employed. In order to allow
for comparison normalization is required.
In our application, we perform two types
of normalization. When we use a slice
view, we normalize the data of the slice
using a min-max normalization of the se-
lected slice. In the 3D volume visualiza-
tion, we normalize the whole volume by
using the min-max value of the volume.
This results in the most appropriate nor-
malization based on the tasks the visual-
izations support.

A.4.2 The Stixels View

Based on requirement R1, the goal is to
raise the level of detail in the value domain but still keep the details in the spatial res-
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olution. To facilitate this, we employ a glyph map approach, presented in the middle
of Figure A.2, which is called the Stixels (Star glyph pixels) view. The glyph map is
based on a regular grid which is overlaid on a 2D view of a slice. For every grid cell,
we calculate statistics of the multiparametric medical imaging data. The star glyphs are
then created by summarizing the statistics within each of the cells. The grid size and
the star glyph size can be adapted, depending on the granularity of the structure of in-
terest. By cropping the slice view to a region of interest, the glyph maps also adapt to
the selection and allows for an even more detailed view of the selected structures. We
use star glyphs instead of polyline-based glyphs since according to Opach et al. [115]
star glyphs are a better choice for finding differences. For the star glyph design, we
display the average value of each parameter within the grid cell on the axes. The area
described by connecting these points forms a glyph which describes the relation of av-
erage parameters within the cell. When designing a star glyph, a homogeneous shape
is favorable [85, 118]. Therefore, the order in which the parameters are presented is ad-
justable. While even more information could be encoded on the axes of the star glyph,
we opted for a design that is easier to interpret and presents all necessary information
at a glance to prevent a steep learning curve. The star glyph map provides an overview
which allows the user to identify the tumor since the tissue differs from healthy tissue
in the multiparametric dimensions. In addition, the inhomogeneity of the tumor can
be analyzed. When spotting interesting parts of the tumor, a closer investigation of the
area using the interactive probing can be employed.

A.4.3 3D Probing Visualization

Requirements R3 and R4 support analyzing different parts of the tumor independently,
enabling identification of tumor patterns. Probing spheres deliver detailed information
from data within selected regions. Regions of interest can be specified by using multi-
ple probing spheres. This enables a comparison of different regions within the imaging
data for a single patient, e.g., healthy tissue and cancerous tissue. All voxels from all
parameters within the spheres can be used in the statistical analysis, like the approach
used for the star glyph map. For the visual encoding of the probed regions a radial box-
plot is used. It shows the user the summary statistics for selected regions of interest at
a glance. Comparison is enabled by the superposition of multiple radial boxplots. Ra-
dial boxplots are favorable because they align with the use of star glyphs in the Stixels
view and represent a more detailed view of selected areas. Differences and similarities
over all modalities can be analyzed by placing multiple spheres either within the data
of a single patient or multiple patients. To establish visual correspondence between
the probing spheres and radial boxplots, both the spheres and boxplot share the same
color hue. Interactive probing can be used to define a multiparametric pattern which
describes different tumor characteristics based only on imaging data and may also be
found in other patients suffering from a similar tumor type.

A.4.4 Interaction

To support requirements R3 and R4 various interaction methods are provided. The
placement of the probing sphere can be performed either in 2D images or in 3D vol-
umes. The size of the sphere can be adapted to fit the scale of the region of interest
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Figure A.4: Volume probing using two different probing spheres (a) results in live updates to
the radial boxplot view (b). Probing interaction within another subject (c) results in a radial
boxplot comparing data across subjects (d).

and the sphere can be placed freely. The quickest option is the free placement where
the sphere is placed according to the intersection of a ray going from the screen posi-
tion, where the mouse is located, towards the volume based on the closest visible point
in the volume. In addition to this quick initial placement of the sphere, we introduce a
mode where the sphere can only be translated within the current X-Y plane the sphere
is located at. Another option only adapts the depth of the sphere along the Z-axis.
When using a 2D view, it may occur that the probing sphere is behind the current slice
and thus occluded. To remedy this, we provide an option to snap the sphere back to
the slice. To support working with brain data, placing a sphere that is automatically
mirrored to the other hemisphere is also possible.

A.4.5 Similarity Visualization

Requirements R5 and R6 state that a similarity analysis and an interactive parame-
ter selection is beneficial in tumor analysis. Analyzing the tumor extent and possible
metastases in surrounding tissue is a typical task for radiologists. In addition, segmen-
tation of tumors is an active field of machine learning research, where some algorithms
require feature selection. To support these tasks, we employ the multiparametric con-
tents of a probed area in a similarity function. We decided to use the Euclidean distance
over all dimensions because they are equally important. When applying this function
to each multi-parametric voxel in the volume, we derive a new volume consisting of
similarity values between 0 and 1 which can be displayed with an appropriate transfer
function. A transfer function that highlights regions of high similarity through color
and opacity enables users to identify structures such as tumors and possible metastases
and enables a visual clustering with soft boundaries. Metastases which share the same
imaging properties as the primary tumor are highlighted using direct volume rendering.
Editing the transfer function enables the user to explore the inhomogeneity (R2) and
the extent of different parts of the tumor. In addition, this similarity function-based vi-
sual encoding is also applied to the star glyph map. The fact that the similarity is based
on the user-selected parameters enables the user to perform interactive feature selection
(R6).
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A.5 Results

The ParaGlyder application is depicted in Figure A.1 and consists of a center view (Fig-
ure A.1B), which provides common spatial visualization features, such as a 3D view,
2D slice-based views, cropping, and transfer function editing, and a probing functional-
ity. Next to the main view, the Stixels view is located (Figure A.1C), which consists of a
2D slice view and an overlaid glyph map consisting of star glyphs. The last view is the
probing view, component D in Figure A.1. It consists of a radial boxplot based on prob-
ing sphere input. We analyzed different datasets of endometrial cancer patients, pro-
vided by one of our co-authors, as well as a brain tumor dataset publicly available and
provided by Schmainda and Prah [136] via the Cancer Imaging Archive (TCIA) [26].
The endometrial cancer dataset comprises standard multiparametric MR sequences and
derived parameter maps visualizing physical parameters, e.g., blood flow and plasma
volume. The data is co-registered due to its origin. For the brain tumor and inflamma-
tion data, we have access to the standard parameters acquired in multiparametric MR,
such as T1-, T2- and diffusion-weighted images.

A.5.1 Tumor Detection and Multiparametric Homogeneity Assessment

To detect tumors and assess their multiparametric homogeneity, the Stixels view is
used. The user selects the slice and the parameter to show. A detailed view of indi-
vidual Stixels is presented when the user hovers the mouse over the specific Stixel. A
detailed tooltip is shown, visualized in Figure A.3c. In order to support region of in-
terest (ROI) selection, we employ volumetric cropping to select an appropriate Stixel
window. The grid of the Stixels adapts accordingly and then probes smaller regions
determined by the ROI. When placing a probing sphere, the Stixels are colored by the
multiparametric similarity, measured based on Euclidean distance, using the Viridis
colormap. The similarity Stixels view, visible in Figures A.3a and A.3b, additionally
reveals the inhomogeneity of the tumor. The red line marks the outline of the tumor and
the color and shape variations of the star glyphs represents the inhomogeneity within
the primary tumor. In Figure A.3a, a tumor with a high degree of inhomogeneity is
visible, while Figure A.3b reveals a more homogeneous tumor. The inhomogeneity
analysis enables the user to spot distinct parts within the tumor, e.g., a necrotic core
and allows for further analysis of these specific parts in detail.

A.5.2 Region Comparison for Tumor Characteristic Assessment

Probing spheres are used to analyze different parts within one patient or across multiple
patients. This probing interaction is conceptually similar to a digital biopsy. The result
of the probing interaction is a radial boxplot, visible in component D in Figure A.1.
Figure A.4a showcases placement of two spheres for a single subject, while Figure A.4b
shows a sphere placed to compare regions across subjects. The radial boxplot is shown
in Figure A.4b and A.4d. On each axis, the median value is presented as a dot, and
these dots are connected by lines. In addition to the median value, the 25% and the 75%
quantile ranges are visible as an overlaid band. This representation allows the user to
see the inhomogeneity of the data within the sphere. The maximum values of the axes
can be adapted to fit the selected data range. The spheres are used to characterize tumor
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Figure A.5: The similarity view highlighting the uterine primary tumor in the center and two
metastatic lymph nodes (a). When an insufficient number of dimensions is selected, the sim-
ilarity view fails to capture the tumor and metastases (b). The similarity view captures brain
inflammation (c), while simple thresholding on one modality would capture the skull as well.

tissue and to come up with specific signature shapes in the radial boxplot that can be
used to classify the imaging data of new patients. The interaction responsiveness is
ensured by providing a real-time update of the radar chart with the probed values of
the volumetric multiparametric imaging data while the sphere is moved interactively
through the volume.

A.5.3 Similarity Visualization for Metastases Detection and Feature Selection

The similarity view, visible in Figure A.1B and Figure A.5, visualizes the extent of a
tumor and potential nearby metastases. FigureA.5(a) shows the similarity volume when
using all multiparametric images and FigureA.5(b) shows the similarity volume with
only three out of five of the multiparametric images. The Figure shows that the three
selected images do not contain enough information to segment the tumor and the metas-
tases. The colored Stixels are presented in Figure A.3c. For both approaches the Viridis
colormap is chosen as a transfer function, where opacity is mapped to similarity, i.e.,
the visibility of regions that differ from the current selection is reduced. In component
B of Figure A.1, the similarity view of parameter maps of a patient with endometrial
cancer is visible. This similarity analysis enables a clear and distinct visualization of
the tumor (the lower right structure in the inset), by placing a probing sphere inside the
tumor tissue. Due to their multiparametric similarity, metastases in the lymphatic sys-
tem (structures to the left and above the primary tumor) are also highlighted. When
analyzing only one of the multiparametric images at a time the detection of metastases
is much more difficult because they are not clearly visible. When probing inflammatory
data within the brain, the similarity view provides a quick segmentation of inflamed tis-
sue. The segmentation does not include the bone as a standard thresholding operation
based on T2 Flair data only would, visualized in Figure A.5(c) and Figure A.5(d). This
demonstrates that the multiparametric similarity function facilitates a rapid multipara-
metric segmentation, which could be used in diagnosis or treatment planning, as well
as feature analysis as input to automatic segmentation methods in a machine learning
context.
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Table A.1: The response of the experts on a 5-point Liker scale. The values range from 1:
Strongly disagree to 5: Strongly agree. Statements marked with a star were rephrased to
present the positive form in this table, also the scores have been inverted. On the right end of
the table the average value over all experts is presented and in the last row the result of the
SUS questionnaire is presented.

Statement N1 N2 N3 Gy1 Gy2 Gy3 Gy4 Gy5 M1 M2 M3 Avg.
G1 The linked interactions between the center view and the radar chart are well established and

intuitive
3 5 4 5 5 5 5 3 5 5 4 4,45

G2 The linked interactions between the analyze view and the Stixel view are well established and
intuitive

5 4 4 5 5 5 5 4 5 5 5 4,73

G3 I see myself using the MRI Explorer in the future* 3 5 3 5 5 3 5 5 5 4 4 4,27
G4 I would like to contribute in the future development of the application 5 5 5 5 5 4 5 3 3 5 4 4,45
G5 I can see the application as a part of my daily work routine* 3 5 2 5 4 1 3 5 4 1 1 3,09
G6 The application is more applicable for research than for daily clinical practice 3 4 5 5 4 5 4 3 5 4 2 4,00
G7 The application should be part of the software used in clinical practice* 1 5 1 3 4 3 5 5 4 4 5 3,64
P1 The navigation in 3D is easy to understand and I can place the sphere where I want* 5 4 2 2 5 5 5 4 5 5 5 4,27
P2 The resizing operation of the sphere is easy to understand and to carry out* 4 4 2 5 4 5 5 5 5 4 5 4,36
P3 I can place the sphere anywhere on the plane using the provided keyboard interactions 5 5 3 4 5 4 5 5 5 5 5 4,64
P4 Setting the probing sphere to a specific depth in the volume is intuitive 2 5 2 3 5 4 4 4 5 5 4 3,91
P5 Snapping the probing sphere to the current slice selection is useful 5 4 3 5 5 5 5 4 5 5 3 4,45
P6 The probing interaction is responsive* 3 5 4 5 5 5 5 5 5 5 5 4,73
P7 The automatic update of the Radar chart is beneficial* 5 5 4 5 5 5 4 5 5 5 5 4,82
P8 The radar chart helps me to interpret multimodal data 5 5 5 5 5 5 5 5 5 4 5 4,91
P9 I am confident in interpreting the values that the radar chart presents 3 5 3 4 5 3 4 3 5 5 3 3,91
P10 With the probing functionality, I am able to compare different regions within one subject* 5 5 3 4 5 5 5 5 4 5 4 4,55
P11 The probing function enables me to compare regions between different subjects 3 5 4 5 5 5 4 5 5 3 4 4,36
St1 I understand what the Stixels view shows me and can interpret the star glyphs used. 3 5 4 4 5 3 4 3 5 5 3 4,00
St2 The Stixels view helps me to gather insight of the inhomogeneity of the data* 5 5 3 5 5 5 5 5 5 3 4 4,55
St3 The cropping functionality helps me to focus the Stixel view on the most important region of

the subjects data*
1 5 2 5 5 5 5 5 5 5 4 4,27

St4 The different grid sizes help me to first get an overview and add details on demand 5 5 4 5 5 4 5 5 4 5 4 4,64
St5 The tooltip helps me to see more details in the Stixels view when I need them 5 5 4 5 5 5 4 5 5 4 4 4,64
S1 I understand the color coding of the Stixels in terms of similarity* 3 5 4 5 5 5 5 5 5 5 5 4,73
S2 The similarity coloring of the Stixels helps me to adapt my probing selection 3 5 3 5 5 4 4 5 4 5 4 4,27
S3 The similarity volume visualization shows me interesting parts of the volumetric data 5 4 5 5 5 5 5 5 5 5 4 4,82
S4 The similarity view is useful to me and I would like to use it in my work routine/research* 5 5 5 5 5 5 5 5 5 1 4 4,55
Gys1 The application can improve the analysis of the inhomogeneity of gynecological cancer 5 5 5 5 5 5,00
Gys2 The application can support hypothesis generation for linking parameters with aggressiveness

of gynecological cancer
5 5 5 5 5 5,00

Gys3 I would find this application useful when analyzing patients gynecological cancer MR data* 5 5 5 5 5 5,00
Gys4 I would like to use this application to explain pathology and treatment to patients 4 5 1 3 3 3,20
Gys5 I would like to use this application to plan a biopsy for analyzing biomarkers of the tumor X 5 1 3 5 3,50
Gys6 The application is useful for finding metastases* 5 4 2 5 5 4,20
Gys7 The similarity view shows me the structure of the tumor 5 4 5 5 4 4,60
Gys8 The similarity view shows me the size and structure of possible metastases 5 5 3 5 5 4,60
Ns1 The application helps me to visualize lesions in the brain 5 4 1 3,33
Ns2 Comparing different regions within the brain using the comparison picker is particularly use-

ful for me*
5 5 5 5,00

Ns3 The similarity view helps me to get a better volumetric view of the lesion* 5 5 4 4,67
Ns4 I would like to use this tool to further analyse multiparametric brain imaging data 3 5 4 4,00
Ns5 The interaction with the comparison tool is suitable for brain images 5 5 3 4,33
Ns6 The application helps me see the intensity relations of the different tissue types between

modalities*
5 5 5 5,00

Ms1 The application helps me to carry out feature selection prior to applying my machine learning
algorithms

4 4 3 3,67

Ms2 I find the similarity view useful to identify which modalities are important for me* 4 4 5 4,33
Ms3 I can imagine using this tool before applying machine learning algorithms* 5 4 4 4,33
Ms4 This application is particularly useful for segmentation based on machine learning 5 4 5 4,67
SUS System usability scale result 97,5 85 40 75 85 80 87,5 80 95 92,5 85 81,75

A.6 Evaluation

We conducted a qualitative evaluation with eleven experts (6 male, 5 female) from the
scientific fields of neurological imaging (N1-3), gynecological cancer imaging (Gy1-
5) and machine learning research (M1-3). One expert is co-author and provided us
with clinical data of gynecological cancer patients and one expert of each domain (N1,
Gy2, M2) was included in the interviews during the development of our application.
We were especially interested in validating the effectiveness of the various visualiza-
tion components and identifying opportunities to make our application more suitable
for daily research or even clinical practice. The individual evaluation started with a
short demonstration of the tool, afterwards experts were encouraged to explore and
analyze the multiparametric data themselves. They were invited to comment using a
think-aloud protocol. The gynecological cancer and machine learning experts worked
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with endometrial cancer data and the neurological imaging experts with data provided
by Schmainda and Prah [136] via the Cancer Imaging Archive (TCIA) [26]. After
this phase, which lasted around 30 minutes, we conducted a semi-structured interview
with the experts. Finally, a questionnaire consisting of 27 generally applicable state-
ments and 4-8 targeted statements for the different expert groups was conducted. The
experts were asked to indicate their level of agreement using a five-point Likert scale.
In addition to our targeted evaluation form, we asked the experts to fill out the system
usability scale (SUS) provided by Brook et al. [17]. The evaluation results of the eleven
participants are shown in Table A.1.

We conclude from the results presented in Table A.1 that the application is overall
valuable for the experts. The probing interaction was rated favorably, two participants
would appreciate a guided 3D placement of the probe. All study participants think
that the Stixels view helps them to see inhomogeneous regions within the Slice view.
The similarity view received the most positive feedback and is potentially useful for all
involved experts. The targeted statements demonstrate that the application is applicable
different scenarios, albeit for different reasons. The gynecological experts envision that
the application could improve the assessment of tumor heterogeneity both in primary
tumors and metastases. The SUS scores range from 40 to 97,5, where the second lowest
score is 75. On average, the SUS score is 81,75. According to Bangor et al. [5], the
score can be interpreted to be between good and excellent.

A.7 Conclusion and Future Work

We present ParaGlyder, a multiparametric image visualization tool. The tool provides
different views for tumor detection, inhomogeneity analysis, feature selection, and di-
agnosis in multiparametric medical images, by a tight coupling of spatial and non-
spatial data visualization techniques. Our tool is based on a combination of star glyph
maps and radar charts. A built-in similarity visualization of the volumetric data enables
the visualization of, e.g., primary tumor and the corresponding metastases. The qual-
itative evaluation confirmed the utility of our application for diverse application areas.
In the future, we plan to extend our approach to analysis of larger patient cohorts in
order to assess whether this visualization tool could aid in the detection of metastases.
Furthermore, the application has the potential to unravel patient-specific imaging fea-
tures that may be linked to specific clinical phenotypes and outcomes, thus representing
a promising tool to facilitate more personalized treatment strategies.
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Abstract

Better understanding of the complex processes driving tumor growth and
metastases is critical for developing targeted treatment strategies in can-
cer. Radiomics extracts large amounts of features from medical images
which enables radiomic tumor profiling in combination with clinical mark-
ers. However, analyzing complex imaging data in combination with clinical
data is not trivial and supporting tools aiding in these exploratory analyses
are presently missing. In this paper, we present an approach that aims to
enable the analysis of multiparametric medical imaging data in combina-
tion with numerical, ordinal, and categorical clinical parameters to validate
established and unravel novel biomarkers. We propose a hybrid approach
where dimensionality reduction to a single axis is combined with multi-
ple linked views allowing clinical experts to formulate hypotheses based
on all available imaging data and clinical parameters. This may help to
reveal novel tumor characteristics in relation to molecular targets for treat-
ment, thus providing better tools for enabling more personalized targeted
treatment strategies. To confirm the utility of our approach, we closely col-
laborate with experts from the field of gynecological cancer imaging and
conducted an evaluation with six experts in this field.

B.1 Introduction

The World Health Organization announced in 2018 that cancer is globally the second
leading cause of death after cardiovascular disease [15]. There are numerous forms of
cancer and they arise in all kinds of cells in the human body. When exploring imag-
ing features, radiomic tumor profiling may be performed [4]. Gillies et al. state that
the goal of radiomics is to harvest high dimensional data from clinical images which
serve as a basis for further analysis, e.g., in terms of predictive value for predicting clin-
ical outcome and response to targeted therapy [45]. This analysis is by no means an
easy task and often involves working with multiple modalities or multiple parametric
images. For endometrial cancer, which is the most common gynecological tumor in in-
dustrialized countries [2], preoperative staging by multiparametric magnetic resonance
images (MRI) and results from endometrial biopsy routinely guide choice of surgical
procedure and adjuvant therapy.

Tumor regions of interest (ROIs) can be manually placed on the different MRI
sequences to quantify tissue features (e.g., diffusion properties on apparent diffusion
coefficient (ADC) maps, perfusion markers on dynamic contrast enhanced (DCE)-
MRI/parametric maps), and these tumor characteristics have been shown to aid in
predicting metastases or tumor progression [7, 40, 56, 57]. However, manual tumor
segmentations and analyses of ROI data are time consuming, and thus presently un-
feasible in daily routine. A main challenge when analyzing cohorts of patients is to
unravel the most relevant imaging patterns that are linked to clinical parameters and
patient outcome. Furthermore, analysis of the high dimensional value domain resulting
from the combination of the clinical parameters consisting of histological markers, ra-
diological findings, and outcome related parameters and multiparametric imaging data
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is challenging.
In current clinical research, imaging modalities are typically analyzed individually,

and the tumors are analyzed based on manually placed ROIs. As a part of ongoing
research of our collaborators, convolutional neural networks are used to perform a ma-
chine learning based segmentation of tumors. In addition, an automatic co-registration
of all available modalities is performed. This allows integrative analysis of all voxels
of the tumor, with the potential to empower clinical researchers with more targeted and
capable analysis platforms. Tumor textural features based on manually placed ROIs
and only for single modalities have already been proven to be related to high-risk his-
tological subtypes in endometrial cancer [40, 57, 171]. Analysis tools for different ROI
measurements taking multiple modalities and all tumor voxels into account are not
available. Nonetheless such an analysis would likely improve comparability between
different patients and across different hospitals.

To further support cohort analysis in radiomic tumor profiling, we provide a tool
which supports both data preprocessing steps for cohort analysis as well as an inte-
grated dashboard for cohort analysis and hypothesis generation. The application tar-
gets cancer imaging research where radiomic tumor profiling is carried out and where
multiparametric imaging data is acquired. We provide an interactive analysis platform
that enables gynecological cancer researchers to analyze cohort data with the goal of
hypothesis formation. The overall aim of the application is to provide a tool for visu-
alization, exploration, and identification of complex relations between radiomic tumor
profiles and clinical and histological markers.

Our main contributions are the following: (1) We present an interactive cohort anal-
ysis application that targets hypothesis formation in radiomic tumor profiling work-
flows that includes imaging data and clinical parameters. (2) We provide a workflow
that enables validation of manual or automatic machine learning-based tumor segmen-
tations and validation of automatic co-registration of multi-parametric imaging data.
(3) To show the utility of our approach, we evaluated our system with six experts in gy-
necological cancer imaging research, using the System Usability Scale (SUS) [17] and
a qualitative evaluation.

B.2 Medical Background

Endometrial cancer is the most common pelvic gynecological malignancy in high-
income countries. The endometrium comprises the innermost lining of the uterine
cavity, and patients typically experience abnormal vaginal bleeding. The diagnosis
is confirmed by an endometrial biopsy establishing the histological-/molecular tumor
subtype/grade, and subsequently a preoperative pelvic MRI is routinely performed for
local staging. However, analyzing complex imaging data in combination with clinical-
/tissue data is not trivial. Imaging data is often multiparametric, allowing the visual-
ization of different aspects of tumor physiology related to, e.g., tumor microcircula-
tion and microstructure, which reportedly are closely linked to the observed clinical
phenotype in cancer [40, 57]. Extracting whole volume multiparametric imaging data
simultaneously may also be done through radiomic tumor profiling.

Radiomic tumor profiling plays an emerging important role in the new era of pre-
cision medicine [45]. This field of research aims to produce high-dimensional fea-
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ture vectors from clinical images [131] to find tumor markers with a higher predictive
value. The typical workflow consists of image acquisition, image reconstruction, tu-
mor segmentation, feature extraction and qualification, and finally analysis and model
building. One challenge in this regard is feature selection which may be performed a
priori or from dimensionality reduction. Radiomics features are extracted from a re-
gion of interest representing the tumor. Hence, a high quality tumor segmentation is a
crucial step [131]. Manual segmentation is often used as the ground truth for tumor
segmentation although some inter-reader variability is inevitably present [131].

Tumor texture parameters derived from MRI scans have been shown to be asso-
ciated with high-risk disease and reduced survival in endometrial cancer [171]. Pa-
rameters like kurtosis, entropy and mean of positive pixels (MPP) from the ADC map
and the T1 contrast-enhanced images have been shown to predict high-risk histologi-
cal subtypes and advanced stage, e.g., deep myometrial invasion in endometrial can-
cer [40, 171]. Furthermore, tumor tissue markers have been compared with tumor
markers from parametric maps (based on dynamic contrast-enhanced MRI) finding that
reduced tumor blood flow in MRI reflects increased microvascular proliferation in the
tumor samples and predicts poor survival in endometrial cancer [40, 57].

B.3 Related Work

Traditionally, gynecological cancer biomarker research employs statistical analysis
tools like SPSS [52] or RStudio [134]. Visualization approaches for targeted cancer
diagnosis often focuses on techniques for representing biomarkers or imaging data but
there is only a small body of work combining clinical cohort data with multiple imag-
ing sequences per patient. Raidou et al. [128] introduced a visual analytics approach for
the exploration of tumor tissue characterization featuring a 2D t-Distributed Stochastic
Neighbor Embedding (t-SNE) [163] dimensionality reduction also taking tumor char-
acteristics into account. Although their approach is similar, we differ in multiple as-
pects in that we do not focus on pharmacokinetic parameter maps but rather visualize
high-dimensional radiomic tumor texture features. In contrast to their approach, we
use a 1D t-SNE dimensionality reduction and our visual exploration approach aims for
the identification of complex relations between radiomic tumor profile and clinical and
histological markers. To the best of our knowledge, there is no related literature where
a 1D t-SNE dimensionality reduction has been used in combination with a clinically
meaningful parameter on the other axis. Compared to the other approaches presented
here, we preserve one axis of the 2D visualization to present a meaningful value selec-
tion, which is not the case when applying a 2D t-SNE dimensionality reduction.

Image-Centric Cohort Visualization Closely related to our approach is the work by Steen-
wijk et al. [149], where the authors used multiple linked views including scatterplots
and parallel coordinate plots combined with imaging data for each patient. One major
difference is that they are limited to displaying two images per patient without a link
to the imaging data in their visualization application. Klemm et al. [83] introduced an
epidemiological approach which is also image-centric and involves segmentations and
hypothesis formulation. However, they do not visualize the original imaging data in
their application and mainly focus on model-based visualization in their application.
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Jönsson et al. [74] introduced a cohort analysis platform which also allows for group
comparison and incorporates imaging data for each patient as well as clinical param-
eters. In contrast to our approach, they do not use multiparametric imaging data, and
they do not work with radiomic tumor features.

Visual Cohort Analysis Preim et al. [124] provided an extensive overview of visual an-
alytics approaches for public health data in their survey. Further related work in the
field of visual analytics of patient cohorts includes the work of Angelelli et al. [3]. The
authors presented a prototype aiming for cohort-based hypothesis formulation for het-
erogenous data. Eckelt et al. [36] presented a visual analysis tool enabling statistical
analysis of tabular data, cancer drug target discovery, and closing the gap between vi-
sualization and statistical analysis. Raidou et al. [130] introduced a visual analytics
application which allows for analysis on both cohort level and patient level for radio-
therapy induced bladder toxicity. Bernard et al. [8] presented a data centered approach
for analyzing large amounts of patients using multiple linked views and selective anal-
ysis. When dealing with large amounts of patient data, user guidance could be imple-
mented, as discussed by Ceneda et al. [23, 24]. Further related work in the field of
cohort construction includes the work of Krause et al. [91]. In the field of cancer char-
acterization, the work of Turkay et al. [160] is relevant to our approach. In contrast to
these approaches, we combine multiparametric imaging data, radiomic tumor profiling
data and clinical parameters in one application.

Co-Registration and Segmentation Validation As we work with co-registered data which
partially features machine learning-based segmentation masks, the data needs to be
validated by experts before further analysis. Hastreiter et al. [59] proposed to use fused
visualization methods. Jenkins et al. [67] suggested that overlaying of prominent edges
provides a usable co-registration check. More complex and automatic co-registration
validation methods include the work of Schnabel et al. [137], which validates nonrigid
image registration using finite-element methods. Our approach adds a parameter-based
pre-selection of cases where the co-registration outcome is suspicious to first present
these cases to medical researchers for further analysis.

Automatic segmentation methods are available, but often they do not meet the ac-
ceptance criteria needed for usage in clinical cohort studies. Therefore, a validation
step has to be employed before using them as a source of analysis [165]. Von Lands-
berger et al. [165] introduced a user guided automatic segmentation method where
algorithm parameters are set intuitively by using visual analytics tools. Karimov et
al. [75] introduced an approach for interactive segmentation correction based on his-
togram dissimilarities. Haehn et al. [54] proposed a segmentation proofreading tech-
nique and demonstrated that expert proofreading has increased performance and speed
over manual expert segmentation. In contrast to these approaches, we benefit from
various features measured by radiologists which allow us to spot potentially incorrect
automatic segmentation. Adding these cases to the training set of automatic algorithms
allows for an incremental improvement of the segmentation mask result.
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B.4 Data and Tasks

Endometrial cancer classification is highly dependent on the data used. For our clinical
collaborators, multiparametric imaging data and histological data as well as further
clinical parameters of the patients are available. Due to our close collaboration with
both radiologists and experts in the field of molecular biomarkers we were able to gather
insight in this highly specialized field of research. In a clinical setting, potential patients
who typically face symptoms such as vaginal bleeding, have an endometrium biopsy
which serves as the basis for a histological investigation. If the biopsy confirms an
endometrial cancer diagnosis, preoperative pelvic multiparametric contrast-enhanced
MRI is routinely performed. Imaging findings guide the choice of treatment, normally
consisting of surgery in all cases, followed by adjuvant chemo- and/or radiation therapy
in high-risk patients. After treatment, the patients have regular clinical follow-ups to
detect recurrent disease/tumor progression, and progression-free survival is recorded.

B.4.1 Clinical Parameters

The following clinical parameters are available for analysis:

• Tesla: Field strength value of the MRI scanner used for the screening, either 1.5
or 3 Tesla.

• Segmentation: Indicator of manual or machine learning segmentation of the tu-
mor.

• FIGO2G: International Federation of Gynecology and Obstetrics (FIGO) [9] clas-
sification of the tumor. FIGO I and II are one group and FIGO III and IV represent
the other group. The grouping is performed based on tumor aggressiveness.

• MyomInf2G: Myometrial infiltration of the tumor with infiltration of <=50% and
>50%.

• CervixAffHyst: Tumor extending to the uterine cervix.

• HistType: Endometrial or non-endometrial subtype.

• HistGrade2G: High-grade and low-grade tumors.

• MetNodes: Histologically confirmed lymph node metastasis, no metastases or not
investigated.

• Status: Last known status of the patient, category one combines the following
possible states of the patient: alive and well, dead from other causes or dead with
but not due to active disease, second category is alive with active disease, and
third category indicates dead from disease.

• Prog_and_or_recur: Progression or recurrence of disease after surgery.

• TumorFree: Tumor free at the most recent follow-up meeting.
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B.4.2 MRI Specifics

MRI imaging includes different sequences depicting tumor extent (using T1- and T2-
weighted MRI) and microstructural tumor characteristics (e.g., in diffusion weighted
imaging (DWI)). First introduced by Rofsky et al. [132], the Volumetric Interpolated
Breath-hold Examination (VIBE) facilitates a 3D gradient-echo sequences that pro-
duces T1 weighted images. The advantage of this approach is improved resolution in
the Z-axis which enables high-quality multiplanar reconstruction. In DWI, highly cel-
lular tissue features a lower diffusion coefficient [81]. A quantitative assessment of
the diffusion may be performed with the generation of apparent diffusion coefficient
(ADC) values obtained at different b-values [87]. When using an intravenous con-
trast agent, the dynamic contrast-enhanced (DCE) MR perfusion is recorded. Typical
measurements during this examination are the peak enhancement (PE) measuring the
relative enhancement in contrast after the update of the contrast agent and the time to
peak (TTP) [51]. The area under the peak enhancement curve (AUC) is also a typical
measurement [51]. In total, we have seven MR imaging sequences available.

B.4.3 Specifics of the Application Domain

Gynecological cancer imaging research consists of multiple steps. Data of several MRI
sequences must be analyzed, currently done separately and partly only for specific re-
gions within the tumor. The overall goal of our medical collaborators is to examine and
explore tumor biomarkers which potentially have a larger predictive value for clinical
outcome than well-established ones. These biomarkers may help to further improve
treatment of patients and increase personalization. Recent research of our collaborators
already includes the analysis of tumor texture, which relies on prior segmentation of
the tumor [40, 57, 171]. The gold standard in this segmentation approach is a manual
segmentation performed by a trained radiologist. One aspect to consider in this regard
is that this step comprises intra-operator variance. Due to the very time-consuming pro-
cess of segmenting each volumetric slice this process is only performed using one of the
seven MRI sequences. Therefore, our collaborators aim for a complete automation us-
ing machine learning algorithms. Another step already performed by our collaborators
is the co-registration of all seven sequences present. For both steps our collaborators
are looking for a validation possibility to assess data quality before analysis. The anal-
ysis of the imaging data and clinical parameters involves several tasks: group selection,
tumor texture feature analysis, data quality validation, and hypothesis formation. To
the best of our knowledge there is no application available which combines these tasks
in an easy and intuitive way without having to export and import data multiple times.

Machine Learning Segmentation

One of our co-authors applied a 3D convolutional neural network (UNet3D [25]), using
Keras [53] and Tensorflow [1] as backend engine, to facilitate automatic segmentation
of the tumor data in endometrial cancer patients. The network was trained using 139
expert segmentations based on preoperative pelvic imaging. The network can retrieve
tumor volumes which are comparable to human expert level and a set of segmentation
masks with human agreement not differing from inter-rater agreement. Although this
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algorithm is very promising for further analysis of the segmented tumor volumes and
masks, proofreading by a radiologist is still necessary. Common tools used in clini-
cal practice and research allow for such a validation but quickly finding cases where
the segmentation might be wrong is desirable but not supported yet. After this pro-
cessing step, the tumor segmentation is still only available on one sequence. To an-
alyze the tumor on every given sequence, co-registration is necessary. This process
was performed automatically but needs to be validated since a segmentation of non-
tumor-regions would potentially introduce a critical error in data analysis. Examples of
incorrect segmentations can be seen in the accompanying video and figures.

Automatic Co-registration

Our collaborators performed the co-registration automatically using FMRIB’s Linear
Image Registration Tool (FLIRT) [67, 68] without optimization and only perform-
ing geometric alignment in scanner coordinates. However, this automatic registration
method may not always find a perfect transformation for each modality and therefore
must be validated. The employed co-registration algorithm features a relatively low
failure rate but for a meaningful analysis spotting cases where it might have failed is
crucial. Our medical collaborators request for an intuitive way to find and validate
these cases. Having all sequences co-registered and the segmentation prepared, ra-
diomics feature extraction is the next step. Examples of incorrect co-registrations are
presented in the additional materials.

Radiomics Feature Extraction

Radiomics feature extraction takes volumetric imaging data and the volumetric tumor
mask as input and generates a high-dimensional feature vector describing the tumor in
each parametric imaging sequence. We merge the generated data afterwards with the
clinical parameters. In recent work by our collaborators [171] tumors textural features
were analyzed using TexRad [97] software. The number of features in this approach
is limited and the feature generation algorithms are not open source. Therefore, our
medical collaborators expressed interest in a transparent and more controllable data
handling method. Based on prior research, tumor texture features are interesting mea-
surements, believed to be correlated with aggressiveness of tumors [40, 171]. To further
support this hypothesis, we calculate potential features for homogeneity analysis, in-
cluding normalized inverse difference moment, contrast, short run emphasis and long
run emphasis. The information content contribution of each sequence is not known a
priori and therefore an explorative analysis of single sequences and their combinations
is of interest for our collaborators.

B.4.4 Task Abstraction

We performed a task abstraction using the task framework proposed by Brehmer and
Munzner [16]. We assessed the current status of clinical research in gynecological
cancer during multiple interviews with our collaborators. We also encouraged them to
envision new workflows including results of convolutional neural network-performed
segmentations and the possible parallel analysis of all sequences after co-registration.
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During the interviews, we identified two phases. Phase one deals with ensuring data
quality and phase two with cohort analysis. Two tasks (T1 and T2) handle the need for
a segmentation and co-registration validation. Task T3 reflects a common practice in
medical research, namely group selection. Finally, tasks T4 and T5 provide analysis
functionality. During discussions, our collaborators mentioned that they commonly
use R or SPSS for statistical analysis and that they would like to continue doing so.
Therefore, we exclude statistical analysis capabilities from our application design.

Pre-
Processing

T1 – Discover Invalid Co-
Registrations

T3 – Group Selection 
and Comparison

T4 – Homogeneity 
Analysis

T5 – Analysis of 
Radiomic Features

T2-Discover Incorrect 
Machine Learning Tumor 

Segmentations

Phase 1: Data Quality check

Phase 2: Search and Query

Figure B.1: The RadEx workflow based on our task
abstraction. The flow is denoted by arrows consists
of two phases. Phase One: Discover invalid co-
registrations and segmentation masks. Phase Two
(Search and Query): When the data quality is en-
sured ,users are able to search and query the whole
cohort. The arrows depict that there is no pre-
defined ordering of the tasks: each task can be exe-
cuted in any order in the search and query section.

T1–Discover Invalid Co-Registrations Our
medical collaborators classify co-
registrations as invalid based on the
misalignment of the given volume.
Bladder filling and other physiologi-
cal processes in the body cause a shift
of the organs and therefore automatic
methods may not result in a com-
pletely perfect alignment of these im-
ages. However, finding cases where
automatic co-registration fails to find
a sufficient transformation is cru-
cial to support productive and time-
efficient analysis. The analysis plat-
form should allow the user to dis-
cover misaligned volumes and to an-
alyze data in detail to identify poten-
tial causes of the misalignment.

T2–Discover Incorrect Machine Learning
Tumor Segmentations Manual volu-
metric segmentation of endome-
trial tumors is a tedious and time-
consuming task. This task could
be automated using machine learn-
ing techniques, for example based on
convolutional neural networks. Al-
though the algorithm employed by
our collaborators features a low fail-
ure rate and a comparable precision as the medical experts, the results still must be
validated before further analysis. Spotting cases where the segmentation is potentially
wrong is challenging and browsing through all patients is not time efficient. The user
wants to discover potential faulty cases and identify the cause of the incorrect segmen-
tation mask.

T3–Group Selection and Comparison Group identification and selection is a common and
important task in clinical research. When analyzing a cohort of patients, it is of great
interest to spot patients which share similar features, e.g., in imaging or histological
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ADC

VIBE

(a) Outliers in the co-registration view of the parallel
coordinate plot indicate misaligned volumes after co-
registrations. If acquisitions are not registered, seg-
mentation output based on a single sequence will not
be correct for other sequences. This leads to unex-
pected derived values.

(b) The ADC map value is comparable between pa-
tients and therefore routinely measured in gynecolog-
ical cancer cases. A correlation analysis to the mean
ADC value within the tumor segmentation could raise
suspicion with regards to segmentation accuracy.

Figure B.2: Typical cases where co-registration (a) or tumor segmentation (b) failed. Find-
ing these cases is not an easy task and browsing through all patients would be very time-
consuming. Therefore, the parallel coordinate plot in the co-registration view enables a quick
search for potential erroneous cases.

analysis results. During the analysis of such cohort data, different groups can be se-
lected and the medical researchers would like to compare them with each other.

T4–Homogeneity Analysis Heterogeneity is putatively linked to aggressive cancer pheno-
type supported by previous studies linking specific textural features to high-risk histo-
logical subtypes in endometrial cancer [40, 171]. An exploratory platform allowing an
assessment of textural features reflecting tumor heterogeneity derived from the different
sequences/parametric maps interactively would potentially be clinically useful. Brows-
ing through further homogeneity measurements over all available imaging modalities
and comparison of predictive value is interesting for our collaborators.

T5–Analysis of Radiomics Features Radiomics feature generation is a promising way to
generate characteristics which might facilitate a predictive value of specific clinical
parameters. Experts would like to have a look at individual parameters, but also at the
analysis of multiple combined parameters. They want to locate specific combinations
or single parameters to identify a predictive value to previously defined groups, based
on clinical parameters.

B.5 RadEx Workflow and Interface

Figure B.1 illustrates the workflow of RadEx when analyzing unprocessed cohort data.
The first two interactions with the application ensure data quality for further analysis
steps. Before analyzing the data within RadEx, a pre-processing step is required pre-
calculating all slices per patient and tumor extent. The analysis workflow within the
RadEx application starts with co-registration validation, followed by machine learning
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Figure B.3: Overview of the RadEx interface, an integrated analysis and exploration platform
for gynecological cancer data.

segmentation validation. These two steps ensure the data quality and deliver valuable
feedback to our collaborators to further improve the segmentation and registration out-
put. After this step, clinical researchers can analyze the cohort data. They can focus on
different aspects, for example, browsing, exploring, or locating specific feature. Group
selection is performed as a first step, users can explore different homogeneity measure-
ments or radiomics feature combinations. If the users are interested in specific char-
acteristics, they can browse for possible groupings. The number of patients currently
included in our application is already a high number for this type of studies, therefore
we chose our visualization techniques to cope with the given number of patients.

B.5.1 Central Scatterplot View

The central scatterplot view presented in Figure B.3 reveals the whole cohort at a
glance. This view plots a homogeneity measurement against a one-dimensional t-SNE
dimensionality reduction of selected radiomics features allowing for an overview of
the data. Each patient is marked with a gray circle. According to Cleveland et al. [27],
three factors determine effective scatterplot design: (1) the marks are designed with
preattentive features in mind, (2) the detection of individual objects is in focus, and (3)
the distance between the objects presents a notion of similarity. We use these features
to guide our scatterplot design. As shown in Figure B.3, each mark representing a sin-
gle patient contains a small glyph representing the shape and the size of the tumor. We
generate this small image by finding the slice with the largest amount of tumor voxels
and extract VIBE pixels within the segmentation mask. If the tumor consists of multi-
ple parts, these are still visible within the circle. An example of these glyphs is shown
in Figure B.7. Hovering over a glyph reveals a tooltip showing an image slice with the
tumor segmentation as a color overlay. The imaging modality as well as the slice can
be selected by the user. This gives the clinical experts a direct relation to underlying
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imaging data and allows for a detailed co-registration and segmentation validation. The
tooltip view presents details on demand by holding the Shift key while hovering over
a mark. In this detailed version of the tooltip, an overview over all modalities is pre-
sented allowing the user to compare all seven modalities (T1). Both tooltip versions are
shown in Figure B.4. The tooltip is only shown on mouse hover over a glyph of inter-
est representing a single patient. At this point the user is interested in exploring data of
this single patient, occlusion of other patient glyphs is therefore less problematic. This
method for tooltip display does not introduce a visual focus change for the user and is
therefore the appropriate placing for it. By scrolling through the modalities or by using
the detailed tooltip version, a co-registration check and a segmentation validation can
be performed (T1-2).

Figure B.4: Top: The simple tooltip reveals an image slice with segmentation information as
a color overlay. Bottom: The extended tooltip visualizing all available modalities with tumor
segmentation overlay and a red border around the selected modality.

A large amount of data and large marks in the scatterplot lead to overplotting, which
can be avoided by various methods. Marks or position could be changed locally to
reduce overplotting on demand. We use a simple zoom and pan interaction because
it is efficient, and our collaborators are already familiar with these interactions. The
methods are also easy to understand and execute while keeping the position of the dots
in the scatterplot space static. We also added an option to reset the zoom and pan to its
original state on demand.

Selection of the axes is crucial in scatterplots. As inhomogeneity is an essential
but rather new measurement that is believed to correlate with tumor aggressiveness, we
display this on the x-axis (T4). Following the description of Cleveland et al. [27] we use
the x-axis to bring patients with a similar homogeneity closer to each other to enable
clustering. For the y-axis we aim to allow for clustering patients according to similarity
in the higher dimensional feature space consisting of clinical parameters and radiomic
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A B

Figure B.5: A: t-SNE calcualation only taking size into account. B: Both size and
ADC_value_tumor_cons are taken into account in the 1D dimensionality reduction. Select-
ing large tumors and different ADC value ranges for both groups indicate that the ADC value
in large tumors could correlate with aggressiveness. A pattern is visible revealing in the scat-
terplot that patients are separated by ADC value.

tumor features (T5). To this end, we display a 1D dimensionality reduction result using
t-SNE [163]. During our development process we also used a 1D principal component
analysis (PCA) which delivered less convincing results. Therefore we chose t-SNE
dimensionality reduction for our specific scenario, but this choice might not be the best
option for other problem domains. Our scatterplot layout delivers an overview of the
interplay between imaging data and clinical parameters for the purpose of radiomic
tumor profiling. One example is presented in Figure B.2(a). In Figure B.5A only the
size influences the t-SNE and in Figure B.5B both size and the ADC value of the tumor
are considered. As the y values of the dots change, different groupings are visible. In
Figure B.5A only size related clusters can be found while in Figure B.5B the ADC
value has an influence and new clusters are present. This interactive dimensionality
reduction enables hypothesis generation relating imaging and clinical parameters.

B.5.2 Parameter Overview

In addition to the imaging data represented in the central scatterplot view, clinical pa-
rameters are also a focal point in cohort analysis. These parameters consist of nu-
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merical, ordinal, and categorical data. Visualizing multiple data types together in one
visualization can cause problems, because not all data types are compatible with all
visualization idioms. Therefore, we opted for splitting these into two different visual
representation. For the numerical data, we employ a parallel coordinate plot and for the
categorical and ordinal data we use unit charts. As our tool was collaboratively devel-
oped with domain experts, we received iterative feedback on their ability to understand
and work with selected visualization techniques during development.

Feature Dimension View A parallel coordinate plot (PCP) is an effective tool to analyze
correlations between different feature dimensions [64]. Every patient represents one
line in the parallel coordinate plot and each axis shows one feature dimension. The
decision which axes/dimensions to use in the PCP is very important [64]. They serve
as visual anchor and allow for use of ticks and descriptions. The ordering is also im-
portant, because it is difficult to compare dimensions which are further apart in the
plot. Therefore, we decided to put specific axes next to each other where the correla-
tion serves a specific purpose, e.g., the size of the tumor measured by the experts in the
VIBE modality and the amount of voxels derived from the tumor mask. If the corre-
lation between these two measurements is suspicious for certain patients, there might
be something wrong with the data (T2). The PCP dimensions can also be selected for
validation purposes specifically. If the user is performing segmentation or registration
validation, the mean values of all modalities within the tumor are visualized. This en-
ables detection of outliers, which may be caused by a misaligned segmentation mask
(T1, T2).

Clinical Parameter View Unit charts are one of the simplest visualization methods and
have already been described by Neurath in the early 1930’s [112]. More recent work
by Park et al. [117] states that this type of visualization can provide information that
matches the user’s mental model and allows for novel interactions. The unit chart rep-
resentation is used for all categorical and ordinal parameters. Each dot in each column
of the visualization represents exactly one patient. The color of each dot represents the
value of the parameter for that specific patient. In addition, we use a tooltip to present
imaging data when hovering with the mouse over the marks. Missing values are at
the bottom of the chart and colored in dark gray. The other dots follow a quantitative
grayscale colormap. The values in the unit chart are ordered according to expected out-
come severity, meaning that values that have a negative influence on the outcome, e.g.,
life expectancy and suspected quality of life after treatment, are positioned on top of
the chart (T3-5).

B.5.3 Settings and Interaction Techniques

Our application features a group selection feature where the user can select two differ-
ent groups (T3). User can select which group is active and if selected patients should be
combined using an ’AND’ or ’OR’ function. This allows for a detailed group selection.
Using the ’AND’ option, the user can select patients that, e.g., have multiple clinical
parameters in common. In contrast, the ’OR’ connection allows for selecting patients
that, have a large tumor and myometrial invasion, but do not necessarily need to have
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both properties. The group selection interaction is supported across application views.
Selection operations can be performed in the scatterplot by brushing with a rectangular
selection box, in the PCP by selecting along an axis, or in the clinical parameter view
by clicking one of the dots representing a specific value. Selections can be reset using
a clear function. The user is further able to change the x- and y-axis properties. When
changing the settings, the scatterplot updates with an animation, to improve context
preservation. This allows users to locate parameter ranges to maximize selected target
group separation. In the settings, the user is also able to change the modality presented
in the tooltip and to swap the PCP to the registration and segmentation validation view.

B.6 Implementation

Our web-based application is composed of modules. The main part of the preprocess-
ing, namely the data extraction and feature generation, is developed in Python. We
use the PyRadiomics, a library developed by Gillies et al. [45]. The library supports
first-order statistical features such as voxel-intensity histogram-based features, e.g., the
median, the standard deviation or the maximum and the minimum value. In addition,
also second-order statistics are supported. These include, for example, features based
on the gray level co-occurrence matrix or the gray level run length matrix [45]. We use
the Visualization Toolkit from Kitware [138], to create the tumor icons and the tooltip
information for further analysis. Numpy [114] is used for working with the high di-
mensional radiomic tumor feature arrays and data handling within Python. We handle
csv data handling using the Python library OpenCV [13].

The web-based part of our application is implemented in Javascript. The scatterplot
and the parallel coordinate plot are both implemented using D3 [12]. Our implemen-
tation of the unit chart visualization is based on the approach by Park et al.[117]. For
our dimensionality reduction, we use the t-SNE implementation TSNEJS provided by
Karpathy [76], which is based on the original work from van der Maaten [163].

B.7 Case Studies

The RadEx application is visible in Figure B.3 and consists of multiple components as
described in the Section B.5. To demonstrate the utility of our application, we show-
case its functionality in three case studies, developed in close collaboration with our
collaborators. We identified three major areas of application for our tool, namely the
exploration of tumor characteristics, the co-registration validation functionality, and the
machine learning segmentation check. Data of 330 patients is provided by two of our
co-authors. Before including them in the application 12 patients have been excluded
because the co-registration did not work, due to imaging quality problems. 97 patients
were excluded because the machine learning based segmentation mask was completely
misplaced or much too small. In the end 221 patients are included for further analysis.
For 92 patients a manual created segmentation mask is available and for 129 patients a
machine learning created segmentation mask is used. For every patient seven MRI se-
quences created by either a 1.5 Tesla or 3 Tesla MRI scanner, ten clinical parameters,
and five measures from radiologists are available.
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All modalities

Selected modalities

Figure B.6: Textural tumor features include several homogeneity measurements believed to
correlate with tumor aggressiveness. We support a selection of homogeneity measurements
and combine up to seven MRI sequences resulting in one measurement presented on the x-
axis. Changes in parameter selection result in animated transitions.

B.7.1 Explorative Radiomic Tumor Profiling

Radiomic tumor profiling involves the calculation of high-dimensional feature vectors
that need to be analyzed to discover tumor characteristics that are marker for possible
outcome or to evaluate existing ones. Typical use cases in tumor profiling include ho-
mogeneity analysis of the imaging data and analyzing the association between various
radiomics features with respect to different clinical parameters. In our application clin-
ical experts can select two groups, one with low aggressiveness and one with higher
aggressiveness. Aggressiveness can be measured, e.g., by presence of metastases or if
the patient has already died from disease or had recurrence. Also, the time between the
surgical removal of the tumor and a possible recurrence is an indicator for aggressive-
ness.

During the exploration of different settings for the x-axis, the group selection stays
the same and gives a clear picture if the group separation improves or not, Figure B.6
reveals two possible group separations using different x-axis values. Allowing the user
to try out different homogeneity measurements enables interactive exploration and as-
sessment of the differences between each of the measures for this patient cohort. While
exploring different measures, e.g., the homogeneity measurement based on the normal-
ized inverse difference moment as described by Gillies et al. [45], we found a separation
of a group of patients that features a low aggressiveness while having a low homogene-
ity.

Preliminary exploration revealed that the derived textural homogeneity can separate
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patients with high-risk disease from these with low-risk disease, demonstrating the
usefulness of this tool for identification of imaging markers to be further explored.
After selecting different feature combinations for dimensionality reduction, we are able
to find different patient clusters that have different distinctive clinical parameters, such
as for example the cluster shown in Figure B.6 in orange. This cluster features patients
presenting with large tumors, which is known to be associated with increased risk of
metastases and death from disease. This association is already well known, and our
application can show this link. The status for these patients tells that they are either
alive with active disease or dead from disease. The presence of metastases which evolve
from the primary tumor is also an indicator for an aggressive tumor phenotype.

B.7.2 Registration Validation

Co-registration of multi-parametric images is an essential part of the data processing
step needed for our application. The result of a successful co-registration is a set of per-
fectly aligned volumes. When dealing with high number of patients where most of the
co-registration works well and which fails only in a small portion of cases, it is impor-
tant to support visualization of likely outliers or error cases. To support such a filtering,
the dimension selection visualized in the feature dimension view in the lower center of
our application can be used to support the registration check. When doing so, the chart
visualizes the median values of the tumor in each of the seven imaging parameters. This
view allows for a quick check of outliers in the graph which might highlight segmenta-
tion masks that do not mask the tumor adequately due to misaligned volumes. The seg-
mentation is then also misaligned because the segmentation mask is only available for
one modality in our case. One example for such an operation is shown in Figure B.2(a),
where outliers in the ADC value range revealed potential errors in the co-registration.

Figure B.7: One possible measure to find incorrect seg-
mentation masks is the size, which in our case is mea-
sured in our case by radiologists and our application pre-
processing phase based on the VIBE image and on the
segmentation mask. These measures have a natural cor-
relation and unexpected relations might indicate incor-
rect segmentation.

B.7.3 Segmentation Validation

Tumor segmentation masks crated
by machine learning algorithms
need to be validated by experts
before using them in the data
analysis step. Before validating
all segmentation masks, experts
could first find outliers where
the algorithm did a bad job and
those could be used to further
improve the algorithm. There
are multiple ways to find these
outliers. One way is to validate
if the number of voxels in the
tumor mask align with the size
measured by the clinical experts.
Both parameters are present in
the feature dimension view in
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neighboring positions. Selecting a small number of voxels and a larger size measured
by the experts or vice versa points to potential error cases. To validate if the segmen-
tation is deficient, the user can hover over highlighted glyphs in the scatterplot and
slice through the imaging volume. In the view presented in Figure B.4, we use a semi-
transparent red overlay of the tumor segmentation mask on top of the various imaging
sequences. Another possibility to find potential misaligned tumor segmentation masks
is to select measured ADC mean values from our radiomics approach and compare
them to the representative ADC value measured by the clinical experts. The experts
indicate one representative region within the tumor and one region in the healthy en-
dometrium to compare these throughout patients. If there is a major discrepancy, these
cases should be investigated more closely. One such case is shown in Figures B.2(a)
and B.2(b). A third method to inspect segmentation quality is to inspect the segmented
tumor symbols in the scatterplot. When selecting very large tumors and seeing very
small symbols on the scatterplot dots, it is an indication that the segmentation may be
incorrect. Similarly, any discrepancy between selected features and visible segmenta-
tion symbols would lead to detection of questionable segmentation quality. Figure B.7
reveals such a case. The segmentation validation feature of our tool is of major inter-
est for the machine learning experts working on implementing automatic segmentation
algorithms since it allows for quick and intuitive validation that spurs on further devel-
opment of automated methods.

B.8 Evaluation

To further evaluate the utility of our interactive exploration and analysis platform, we
invited six gynecological cancer imaging research experts to validate our tool. E1 is
a professor in radiology and expert in gynecologic and abdominal radiology. She has
over 14 years experience in this field and is one of the co-authors on this paper. E2 is
a radiologist since 2006 and holds a medical doctors degree. She is currently a PhD
student in gynecological imaging, has over 10 years of experience in MRI reading,
and is a co-author of the paper. E3 is a medical physicist in radiology and is a PhD
student in medical physics with over 13 years of experience. E4 holds a masters degree
in cell biology since 2010 and a PhD in neuro-oncology since 2015. E5 has 4 years
of experience in pelvic imaging and holds a medical doctors degree. E6 has 5 years
experience in MRI reading of gynecological cancer, holds a medical doctors degree,
and is currently a PhD student.

In the beginning of the evaluation we demonstrated the application to the experts
worked through the different use cases. Our application works with data provided by
E1 and another co-author which was not part of the evaluation. Afterwards, we in-
vited them to try out the tool themselves. During the evaluation we asked the experts
to discuss their experience and to talk about benefits and disadvantages of the system
compared to their current workflow. After this phase, which took roughly 40 minutes
we asked the experts to fill out a questionnaire with 34 questions discussion different
aspects of our application. The questions are structured in the following groups: gen-
eral (G1-7), tumor visualization (V1-5), group selection (S1-7), homogeneity (H1-5),
dimensionality reduction (D1-5), and segmentation and co-registration validation (C1-
5). In addition to our evaluation form, the experts filled out the system usability scale
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Table B.1: Response of the experts on a 5-point Liker scale. The meaning of the values on
the scale are: 1: strongly disagree, 2: disagree, 3: neither agree nor disagree, 4: agree and 5:
strongly agree. Statements marked with a star were rephrased to present the positive form in
this table and the scores have been inverted. On the right end of the table the average value over
all experts is presented and in the last row the result of the system usability scale questionnaire
is presented. 1paper co-authors.

Statements: E11 E21 E3 E4 E5 E6 Avg.
G1 The linked interactions between the scatterplot and the parallel coordinate plot are well estab-

lished and intuitive
4 5 5 5 5 4 4,67

G2 The linked interactions between the scatterplot and the unit chart are well established and intu-
itive*

5 5 5 5 5 4 4,83

G3 The selection interactions between the unit chart and the parallel coordinate plot are well estab-
lished and intuitive

5 5 5 5 5 4 4,83

G4 I see myself using RadEx in the future 3 5 5 4 5 4 4,33
G5 I would like to contribute in the future development of the application* 5 5 5 5 5 5 5,00
G6 I would like to use RadEx for exploring clinical cohort data 4 5 5 5 5 4 4,67
G7 The export funcionality helps me to further analyze the group selections in my statistics tool of

choice*
4 5 5 5 4 4 4,50

V1 The small tumor icon enables a quick comparison between the tumors of different patients 5 4 4 5 2 4 4,00
V2 The tumor icons give me more information than only the size of it* 5 4 2 5 3 4 3,83
V3 The tooltip allows me to analyze the imaging data and the tumor segmentation* 5 3 5 4 5 4 4,33
V4 The extended tooltip is helpful to validate the tumor segmentation 5 3 5 4 5 4 4,33
V5 The extended tooltip is helpful to validate the co-registration* 5 3 5 5 4 4 4,33
S1 The group selection in the scatterplot view is easy to understand and to carry out 5 5 5 5 4 5 4,83
S2 I can select specific patients an add them to an existing group in the scatterplot* 5 5 5 4 5 5 4,83
S3 Selecting specific properties in the Unit chart view is easy to understand and to carry out 4 5 5 4 4 4 4,33
S4 I can select patients having specific states in different clinical parameters* 5 5 5 5 5 4 4,83
S5 Specifying a patient group including multiple clinical parameter manifestations is easy 5 4 5 5 5 4 4,67
S6 Selecting a group in the parallel coordinate plot is easy to understand and carry out* 4 4 5 5 5 4 4,50
S7 The applications makes it easy to select two different groups 5 4 5 5 4 4 4,50
H1 The homogeneity imaging modality selection in combination with the group selection helps me

to identify important modalities*
5 4 2 4 4 4 3,83

H2 Trying different homogeneity measurements is easy and fast* 4 5 5 5 5 4 4,67
H3 The animation of the data when changing settings helps me to track the changes 5 5 4 5 5 4 4,67
H4 Havin the important measure homogeneity on the x-Axis of the scatterplot makes interpretation

of the visualization easy
4 4 4 5 4 4 4,17

H5 I can imagine using this application to formulate hypothesis for future studies about homogene-
ity*

5 5 4 5 4 5 4,67

D1 The y-Axis in the scatterplot shows me interesting clusters of patients 5 4 5 5 5 4 4,67
D2 The dimensionality reduction allows me to analyze multiple clinical parameters* 5 5 5 5 5 4 4,83
D3 The selection of dimensions taking into account for the y-Axis allows me to explore my clinical

data*
5 5 5 5 5 4 4,83

D4 I can imagine using this application to formulate hypothesis for future studies 4 5 5 5 4 4 4,50
D5 Exploring patients that are clustered by the t-SNE is interesting and potentially valuable for

further investigation*
5 5 5 4 5 4 4,67

C1 I can select machine learning performed segmentations and validate their correctness 5 1 5 5 4 4 4,00
C2 Selecting potentially wrong segmentations is possible 5 3 5 4 4 4 4,17
C3 Exporting wrongly segmented patients is possible* 5 3 5 5 5 4 4,50
C4 The co-registration view enables me to spot potential wrong co-registrations* 4 5 5 5 4 4 4,50
C5 The tooltip view helps me to validate segmentations and co-registration results 5 3 5 5 4 4 4,33

SUS System usability scale result 75,00 90,00 92,50 95,00 87,50 77,50 86,25

(SUS) provided by Brook et al. [17]. All statements are evaluated based on a 5-point
Likert scale. We also included negatively formulated questions.

B.8.1 Evaluation Results

The result of the evaluation is shown in Table B.1. Questions marked with a star have
originally been negatively formulated and here we present them in their positive form.
The results for these questions are also inverted. In general, the application got positive
feedback overall. All experts would like to contribute to the future development of the
application and 5 out of 6 experts would like to use the application in the future. The
tumor icons and tooltips received overall a good feedback. One expert (E2) mentioned
that the tooltip pictures could be enlarged. E3 mentioned that the size of the tumor
icons made it difficult to perceive shape, however, other participants agree that shape is
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also visible in our design. E5 also mentioned that the size of the tumor icons makes it
difficult to compare based on icons alone.

All experts are in favor of the group selection. All questions, except one have an
average value of at least 4,5. Only selecting specific properties in the Unit Chart or clin-
ical parameter view has a value of 4,33. Regarding this point, we received the feedback
that the dots used in the chart are challenging to click on. The homogeneity view also
received strongly positive feedback overall. E3 mentioned that it is difficult to prove if
a modality is important or not and mentioned that the question is formulated too nar-
rowly. However, she is still in favor of the functionality. Our dimensional reduction got
the most positive feedback with all average values over 4,5. All experts could imag-
ine using the 1D dimensionality reduction to analyze the cohort data to spot potential
groupings of patients. The co-registration and segmentation validation also received
positive feedback overall. One expert (E2) mentioned that the tooltip images could be
larger to make the validation easier. Another possibility for a more detailed validation
could be to use a second screen to show the imaging data of specific patients in a view
more like what radiologists are used to (E2, E4-6).

System Usability Scale Scores Our SUS scores are presented at the end of the evaluation
result Table B.1. The results range from 77,5 to 95. In average our application reached
a SUS score of 86,2. Bangor et al. [5], introduced different ways of interpreting SUS
scores including the acceptability range, a grade scale (like in education), and an adjec-
tive rating scale. Our acceptance rate is: Acceptable (best score), grade scale: A (best
score), and an adjective rating of Excellent (best score).

B.8.2 Evaluation Conclusion

We conclude from our results that our application is valuable for experts in gynecolog-
ical cancer imaging research. All statement groups received positive feedback and the
experts think the features are useful. E1 already thinks about using our application in
a research setup to further evaluate machine learning-based segmentation masks and to
train radiologists to perform segmentations and compare them to segmentation masks
created by experts. E4 can also imagine using the application to validate results with
new imaging series and E6 would like to use the application for his cohort data. Over-
all, we can say that the application has substantial potential in gynecological cancer
imaging research.

B.9 Discussion

Experimental group selections performed in our application revealed that there is po-
tential in further analysis of different homogeneity measures to separate patients with
high-risk disease from those with low risk. Our application is also able to show well
known coherence patterns, e.g., between the size of the tumor and clinical phenotype.
This shows us that there is a potential to influence future analysis steps in gynecological
cancer research and that our application may have an impact in the targeted domain.

For the group comparison we do not offer a feature that determines statistical signif-
icance values to prevent p-value significance fishing. Any hypothesis formulated using
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our application should be validated using an independent study cohort. After perform-
ing segmentation validation with our tool, we were able to spot tumor segmentation
masks that did not meet the acceptance criteria, e.g., due to the presence of multiple
tumors within the same region. The co-registration validation also highlights cases
which would not have been suspicious at first sight. The involved machine learning ex-
pert therefore also sees potential in working with our application to further refine his
machine learning algorithms to deliver even better results. The 1D dimensionality re-
duction is in the current version only supported by t-SNE but could also be performed
using other dimensionality reduction methods such as PCA.

B.10 Conclusion and Future Work

We present RadEx, an interactive analysis platform and workflow for medical re-
searchers which supports integrated exploration of radiomics and clinical features. By
using multiple linked views, interactive group selection methods and custom feature se-
lections, we empower researchers to explore new and validate existing tumor biomark-
ers. Close collaboration with gynecological cancer imaging and machine learning re-
search experts resulted in several case studies for our application. The benefits brought
by our work range from validation of machine learning results to validating and explor-
ing new tumor characteristics. Being able to selectively include and exclude different
sequences from the radiomic tumor exploration makes the analysis transparent and intu-
itive for the medical researchers. Our experimental findings of different patient groups
allowed visualization of e.g. well-established association between large tumor size and
high-risk disease but also showed potentially interesting new associations. The evalu-
ation of our application revealed a positive response from the target audience reflected
both by the qualitative evaluation and SUS score.

Potential future developments include adding an intuitive way to perform a land-
mark based registration. This could help to easily correct the registration for patients
where the automatic co-registration fails. In addition, we plan to widen the scope of the
application to different tumor types including cervical cancer. The goal of our efforts
is that every single patient should benefit from the findings from cohort analysis to get
one step further in the direction of personalized medicine.
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Abstract

Tumor tissue characteristics derived from imaging data are gaining impor-
tance in clinical research. Tumor sub-regions may play an important role
in defining tumor types and may hold essential information about tumor
aggressiveness. Depending on the location of the tumor within the body,
such sub-regions can be easily identified and defined by physiology, but for
others these sub-regions are not readily visible. Currently, exploration of
regions within a tumor is performed via comparison of the image sequences
and analyzing the tissue heterogeneity present. To improve the exploration
of such tumor sub-regions, we propose a visual analytics tool called ICEVis.
ICEVis supports the identification of tumor sub-regions and corresponding
features combined with cluster visualizations highlighting cluster validity.
At times, the ground truth in terms of the optimal number of clusters is not
available. For such cases, we provide interaction possibilities to determine
the optimal number of clusters, supported by various statistical measures
and interactive exploration of the results. We evaluated our tool with three
clinical researchers to show the potential of our approach.

C.1 Introduction

Cancer is globally the second leading cause of death according to a report published by
the World Health Organization in 2018 [15]. Different tumor types exist, ranging from
low-grade tumors with a favorable prognosis to high-grade tumors associated with high
risk of relapse and cancer spread. Surgery is the most common treatment type. Early
diagnosis and treatment planning are crucial for optimizing the therapy of endometrial
cancer [2]. A challenge that can arise when dealing with endometrial tumors, as well
as other types of cancer is tumor heterogeneity [2]. The number and composition of
tumor sub-regions may vary between different patients, but their identification may be
an important factor to consider for diagnosis, tissue sample (biopsy) selection, and/or
therapy planning. At present, tissue heterogeneity is examined by the acquisition of
histopathological data from tissue biopsies and, in recent research, by analyzing the
tumor imaging data as a whole using radiomic tumor profiling [41, 62, 111]. Feature
detection from medical imaging data alone could potentially replace invasive biopsies
and improve the expected quality of life of the patients after treatment [128, 171]. The
clinical imaging routine for endometrial cancer detection and therapy includes standard
MRI sequences. In some cases, additional sequences sequences that might lead to a bet-
ter distinction of tumor patterns are acquired for research purposes. This enables the
consideration of different tumor characteristics that are visible in various imaging se-
quences [95]. To enable clinical researchers to explore and evaluate tumor sub-regions
in cancer research, we propose ICEVis. ICEVis is part of an ongoing collaboration
with two clinical experts and enables endometrial cancer researchers to interactively
explore hierarchical clustering results based on their multiparametric medical imaging
data. The main contribution is a visual analytics approach that supports the assessment

Submitted to the International Symposium on Visual Information Communication and Interaction (VINCI
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Figure C.1: ICEVis consists of a 3D tumor view and calculated cluster information. A par-
allel coordinate plot, a dendrogram, a silhouette plot, a t-SNE representation of the tumor
segmentation, and three optimal cluster number plots are embedded to support the clustering
exploration process.

of individual distinct tumor sub-regions and relevant features in single patients across
imaging sequences. Our approach consists of a hierarchical clustering approach em-
bedded in a visual analytics platform which allows for detailed tumor sub-part analysis.
To confirm the utility of our approach, we conducted a qualitative evaluation including
three experts in machine learning and gynecological cancer imaging research.

C.2 Related Work

In the medical domain, several clustering approaches deliver remarkable results in tis-
sue classification. Juan-Albarracín et al. [71, 72] analyzed malignant brain tumors and
managed to improve results obtained by supervised methods. They evaluated five dif-
ferent unsupervised voxel classification methods including K-means clustering, fuzzy
K-means, Gaussian Mixture Models (GMM) as a generalization of K-means, and the
Gaussian Hidden Markov Random Field (GHMRF) model. Ng et al. [113] used
K-Means for medical image segmentation and additionally combined it with an im-
proved watershed algorithm. Raidou et al. [128] applied dimensionality reduction and
K-means clustering for cohort analysis of different tumors. Informed by these ap-
proaches, we analyzed our data by applying the same techniques but found the results
to be unsatisfactory with our data. After careful consideration, we decided on using a
hierarchical clustering approach instead.

Hierarchical Clustering: Selvan et al. [140] discussed how hierarchical clustering could
aid diagnostic imaging data analysis. They outline examples such as the interpretation
of x-ray mammography and multi-parametric prostate MRI. In the implementation,
they chose the appropriate number of clusters by minimizing the dissimilarity within
each cluster. In contrast to their work, we use several statistical parameters to define
the optimal amount of clusters and support the user in the cluster number decision.

Visualization for Tumor Tissue Exploration: In 2019, Qu et al. [127] published a review
of visual analytics tools for genomic and cancer data, comparing traditional and new
methods, among them scatter plots, cluster visualization and networks. Existing sys-
tems for visual analytics in oncologic tissue exploration focus either on the exploration



C

92
ICEVis: Interactive clustering exploration

for tumor sub-region analysis in multiparametric cancer imaging

of perfusion data, or on the distinction between tissues belonging to the tumor and un-
affected, healthy regions [128]. Yu et al. [172] presented an approach using a heatmap
in combination with a dendrogram to analyze the validity of the calculated clusters. In
contrast to their approach, we analyze tumor sub-regions instead of the whole tumor
volume. Our work is inspired by the approach of Raidou et al. [128]. They propose a
visualization tool for visual examination of the feature space resulting from pre-defined
imaging-derived tissue characteristics. Similar to a related approach [129], they sup-
port the assessment of the effect on the parameter space due to different model-based
variations in DCE-MRI. A central dimensionality-reduced scatter plot in combination
with a density plot guides the interactive exploration. In comparison to their work, we
enable clustering of the tumor imaging data before conducting a dimensionality reduc-
tion, which potentially leads to more accurate clustering results.

C.3 Medical Background

One of the main research goals of our collaborators is the exploration of tumor imag-
ing biomarkers to improve predictions and personalized treatment strategies. Ongoing
research aims to analyze relevant imaging features such as texture as well as to develop
automatic methods for segmentation and classification [40, 57, 60, 171]. For this rea-
son, the tumor is segmented prior to the analysis phase, which is currently done mainly
manually, taking only one of the several sequences into account. Our collaborators ac-
quired multi-parametric scans of 92 patients with endometrial cancer and performed
manual segmentation. AvaiThe The seven available sequences for this work are the
apparent diffusion coefficient (ADC), b1000, peak enhancement (PE), time to peak
(TTP), area under the peak enhancement curve (AUC), T2 and volumetric interpolated
breath-hold examination (VIBE). These multiple sequences provide complementary
information and they are all aligned via co-registration. Together with two involved
medical collaborators, we analyzed the requirements for our application:

• R1: Find potential tumor sub-regions based on imaging characteristics per patient

• R2: Support the decision of how many tumor sub-regions are most likely present
in the given patient’s data

• R3: Enable spatial analysis of the clustering results

• R4: Enable exploration of the results with respect to the given imaging character-
istics

C.4 ICEVis

Based on the requirements defined together with our medical collaborators, we propose
ICEVis. ICEVis consists of a pre-processing pipeline and a visual analytics platform to
calculate potential tumor sub-regions. Furthermore, we enable clinical researchers in
defining the optimal number of sub-regions based on imaging characteristics. The pre-
processing of ICEVis consists of a hierarchical clustering step which takes all available
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A B C

Figure C.2: A: a t-SNE result based on all available sequences with subsequent k-Means clus-
tering (k=3). B: hierarchical clustering applied before dimensionality reduction and visualized
in the same t-SNE result. C: The hierarchical clustering result in a slice-based view as an over-
lay on the medical imaging data. The last image shows a necrotic core within the tumor in
blue which would no have been found by using k-Means on the t-SNE result.

sequences into account and is carried out using the full dataset without prior dimension-
ality reduction. This step fulfills requirement R1. Informed by prior work, we analyzed
the results of different clustering techniques (k-Means on the full dataset, k-Means on
the t-SNE result, and hierarchical clustering on the full dataset) and concluded that
hierarchical clustering on the full dataset delivered the most promising results. One
example of our analysis is presented in Figure C.2, where k-Means clustering on the t-
SNE result is juxtaposed with the hierarchical clustering result before applying t-SNE.
As an example for the benefits of our approach, a histopathologically relevant part of
the tumor (a necrotic core) is depicted in blue – this important feature was not identified
correctly when using t-SNE followed by clustering.

Hierarchical Clustering To perform hierarchical clustering, different sub-steps are neces-
sary. We first pre-process the data and create feature vectors based on tumor segmenta-
tion voxels. Then, we calculate a distance measure by defining the criterion according
to which the clusters are split. We normalized the data using min-max normaliza-
tion. The voxel intensities of each of the seven sequences represent the feature vectors.
To compute cluster proximity, different metrics are available. In this work, Ward’s
method [110] was used. It is an centroid-based approach which defines the proxim-
ity between two clusters by calculating the increase of the sum of squared errors (SSE)
when potentially merging those two clusters. Similar to K-means, it minimizes the sum
of the squared distances of data objects from their corresponding group centroid.

Determining the Number of Clusters To support the user in determining an optimal number
of clusters and therefore to fulfill requirement R2, we present the user with the result
of three different measures: the elbow method, the average silhouette method, and the
gap statistic. The elbow method is a function of the within-cluster sum of squares.
The optimal number of clusters here is the amount where adding another cluster would
not improve the result [154]. Kaufman and Rousseeuw [77] introduced the average
silhouette method, defining the optimal number of clusters as the one which maximizes
the average silhouette score. The last method we support is the gap statistic method
by Tibshirani et al. [156]. They propose the comparison of the within-cluster variation
with the expected variation under a reference null distribution. The optimal value is
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(a) In this particular example, the optimal amount of
clusters is two. According to our collaborators, the red
area represents an inflammatory region around the tu-
mor.

(b) In this example, three clusters differ in ADC, b1000
and in TTP according to the parallel coordinate plot.
The blue cluster highlights the necrotic core of the tu-
mor, a region consisting of dead cells within the tumor.

Figure C.3: ICEVis use cases presenting interesting cases defined by our clinical collaborators.
(a) is showing a necrotic core and (b) is presenting a potential inflammatory region of the
tumor.

derived by the maximized gap statistic, meaning the cluster structure which has the
biggest difference to a uniform distribution of points. As there is no definitive answer
to the question of how many clusters is the optimal solution, we provide the expert with
an ensemble of different methods to support the decision process. In Figure C.1 on the
right side, of the first image all three methods are visualized with the optimal number
of clusters highlighted. Note that there is not necessarily agreement among these three
methods.

Visualizations Our tool consists of spatial and non-spatial visualizations enabling med-
ical experts to find the optimal number of tumor sub-regions as well as inspecting how
they change in the imaging data. In close collaboration with our clinical experts, we
found these visualization idioms to be the most effective and meaningful to use within
the proposed application. To enable the analysis of the resulting clusters with respect to
the underlying imaging data, we employ three orthogonal slice views and a 3D visual-
ization of the data. The clusters are presented as an adaptable semi-transparent overlay
and the underlying medical data is presented in a grayscale colormap. Users can choose
which sequence they would like to see. The 3D visualization reveals cluster informa-
tion in the same colors used in the rest of the tool. This visualization can be used to
analyze the spatial relationship between the clusters. These two visualizations fulfill re-
quirement R3. To fulfill requirement R4 and therefore to characterize clusters by their
imaging data content, we add a parallel coordinates plot (PCP). Each feature vector is
represented as a polyline and the axes correspond to the individual features. The PCP is
further enriched inspired by box plots [104]. We chose this design over drawing a line
for each voxel within the cluster to avoid visual clutter. For each region, the median
value of voxel intensities is drawn on the axis of the single modalities. Their connec-
tion forms a line and is visualized in an opaque manner. The more transparent bands
around the median lines represent the inter-quartile area to give a better impression of
the value range within the clusters.
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Cluster Representation To ensure a meaningful representation of each clustered region,
we assign a specific color which is consistent throughout the different views within the
application. We chose the colors according to a recommendation from the commonly
used ColorBrewer [58] tool. To visualize the hierarchical clustering, we created a den-
drogram, as shown in Figure C.1 on the right side. It shows the hierarchical structure as
a tree with distance-based connections between sub-clusters. The length of the vertical
lines represents the distance between those clusters, measured by using the Euclidean
distance [155]. Furthermore, a cutting line is included based on the selected number of
clusters. The vertical lines that are crossed by the cutting line represent the associated
clusters. In addition, the clustering result is presented on top of a t-SNE embedding of
the imaging data within the tumor. The feature vectors for the embedding are the seven
image sequences which are available for exploration. This allows the medical experts
to see if there is a clear difference in clustered voxels within the tumor.

C.5 Implementation

Our tool was implemented in Python. For data handling and working with high-
dimensional feature arrays, we use the NumPy library and for hierarchical clustering
we employ the computationally efficient library fastcluster [106]. The dendrogram and
label extraction are calculated using the SciPy [69] cluster hierarchy package. The
application was developed with PyQt5 [28] using the matplotlib [63] library and the
PyQtGraph [21] package for visualizations. Furthermore, the 3D visualization uses
pyvista [152].

C.6 Results

Figure C.1 depicts the complete user interface for our tool. In the analysis settings
on the right sidebar, the number of clusters can be selected via a slider. In this case,
two clusters have been selected. Below, detected regions with their assigned colors are
listed. A slice view gives the possibility to scroll through the slices with a segmentation
mask overlay in x-, y- and z-direction. The slice position is shown numerically in
addition and updated when scrolling through the volume. To examine the regions or
the imaging data in more detail, the opacity of the segmentation can be adjusted with
a slider or by entering a percentage in the corresponding text field. The background
sequence can be changed to one of the seven available sequences. The dendrogram,
silhouette plot, 3D view, PCP and t-SNE view, as introduced in Section C.4, assist in
the exploration and update when changing the number of clusters.

Case Studies and Expert Feedback We describe two different case studies for our tool
based on expert feedback. The first interesting case we found is shown in Figure C.3(a).
In this case we found a shell around the tumor. Our experts hypothesized that this re-
gion may comprise an inflamed region on the outside of the tumor. This result could
have an impact on the treatment decision and may lead to an earlier surgery to avoid
negative effects when waiting too long. In the second case study presented in Fig-
ure C.3(b), our medical experts found an optimal number of three clusters and one of
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them comprises a necrotic core, which is a distinct pattern within the tumor composed
of dead tumor cells. For the evaluation of our application, we invited two radiologists
involved in gynecological cancer imaging research and one expert in machine learn-
ing for medical imaging data to give us feedback on our approach. All invited experts
are not co-authors of this paper but are part of ongoing collaborative research. In gen-
eral, we got positive feedback on our application and the experts found interesting and
compelling use cases for our application. The two radiologists stated that they can rec-
ognize histo-pathological properties which would have to be confirmed by correlating
our results with corresponding surgical findings. When this pattern is confirmed, our
application could have an essential impact as such histo-pathological properties could
then be taking into account at the time of imaging and treatment decision. Furthermore,
the radiologists would like to use our tool to find areas of the tumor which seem to be
the most aggressive parts based on imaging data to consider these for further analysis,
e.g., targeted biopsies. The machine learning expert sees a potential use case in further
analyzing the results of our approach in a radiomic tumor profiling setup to further cor-
relate to clinical variables, e.g., aggressiveness of the tumor. Overall, all three experts
find the tool useful for different purposes and would like to use it for analyzing their
data.

C.7 Conclusion

We proposed ICEVis, an interactive clustering exploration tool consisting of a hier-
archical clustering approach embedded in a visual analytics application. The tool in-
cludes visualizations for the exploration of clusters and their validity, as well as the
characterization of cluster content. We developed our application in close collabora-
tion with cancer imaging experts and conducted a qualitative evaluation including three
experts from different fields. Our results show two interesting cases where the clinical
experts where able to find histo-pathological interesting regions within the tumor which
they were not able to see in the sequences before. Furthermore, they would like to eval-
uate the results by comparing the visual results with the histo-pathological results after
the surgery of the tumor. In a future continuation of this work, we would like to enable
the clinical experts to analyze the results in an even more interactive way by improving
the linking and brushing capabilities of ICEVis. Finally, this work represents a further
step towards patient-specific tumor sub-region exploration for endometrial cancer, and
could, in the future, lead to opportunities for more personalized treatment.



DD

Paper D

ScrollyVis:
Interactive visual authoring of guided dynamic
narratives for scientific scrollytelling

E. Mörth1,2, S. Bruckner1,2 and N. N. Smit1,2

1Department of Informatics, University of Bergen, Norway
2Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland

University Hospital, Norway

This article is submitted to TVCG



D

98
ScrollyVis:

Interactive visual authoring of guided dynamic narratives for scientific scrollytelling

Abstract

Visual stories are an effective and powerful tool to convey specific infor-
mation to a diverse public. Scrollytelling is a recent visual storytelling
technique extensively used on the web, where content appears or changes
as users scroll up or down a page. By employing the familiar gesture of
scrolling as its primary interaction mechanism, it provides users with a sense
of control, exploration and discoverability while still offering a simple and
intuitive interface. In this paper, we present a novel approach for authoring,
editing, and presenting data-driven scientific narratives using scrollytelling.
Our method flexibly integrates common sources such as images, text, and
video, but also supports more specialized visualization techniques such as
interactive maps as well as scalar field and mesh data visualizations. We
show that scrolling navigation can be used to traverse dynamic narratives
and demonstrate how it can be combined with interactive parameter explo-
ration. The resulting system consists of an extensible web-based authoring
tool capable of exporting stand-alone stories that can be hosted on any web
server. We demonstrate the power and utility of our approach with case stud-
ies from several of diverse scientific fields and with a user study including
12 participants of diverse professional backgrounds. Furthermore, an ex-
pert in creating interactive articles assessed the usefulness of our approach
and the quality of the created stories.

D.1 Introduction

Storytelling is deeply embedded in our society. Its purpose ranges from informing and
recording to explaining and entertaining. Stories play a major role in understanding
the world, cultural identity and to trigger and explain emotions. Stories can be told in
many different ways including passive and interactive forms as well as linear and non-
linear methods [80]. Filmmakers explore a vast range of methods to convey a story in
the best possible way. Quentin Tarantino is an example of a film director who is known
for exploring new ways to present a story and therefore his movies are frequently dis-
cussed [80]. Stories are an important aspect not only of movies but also in the context
of video games, books, and articles. Newspaper article authors engage the viewer by
including graphics and images but on the web they can even add interaction [135].

With the rise of the internet, storytelling became a part of conveying information in
online media. In more recent times, storytelling on the web was re-imagined into so-
called scrollytelling [141]. Viewers interact with presented information not by clicking
through a web slideshow but by simply scrolling through a website. The author can
plan the flow of information and is able to guide the reader through the experience.
Scrollytelling is extensively used by news outlets such as the New York Times [119,
121] as it can be an engaging and effective way to present information. On mobile
devices in particular, scrollytelling is one of the standard interactions [119] and heavily
used by social media platforms and various online media.

Storytelling can be a powerful tool to convey scientific information [89]. Science
has to compete with other storytellers, many of whom are not bound to scientific evi-
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dence [32]. Blastland et al. [10] referenced the philosopher Onora O’Neill who said:
"inform but not persuade" and when sharing evidence, suggested to strive "to be acces-
sible, comprehensible, usable and assessable". Scientific communication must preserve
its credibility, but also needs to engage the audience with compelling communication
formats. Dahlstrom [31] noted that storytelling often has a bad reputation in science
and that there is even a mantra saying "The plural of anecdote is not data". He pro-
posed the following adaption to this statement: "The plural of anecdote is engaging
science communication". Scientific storytelling can leverage data visualization to con-
vey outcomes and facilitate reasoning about scientific results, serving goals such as the
communication with peers in the field or engaging a wider community.

Hohman et al. [61] demonstrated that interactive articles can be used to present the
latest progress in various research fields and to make the findings accessible and under-
standable to a broad audience. The challenge in doing so is that often there is no clear
incentive structure as well as little funding for research dissemination and communica-
tion. Interactive and engaging articles are most viable on the web [61]. One challenge
is that not all scientists possess web-development skills. There is a variety of editors
and content management systems to create basic websites, but interactive and engaging
storytelling is not supported sufficiently in these. As demonstrated by the user evalua-
tion of Seyser et al. [141], a whole team including authors, designers, and developers is
needed to create such rich experiences. In terms of dynamic narratives, authoring tools
facilitating storyboarding are currently available, but scrollytelling support is lacking.
At present, there is a missing link between dynamic narratives and scrollytelling pre-
sentation on the web.

Our approach aims to fill this gap. With this paper, we present ScrollyVis, an exten-
sible web-based authoring tool for creating guided dynamic narratives with a particular
focus on scientific narratives. ScrollyVis offers a processing pipeline which exports au-
thored stories such that they are ready for deployment on any web server. We support
dynamic as well as static narratives. Our approach enables users of all technical skill
levels to create scrollytelling web experiences with ease. We allow for the integration
of a broad range of visual media, such as images, videos, and map views, but also ac-
commodate more advanced visualization techniques such as direct volume rendering,
slice-based visualization and 3D surface-based visualizations. To verify the utility of
our approach, we present a user evaluation including 12 participants with diverse pro-
fessional backgrounds. Furthermore, we present four case studies in collaboration with
experts from a range of scientific disciplines and a qualitative evaluation of our ap-
proach and the resulting stories by an expert in interactive storytelling on the web. Our
main contributions in this paper are:

• We introduce a system which allows for efficient authoring, generation, and pre-
sentation of dynamic media-rich scrollytelling experiences on the web for scien-
tific communication.

• We present ScrollyVis, a prototype storyboard-based editor realizing the system
description enabling users to author and publish dynamic narratives on the web
without requiring prior web development skills.

• We demonstrate the power and utility of the approach through case studies and
evaluate the usability of the editor and potential through user feedback.
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D.2 Related Work

In this section we describe work related to our approach, such as storytelling in visual-
ization and visual exploration. Furthermore, we reflect on scrollytelling as a web-based
long-form article, and storytelling editors.

Storytelling in Visualization Storytelling is a focus in visualization research over a
longer period of time. Wohlfart et al. [170] combined storytelling with interactive vol-
ume visualization to enable a better understanding of the underlying data and informa-
tion. They introduced an authoring and a storytelling step to separate exploration and
presentation of a story. Their approach employed Shneiderman’s [142] information
seeking mantra and proposed a taxonomy for interaction with the user. Furthermore,
they presented a story model consisting of story nodes and story transitions. Build-
ing up on their efforts, we introduce story segments as a higher-level abstraction of
semantically similar story nodes.

Kosara et al. [89] argued that stories are a good way to present data as they package
important information and knowledge in an easily understandable way. They highlight
that interaction is one of the most important aspects of visualization, including altering
the pace and direction of the story. Ma et al. [100] reflected on the question of what
"good pacing" means when it comes to scientific storytelling using visualizations. Ev-
ery spectator has their own pacing preference and there is always a compromise when
introducing a fixed pace to tell a story. The authors furthermore emphasized the impor-
tance of user domain knowledge and relevance of the story to the users. The paper is
especially relevant for our approach as it guides our design in pacing and adapting sto-
ries to a target audience. Tong et al. [158] describe common visualization types used in
storytelling. Based on their analysis, we designed our system to support all of these vi-
sualization types in order to make them readily available for scientific communication.
In the following, we present visualization approaches which specifically aim to tackle
challenges related to scrollytelling.

Scrollytelling According to Pimbaud [121], scrollytelling has been around since 2010
and is linked to the success of social media. He further speculates that scrolling might
be the easiest user interaction possible. Seyser et al. [141] claim that scrollytelling is
the web equivalent to long-form articles used in journalism. Scrollytelling presenta-
tions frequently consist of multimedia content and information visualization in partic-
ular. The authors stated that the narrative structure of scrollytelling articles is either
linear or elastic. The latter enables the user to dive deeper into the story on demand.
Scrollytelling articles often use at least three different multimedia elements including
photography, videos, and visualizations [50, 162]. Pettersen [119] proposed that sto-
rytelling is not only about the words but presenting information in the most interactive
and exciting way. Furthermore, she mentions that scrollytelling is beneficial to engage
and actively keep the viewer’s attention during story consumption. Scrollytelling gives
a sense of control, exploration, and discoverability.

Unfortunately, to the best of our knowledge, there are no publications on concrete
guidelines for best practices in scrollytelling. However, practical recommendations are
available from various blogs. For example, McKinley [120], principal engineer at Etsy,
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shared that endless scrolling is unfavorable and resulted in lower sales at Etsy. Fur-
thermore, Seyser et al. concluded that the Gestalt laws should be applied to structure
visual elements in order to make them understandable to the viewers. Kosara [88] pro-
vides an extensive overview of what he considers bad scrollytelling design features and
demonstrates that many aspects can easily annoy and distract viewers of scrollytelling
websites. Kosara mentions that the user should know upfront how long the story is
going to be and that direct access to different parts of the story is favorable [88]. Scrol-
lytelling content needs to be carefully designed. Transforming existing websites by
simply adding scrolling and unveiling content on demand often ends up in an unsatis-
factory user experience. Bostock [11] proposed scrolling implementation guidelines,
which equip us with five rules to follow in order to create an effective scrollytelling
website, namely: (1) Prefer scrolling to clicking, (2) allow rapid, incremental, re-
versible scrolling, (3) provide instantaneous consistent feedback, (4) avoid unwanted
disruptions and (5) support standard keyboard controls.

Narrative Authoring and Storytelling Editors According to Hohman et al. [61], cre-
ating interactive articles today is still difficult. It is often closer to building a website
than to writing a blog post or article. It also takes considerably more time than writing
a static article or even a scientific publication. According to Conlen et al. [29], me-
dia such as the New York Times, Washington Post, the Guardian, and FiveThirtyEight,
provide high quality multimedia narratives often referred to as interactives. The au-
thors noted that the data visualization community suggested research opportunities in
creating tools for driving the production of such interactive narratives. Creating or re-
creating interactives as presented by high quality newspaper providers is complex and
involves several experts [29].

Tableau [42] implemented their story feature by using story points. Story authors
can present interactive visualizations created in Tableau in a slideshow manner. While
the visualizations within one story point are interactive and allow for exploration, the
transition between points is not dynamic. In comparison to their approach, we focus
on smoothly animated transitions that change visual elemements in an incremental and
reversible manner. Furthermore, we allow for 3D data visualization, such as volume
and surface visualizations. Kouřil et al. [90] presented a novel way to prepare story
structures and automatically create concrete narratives for molecular documentaries.
They present a technique called story graph foraging and techniques for real-time nar-
rative synthesis. In contrast to their approach, we provide our stories on the web and
not as video and have a broader focus than molecular visualization. VizFlow by Sul-
tanum et al. [153] instead focused on data-driven articles. The authors used text-chart
linking strategies to create scrollytelling experiences and evaluated their approach with
12 authoring and 24 reading participants. Compared to VizFlow, we do not focus on
data visualization exclusively and allow for more extensive authoring opportunities. In
addition to narrative videos and text enriched with data visualization, interactive data
comics are another approach for presenting scientific insights. Wang et al. [167] pre-
sented a lightweight specification language entitled Comic Script to create interactive
and dynamic data comics. The approach supports branching, change of perspective,
and details-on-demand, as interaction methods for the viewer. The approach has sim-
ilar dynamic capabilities as our approach, but leverages a slideshow-like format, em-
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ploying point and click user interactions. Furthermore, we enable the visualization of
more complex data types such as maps, surfaces and volumes.

Two well known software applications for creating dynamic stories are Storn-
away [151] and Twine [161]. Stornaway features a node-link editor which allows for
the creation of dynamic interactive videos. Twine is an open-source tool for telling
interactive, nonlinear stories. Twine’s editor is based on a node-link diagram and is
designed for the creation of interactive fiction. Twine exports the story directly to
HTML. In comparison to these two applications, our approach enables the creation
of stories including various additional media types and creates a scrollytelling website
rather than a click-based website or video-based presentation, as is the case with Twine
or Stornaway, respectively. Furthermore, our editor includes a preview of all differ-
ent media content and introduces a hybrid approach between node-link diagrams and
storyboards. In contrast to these approaches based on graphical user interfaces, Satya-
narayan et al.[135] introduced a system which combines a domain specific language
(DSL), Ellipsis, with a graphical user interface-based story authoring tool. The authors
contributed a model for narrative visualization which helps story authors who may not
be familiar with web development to convey their stories as websites. They evaluated
their approach with a qualitative user study with feedback from journalists. The jour-
nalists where positive overall but mentioned that a node-link interface would be a good
way to author a story. Furthermore, the journalists asked for an easier way to present
non-linear stories. In contrast to this related work, we use scrollytelling to guide the
user through the story. Furthermore, we provide a node-link authoring tool and support
guided dynamic narratives.

The closest previous work to our approach is Idyll [29, 30] which consists of a
markup language for authoring and publishing interactive articles on the web. This
approach is based on a DSL designed for authoring interactive narratives combining a
markup language and in-line JavaScript components. Idyll Studio [30] has a graphical
user interface that lowers the threshold for non-experts to create interactive articles.
Compared to Idyll, we do not focus on creating a DSL and rather concentrate on editor
functionality and flexible support for different visualizations methods. Furthermore, in
addition to using parameter-based interaction we allow for dynamic narratives where
the viewers can choose pre-defined narrative paths.

D.3 Scrollytelling and Narratives

Storytelling is an effective way of conveying information and knowledge [96]. Accord-
ing to Joubert et al. [70], storytelling is the soul of science communication. Storytelling
and especially scrollytelling is increasingly used on the web. This trend is also reflected
in news outlets such as The Economist, the BBC, the New York Times and German sci-
ence magazine Substanz. Two examples of such stories are Unearthing the Truth [37]
and Genexpressionen [98]. In addition to stories created by news agencies, Apple
research recently started to present their latest research in form of interactive scrol-
lytelling based web pages, e.g., a story about interpretable adaptive optimization [148].
All of these stories are a joint effort between authors, designers and programmers to
enable media-rich and interactive scrollytelling experiences.

Across these sample stories, we have identified several common patterns. All of the
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Figure D.1: The ScrollyVis system consists of three main parts: story editing, story compi-
lation and story Presentation. The editing phase allows authors to create complex dynamic
narratives in the ScrollyVis editor. The story is exported in an XML format and is compiled
into a fully functional website within the ScrollyVis compilation phase. The website can sub-
sequently be presented in any standard web browser while the ScrollyVis created code handles
the dynamic narrative handling.

stories include textual information, in most cases combined with media such as images,
videos and audio. In some cases, more complex visualizations are presented, such as
the surface visualization of photogrammetry data in the story by the Economist [37].
The stories can be further categorized into partial or full scrollytelling websites. One
example of a full scrollytelling website is the the Genexpression story [98] , while the
Economist story [37] or the story created by Apple Research [148] employ it partially.
Creating such stories is associated with considerable costs and frequently involves a
team of programmers, web developers, authors, designers, directors and content con-
sultants, as exemplified by the the Genexpression story [98]. One of our main goals is
to reduce this cost and efforts in order to enable much smaller teams or even single in-
dividuals to create immersive and impactful stories about their work or other topics of
interest.

Stories can be told in many ways, influencing how the story is perceived by the lis-
teners, viewers or readers. A narrative specifies the order in which events are told as
opposed to the order the events actually happened [44]. Narratives can be in chrono-
logical order, telling the story in the order it happened, but it is also possible to present
events out of order in a nonlinear way [80]. In contrast to the story itself, which focuses
on the content, narrative is the expression of a story [157]. Narratives can be used to
maintain a sense of mystery by, e.g., withholding information in order to keep tension
high and the audience engaged [80]. User engagement is a very important aspect in
storytelling and to this end user-directed paths can be employed [158]. We differentiate
in this way between passive and interactive stories. To prevent ambiguity by overload-
ing the term "interactive" in a visualization context, we will refer to such stories as
"dynamic" in our approach.

Authoring media-rich scrollytelling experiences mainly consists of two parts: defin-
ing the content to present and specifying the relationships between content items. This
can be achieved in many different ways, as existing editors like Stornaway [151] and
Twine [161] demonstrate. Based on the discussions in the literature as well as our
analysis of scrollytelling content, we identify the following requirements for a system
enabling authors to create such stories:
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Figure D.2: A: presents the abstract unit story node which consists of a preview, a properties
section and connection nodes on all four sides. In B story transitions are depicted, in this
example the layering possibilities in ScrollyVis are shown. C presents a decision node where
the viewer can later in the story presentation choose which path they would like to pursue and
in D the context menu is depicted which allows for fast and accurate story creation.

1. The system should enable efficient definition of story content and content item
relations.

2. To support multiple narrative structures, there needs to be support for story
branching.

3. The system should ideally support all narrative structures proposed by Mun-
day [107].

4. The system should enable authors to specify how content items representing dif-
ferent or same media types should be combined.

5. Complex content layering combinations should be possible in the system.

6. The system should be easy to use for users at various skill levels and allow for
efficient story creation.

7. The created stories should be viewable in a standard web browser.

8. The story should support rapid incremental and reversible scrolling interaction.

D.4 ScrollyVis

To support the creation of media rich scrollytelling experiences, we introduce Scrol-
lyVis, a web based story authoring system which follows a no-code paradigm to create
media-rich and dynamic narratives. In the following, we present the individual con-
cepts and components of the authoring system. The system has three main components
responsible for story editing, compilation, and presentation (see Figure D.1). In the
following, we outline the main concepts in these three components.

D.4.1 Story Editing

The first component of our system is the story editor. This part of the system is respon-
sible for the specification of story content and the definition of relations between the
content items.
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Wohlfart and Hauser [170] employed the concepts of story nodes and story transi-
tions in their visual storytelling approach. Story nodes are stages within a story where
content is presented. They are connected by transitions and, similar to the work by
Wohlfart et al. [170], these transitions ensure a gradual progression between story nodes
and fulfill requirement 8 from Section D.3. Instead of clicking through a slide show,
we use scrolling as the only interaction control of the story progress which follows rule
1 of Bostock [11]. We abstract story nodes to consist of three different parts as visual-
ized in Figure D.2 A: a node preview, node parameters, and node connections. In our
system a story node is used as a content item and fulfills requirement 1 as outlined in
Section D.3. This design was motivated by storyboards which are widely used for the
purpose of pre-visualizing a movie, animation, or interactive media sequence. Depend-
ing on the node type, the preview can be static or interactive. In the current version
of ScrollyVis, nodes can consist of the following media types: text, image, video, au-
dio, map, 3D volume visualization and 3D surface visualization. Nodes which allow
for camera control such as volume or surface visualizations provide corresponding in-
teraction facilities within the preview window. Static previews are used for images,
videos, text, and audio files. The second part within a story node are the parameters.
The node parameter set is dependent on the type of visualization. While images, for
instance, have parameters specifying the position within the website and the size of the
presentation, complex nodes like volume visualizations feature a larger set of parame-
ters. These include the definition of which volume visualization method shall be used,
e.g., ISO value, maximum intensity projection or direct volume rendering with a trans-
fer function, and associated parameters. To support rapid story authoring, we initialize
every story node with a pre-defined set of sensible default parameters which can be al-
tered as needed. Story nodes feature connections ports, which are used to control the
story flow. In our system, every node is associated with a pre-defined code segment
which is instantiated with the given parameters. This instance is used when the story
author places the node onto the canvas of the editor. This allows for easy extension as
new node types simply have to be defined as a new template code in order to be usable
in the editor. Story nodes can be connected from left to right and from top to bottom.
Every node therefore features an output port on the right and on the bottom side and an
input port on the left and top.

Layers: To create complex combinations of story nodes we allow authors to com-
bine different nodes in a layered manner. Authors have to be able to specify that one
story node is presented while another story node is still shown to support media layer-
ing. There are different ways to depict such a behavior in an editor. Inspired by layered
tracks used in common video editing software, we propose a sub-path feature as visible
in Figure D.2 B. This sub-path allows authors to link story-nodes not only going from
left to right but also from bottom to top. Story nodes connected at the bottom of a pre-
vious node are added as another layer in the final story result. Story nodes attached on
the right side of previous node replace the previous one. With this simple design, dif-
ferent media types can be combined easily. In the example in Figure D.2 B, the story
elements are presented as follows. Item A is presented first, and item B is presented
while A stays visible. C is presented while A and B stay visible. D is presented while
A stays visible, and B and C disappear. Finally, E gets shown as a new content item.
This fulfils requirements 4 and 5 discussed in Section D.3. We refer to a node together
with its sub-path as a story segment. Story segments encapsulate parts of the story that
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belong together and are used as the primary navigational unit in the presentation of a
story.

Dynamic Narratives: Scrollytelling on the web is characterized by incrementally
revealing information based on scrolling interaction by the viewer. In scrollytelling,
viewers traverse a webpage along one axis in a linear fashion. The interaction is con-
strained to a single degree of freedom, i.e., scrolling up or down. When introduc-
ing dynamic narratives this pattern is no longer sufficient. Dynamic narratives are a
powerful story telling tool which boosts viewer engagement as story immersion in-
creases [107]. To support dynamic narratives and therefore requirement 2, we intro-
duce decision nodes and allow for multiple story endpoints in our node-link storyboard
as depicted in Figure D.2 C. At decision nodes, the author determines a point in the
story where the story branches out and the viewer is able to decide the next story seg-
ment. The author defines several story path options and defines the available branches.
By introducing such decision nodes we also fulfill requirement 3 introduced in Sec-
tion D.3.

Interface: Our prototype web-based editor was designed with efficiency and ease
of use in mind, according to requirement 6 from Section D.3. We allow users to build a
scrollytelling website by visual programming, i.e., dragging and dropping story nodes
onto a storyboard editor or by using a context menu shown and establishing links. We
introduce several usability features to allow for efficient story editing. First, every
connection port on a story node features a context menu which shows the possible new
node type connections on demand. The context menu is presented in Figure D.2 D.
Via the bottom connection menu, an image viewer, video player, audio player or a text
node can be created. When using the context menu on the main path, every node type
is available. As soon as the user selects one of the possible node types, the new node
is automatically placed on the canvas at a fixed offset to the current node and on the
same horizontal or vertical position, depending on whether it is a sub-path or main
path connection. Furthermore, editor canvas automatically scrolls to focus on the new
node. This allows for fast and accurate story creation with minimal interaction, while
the story graph layout is optimized by default.

In the context menu along the main path, we also provide a copy functionality as
present in Figure D.2 D in green. This feature allows the story author to copy the current
node with all its properties. The copy is automatically connected to the current node.
This feature is mainly interesting for node types which feature complex interaction
methods like camera control (e.g., volume or surface visualizations). By copying the
current node with all its settings, animated camera transitions can be authored in a rapid
manner. In the copied node, the author just has to move adjust the settings and in the
final web page the camera will zoom, pan, and rotate to transition between the two
views.

The story graph is serialized into an XML format. The XML document stores all
nodes and their parameters as well as all node connections. The resulting files are hu-
man readable and can also be adjusted manually. Furthermore, this simple intermediate
format also enables the future exploration of additional higher-level interfaces such as
wizards which may serve as a starting point for customization. After the author finishes
story editing, they can export the story as a web page ready to deploy it on a web server.
We call this process story compilation and describe it in the following subsection.
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Figure D.3: Depiction of the ScrollyVis editor representing the same functionalities as pre-
sented in the abstract system depiction in Figure D.2. Stories can be created either by drag-
ging nodes from the left onto the canvas or by using the context menu as presented on the right
side of the Figure. All nodes where applicable feature a preview window.

D.4.2 Story Compilation

At any point during the editing phase, the user can trigger the compilation of the story
into a ready-to-deploy website. The input of the story compiler is the story graph in
XML format together with all media content, e.g., images and videos. Depending on
whether decision nodes are present, a story can be presented as a linear sequence of
story nodes or as a tree where the narrative structure branches out after every decision
node. Every story node represents different types of content, e.g., text or an image,
that has to be translated from story logic in XML to HTML, CSS and JavaScript code
for the final presentation in every standard web browser which fulfills requirement 7
presented in Section D.3. The compilation phase is divided into two steps: first the
story content nodes are created and then the node transitions are set up.

Story Contents: First, the story graph delivered from the ScrollyVis editor is tra-
versed to define the story tree and to create the content for the resulting website. Each
story node is represented as pre-defined HTML and CSS code, dependent on the node
media type. Less complex media like text, images, videos, and audio can be converted
directly to HTML code. More complex media, e.g., map views, volume visualization,
and surface visualization, need content loading code in addition. On traversal of the
story graph, a story tree is created. Except for the root, leaf, and decision nodes, ev-
ery node has exactly one predecessor node and one successor node. In this step the
sub-tree of every node connected via the sub-path port is flattened. The sub-path fea-
ture is especially important in defining the transition between story nodes. A decision
node is the only node which has multiple successor nodes to create branching points in
the story tree. In a second step, we traverse the generated story tree and take main- and
sub-path information into account.

Story Transitions: In the second step of the story compilation, we focus on story
node transitions. The behavior of every node in the story is defined by its state before,
during, and after node traversal. Before traversal, the node the content is not visible.
This state is defined in the JavaScript code by setting the opacity to 0. Node transition
handling depends on the existence of a sub-path. If there is no sub-path, the node will
be blended in and out within the scrolling extent of the current node. In our current
version we a scroll extent of 1000 pixels per story node by default, but this value can
be adjusted by the author. If there is a sub-path, the current node will be blended in and
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then faded out only when the next main path node is traversed. In addition to blending
node opacity, further transitions such as camera movement and dynamic parameter
changes are also handled within the node scrolling extent. After the node has been
traversed, it indicates its successor node. The only exception to this is the decision
node. At a decision node, successor selection is dependent on viewer interaction. As
soon as the viewer decides upon a story branch and scrolls, the selected successor node
is hooked to the decision node and the story viewer can carry on viewing the story.
When scrolling back up the successor is unhooked again to enable different story path
traversals. The compiled story includes node content in HTML and CSS as well as
node content loading and transition code in JavaScript. In addition, it includes static
code handling volume visualization, the Sketchfab integration for surface rendering,
Mapbox code for map views, and static CSS styling code. The compiled story is put
together as a complete website that is ready to deploy on a web server.

D.4.3 Story Presentation

After compilation, the story is ready for presentation. Stories created in the ScrollyVis
editor are exported ready to be deployed on a webserver after compilation. Viewers
can simply open the scrollytelling story in a web browser of their choice and interact
with the story by scrolling. One important aspect of smooth story presentation are the
transitions between different story nodes. In our case, the transition between the nodes
is defined automatically, based on the current node content and content of the story
segment displayed previously. These transitions allow for rapid, incremental, reversible
scrolling and to provide consistent and instantaneous feedback following rule 2 and rule
3 from Bostock [11]. In addition, we introduced a rudimentary keyboard control option
to progress the story to fulfill the last rule of Bostock [11] which could be extended on
in a future version of ScrollyVis.

Transitions

Node transitions depend on the predecessor and successor node content and parameters.
Furthermore, behavor differs according to whether they are part of main- or sub-path
traversal. In general, as sub-paths are traversed, transitions are made by blending the
opacity of the current and previous node content. Within the main path more elabo-
rate transition methods may be used. Between media nodes of a different type, e.g.,
picture to video or volume to surface visualization, the transition works via opacity
change. More elaborate transition methods are available for map, volume, slice, and
surface nodes. Every transition is linked to viewer scroll interaction and works in both
scroll directions without using triggered animations. One exception is the embedding
of videos, where video playback is triggered by viewer scrolling interaction.

Map View: When first entering a map view from any other node type, the map will
be introduced by an opacity change combined with a zooming transition from far away
to close to the target location. Between two map views at different locations, the story
viewer will fly from the initial location to the next target location. On this flight, the
zoom level is adjusted to replicate a parabolic flight or jump [164].

Direct Volume Rendering and Slice Views: When entering a volume visualization
node, the zoom level is adjusted to the zoom level set by the story author in the volume
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visualization node. When transitioning from one volume visualization node to another
with the same input data, multiple parameters are linearly blended. Camera translation,
rotation, and zoom level are updated based on user scrolling interaction. In addition,
there are volume-specific parameters available for blending such as the lower and upper
intensity value range limit and the ISO value. The lower and upper intensity value range
limits are used to change the contrast for the volume rendering by limiting the applied
color map to a reduced value range. The ISO value defines the value which is used
in the ISO-Surface volume rendering method and defines which voxels are set to be
within and which ones are outside of the surface of interest. If the volume is shown
as a slice view, the slice index is also altered from the previous node slice index to the
current one.

3D Surface Visualization: When entering a 3D surface visualization node, the
opacity of the visualization is altered based on viewer scrolling interaction. Between
two 3D surface visualization nodes representing the same data set, similarly to vol-
ume rendering, camera position, camera rotation, and camera zoom level are updated
through scrolling. These transitions allow for natural camera movements and anima-
tions by simply defining start and end camera positions in two story nodes within the
ScrollyVis editor.

Story Length

Story length is determined by the overall number of nodes included in the story. In or-
der to ensure a stable story viewer experience, we do not alter the length of the story
transition based on the content. The story nodes and transitions have a consistent scroll
length. As transitions at times contain complex camera movement and transitions, they
are equally important as image and video presentation. Story pacing is solely deter-
mined by the scrolling speed of the story viewer. The overall story length can be influ-
enced by the overall website height. We provide a pre-defined website height where we
allocate 3000 pixels for each story node, including in- and out-transitions. This value
can be changed on demand by the story author. As we also allow for dynamic narra-
tives, the visible scroll bar extent loses importance in the story presentation as shorter
paths in a story result in the scroll bar indicator not reaching the end of the scroll bar.
To remedy this, we introduce a concept that replaces the scroll bar in our story presen-
tation, similar to how the Genexpressionen story handles scrolling indication [98].

Dynamic Narratives

To enable exploration of dynamic narratives on the web with reversible decisions, we
introduce a real-time on demand story node linkage method. In the exported web page,
the story is created on the fly. Every story node is linked on demand to the next one and
the story transitions are defined in real-time in order to enable dynamic narratives. If a
decision node is encountered by a viewer, they can select a path and the selected branch
is traversed. If the viewer scrolls back previous traversed story nodes are "unhooked"
allowing for rapid story transitions in both directions in real-time. This flexible ap-
proach allows for reversible dynamic narratives on the fly while allowing for smooth
and uninterrupted scrollytelling viewer experiences.
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Story Tree View

According to Kosara [88], it is important for scrollytelling viewers to get a sense of the
overall story length and where they are currently positioned within the overall story.
As visible in the example story in Figure D.5 on the right-hand side, we present a
story overview. The viewer can see how many segments the story consists of, if there
are decision steps, and which media types are present. In addition, they can see what
story point they are currently viewing, how many steps have been traversed, and how
many there are still to explore. The story tree view consists of nodes representing story
segments depicting node type as an icon, where the root node is visualized at the top
and subsequent nodes are placed underneath predecessor nodes. Furthermore, decision
nodes show up as splits into story branches. The viewer can always track what part of
the story they are currently exploring, and to which point they have to scroll back to
explore another decision path. In Figure D.5, an example story and the accompanying
story tree view are visible. While scrolling through the website, the outer ring of the
story nodes the viewer has already visited will turn gray from the original blue color
one by one. This keeps track of previous decisions and allows viewers to scroll back
up to select other unexplored paths.

D.5 Implementation

Index.html

base.css

THREE.js

SliceShader.js

VolumeShader.js
loadData.js

Instances.js

volume-render.js

Nifti-reader.js

map-code.js

Mapbox.js

index.js

data/* uos.js

Created on Demand

styling

Figure D.4: Exported website structure: in-
dex.html is the starting point for the scrol-
lytelling website. In blue, we present nodes
where code is generated on the fly and in gray
we present nodes which have been developed
by us, but are story-independent. Violet nodes
reflect imported external libraries.

In Figure D.4, the overall structure of ex-
ported websites is presented. In Scrol-
lyVis, we build up upon a variety of differ-
ent JavaScript libraries. Drawflow [147]
delivers the base functionality of drag-
ging and dropping nodes onto a canvas
for further linking up with other nodes.
It provides standard interactions for plac-
ing and linking nodes. Furthermore, we
customize the existing XML export func-
tionality for the serialization of our sto-
ries. In order to fulfill our requirements,
we added several features and altered spe-
cific behaviors of the library. First, we
added previews to all nodes in order to
enable storytellers to preview the final re-
sult of the website while editing. We also
implemented support for drop-downs and
check-boxes within nodes for setting spe-
cific parameters and the ability to cus-
tomize connection ports in order to real-
ize our layering approach. Another major addition is the context menu that is depicted
in Figure D.3 on the right. It can be customized for each node type and features only
nodes which are compatible with the associated node port.

The volumetric visualization is based on WebGL and we leverage Three.js [20] as a
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Figure D.5: An example story is visible on the left with the associated story tree visualization
on the right.

basis for both direct volume rendering and slice views. We use custom vertex and frag-
ment shaders to enable direct volume rendering in Three.js, based on code provided
by Valentin Demeusy [34]. To allow for volume rendering in Three.js [20], we added
shaders for volume and slice rendering to the library using WebGL. For the volume
shader, we currently support maximum intensity projection, isosurface visualization
and direct volume rendering. When including map views, we use Mapbox and Open-
StreetMap. We use JSZIP [86] for dynamic website packing making the website ready
for downloading. For reading NIfTI files, we use NIFTI-READER-JS developed by
Jack L. Lancaster and Michael J. Martinez [92–94]. We utilize uos.js to support scrol-
lytelling in our approach, which is provided by Colin van Eenige [38]. To allow for
efficient 3D surface visualization we integrate Sketchfab [143] by using the Sketchfab
API. We plan to make our ScrollyVis editor freely available so that interested parties
can generate their own scrollytelling web pages for scientific communication and out-
reach activities.

D.6 Case studies

We invited researchers from three different scientific fields to create stories about their
work together with us. For further details, we refer to the additional materials for high
resolution images of the networks created and video versions of the websites. Inter-
active additional materials, including the case studies as websites, are available at the
following link: ScrollyVis use cases . For our scenarios, we invited an osteology expert,
a meteorology visualization expert and a PhD student in anatomy education. Two of the
experts have a doctoral degree in their respective fields and several years of experience
and one is a PhD student. For our case studies, we created a guided dynamic narrative
about their research and gathered their impression of our prototype, the presentation-,
and interaction-style. In addition, we invited them to share their views on the poten-
tial of scrollytelling as a tool for scientific communication, education, and outreach to

https://ericmoerthuib.github.io/ScrollyVis/
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a more general audience. As a first case study we present a recreation of a story by The
Economist.

D.6.1 The Economist: Unearthing the Truth

Figure D.6: An archaeological story by The Economist
including 3D models of the Great Enclosure and the
Hill Complex by the Zamani Project of the University
of Cape Town. On the left a screenshot of the original
story and on the right side our version.

In order to exemplify that our
approach is capable of repro-
ducing professionally developed
scrollytelling content, we use the
story mentioned in section D.3
by The Economist. It employs
3D models of the great enclo-
sure and the hill complex, cre-
ated by the Zamani Project of the
University of Cape Town, South
Africa. Creating such websites
involves extensive web develop-
ment skills and takes a substan-
tial amount of time to create. To
show the utility of our editor, one
of our authors created a similar
story with our editor in 15 min-
utes using models available on
Sketchfab (see Figure D.6). The story is included in the additional materials and avail-
able at the following link: Our Story, the original story is available under the following
link: The Economist [37].

D.6.2 Scientific Outreach: Osteology Research

Together with the first expert, an Associate Professor at the University Museum of
Bergen and the curator of the modern osteological collections, we have formulated a
case study focused on outreach activities. Part of the story content is highlighted in
Figure D.7. The volumetric data used in this story were acquired by a Computed To-
mography (CT) scanner. The story primarily focuses on polar bears in Norway, inspired
by a blog post on this topic explaining characteristics of their skulls in relation to their
habitat. In the story, we include several decision nodes to support viewer engagement
and educational goals. Furthermore, we import custom geo-spatial data, consisting of
polar bear sightings in Norway around Svalbard. The goal of the story is to showcase
the potential of using our tool as a scientific outreach tool and for creating interactive
web-based museum exhibits. First, we introduced our ScrollyVis editor to the osteol-
ogy expert and invited her to create a story completely on her own including various
media types like a map view or a volume visualization. The expert has some experi-
ence in working with volume visualization and gave us the feedback that our interaction
methods are as simple as the other tools she uses in her work. Furthermore, she created
a volume animation consisting of several steps and told us that she has never created

https://ericmoerthuib.github.io/ScrollyVis/UnearthingTheTruth
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such an animation before. After this phase of the evaluation, we created a story to-
gether with the expert and encouraged her to speak openly about potential advantages
and disadvantages of our approach.

Figure D.7: Direct iso-surface volume rendering and
slice volume rendering of scanned animal skulls in the
osteology story co-created with an expert.

She thinks that the story cre-
ated with ScrollyVis has a high
potential to excite and engage
visitors of the University Mu-
seum. According to her, the
questions presented in the story
can engage the viewers. Dur-
ing our discussion, she added
that it would be beneficial to
make the story mobile phone-
friendly such that museum vis-
itors can re-experience or share
their experience within the mu-
seum with friends and family.
She thinks enhancing the exhibi-
tion with on-demand mobile- or
touchscreen-based scrollytelling content has high potential to enrich the museum at-
tending experience. In comparison to specifically designed museum exhibits that are
developed together with visualization researchers, e.g., Living Liquid by Ma et al. [99]
or Sea of Genes by Dasu et al. [33], creating a story with ScrollyVis is feasible with-
out collaborating with external researchers or paying for professional services. She
reflected that our editor is nicely designed and looks user-friendly, though she expects
that an initial learning phase together with us might be helpful. All in all, she is ex-
cited about the potential of ScrollyVis for scientific outreach activities and would like
to further explore the opportunities in her blog posts and potentially for an upcoming
exhibition in the University Museum.

D.6.3 Meteorological Visualization

Figure D.8: A meteorological story including a storm
strength and hail visualization using custom code pro-
vided by the paper authors.

The second story is authored to-
gether with a visualization ex-
pert. She is specialized in envi-
ronmental visualization and her
latest publication features geo-
spatial and meteorological data
visualization. First, she created
a story including map views and
decision nodes, which is essen-
tial for communication of her
work, on her own. Finally, we
jointly created a story present-
ing one of her papers [35]. The
paper presents Hornero, a vi-
sual analytics tool for the detec-
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tion and characterization of haz-
ardous thunderstorms. Meteorological visualization is a very powerful tool to analyze
the potential effects of hazardous weather phenomena. Presenting this information to a
targeted audience or the general public is crucial to limit life-threatening risks. In addi-
tion to providing analytics tools for meteorologists and expert forecasters, it is equally
important to present the results in an easy and comprehensible way to a more general
audience. Selected story elements from the Hornero story are shown in Figure D.8.

In general, this expert liked our ScrollyVis editor for authoring the story about her
work, but she thought it would be interesting to actually show the Hornero-based inter-
active visualizations in the story. To this end, we included custom code provided by the
authors of Hornero to integrate their custom geo-spatial visualizations. She thinks that
ScrollyVis is an exciting, accessible and easy way to create scrollytelling stories for the
web. She has experience in creating websites and thinks that our approach greatly sim-
plifies the process of producing high-quality and easily accessible content. In a recent
project, she has used Figma to create mock ups and she thinks that one advantage of
our approach is also that the full source code of the resulting website is available. In
the future, she considers using our approach to explore the implications of interaction
methods on communicating severe weather conditions to the general public. Similar to
the first expert, she also requested improved support for mobile devices, as we currently
mainly focus on desktop viewers. By simply altering the style sheet, we could already
make the websites mobile friendly. Furthermore, she mentioned that our story tree view
can be valuable for the story viewers but she would like to add keywords to the differ-
ent nodes and would like them to be interactive and clickable. In conclusion, this expert
thinks that ScrollyVis could be a part of many aspects of meteorological visualizations
and can be used to communicate weather events in an exciting and engaging way.

D.6.4 Anatomy Education

Figure D.9: ScrollyVis case exploring anatomy educa-
tion potential based on specimen surface scans. The au-
tomatic camera transitions defined by starting and end
point in the editor is particularly interesting in this case.

The third expert we invited to
use ScrollyVis is a PhD student
who studies different means of
anatomy education for medical
students. She investigates dif-
ferent presentation media to ana-
lyze the effectiveness and learn-
ing outcomes. In their cur-
rent setup, Sketchfab is used to
show anatomical surface scans
of bones which are made avail-
able within the online learning
platforms the students are used
to. The expert would like to use
ScrollyVis to explore the effec-
tiveness of guided dynamic nar-
ratives as teaching method com-
pared to their existing content. She was invited to use ScrollyVis and was then asked
to take part in an interview with us. The researcher was able to create stories on her
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own after watching the introduction video included in the additional material, with-
out needing any support from us. She sees great potential in the editor and thinks the
integration of Sketchfab enables them to create stories which might increase the learn-
ing outcomes of the medical students. Her advisor, a professor teaching anatomy and
practicing orthopedic surgeon, appreciates the support for including audio files to add
spoken commentary to interesting spots of the bone surface scans. This is a feature that
is not available in the standard interface of Sketchfab. Furthermore, the expert would
wish for a separate quiz mode where the students are not able to change answers after
making a decision in a branching node.

Table D.1: Response of the participants on a 5-point Liker scale, where 1: strongly disagree,
2: disagree, 3: neither agree nor disagree, 4: agree and 5: strongly agree. Statements marked
with a star are rephrased to the positive form in this table with inverted scores for presentation
purposes. In the rightmost column, average values are presented. The second to last row
reveals the results of the SUS questionnaire. The last row shows the time it took the participants
to create the second evaluation story.

Statements S1 S2 S3 S4 S5 S6 P1 P2 P3 P4 O1 O2 Avg.

G1 I would like to use the ScrollyVis editor for creating Scrol-
lytelling websites

4 5 4 5 5 5 4 5 4 5 5 4 4,58

G2 Interacting with the editor is straightforward * 5 4 4 5 4 4 5 5 4 5 4 5 4,50
G3 I don’t need any web development pre-knowledge to create a

website with the editor *
5 5 4 5 5 5 5 5 5 5 5 5 4,92

G4 Creating a story based on the nodes and links in the editor is
straightforward

4 5 4 5 3 5 4 5 4 4 4 4 4,25

G5 I don’t need help using the editor to create a Scrollytelling web-
site in addition to the provided tutorial

5 5 4 4 4 5 4 5 2 5 3 4 4,17

N1 The node preview (see image) helps me to find the right visu-
alization settings for each file

5 5 4 5 4 4 4 5 3 5 5 5 4,50

N2 Adding a map view with a specified location was easy for me
*

5 5 5 5 5 5 5 5 3 5 5 4 4,75

N3 Using ScrollyVis, I don’t need pre-knowledge about shaders
and WebGL to create a volume visualization on the web

4 5 3 5 5 4 5 5 3 5 5 5 4,50

N4 I can easily integrate a video in my story 5 5 5 5 5 5 5 5 5 5 5 5 5,00

N5 Combining different node types (e.g., map, text, image, . . . ) is
easy *

4 5 3 5 5 5 4 5 5 5 5 5 4,67

I1 The preview window in each node helps me to imagine the
resulting website while editing it

3 4 4 5 4 3 4 4 5 4 5 4 4,08

I2 The clone interaction (see image) helps me to create an anima-
tion of volume data

5 5 5 5 4 4 4 5 5 4 5 4 4,58

I3 The main path and sub path feature helps me to create more
complex stories

5 5 5 5 4 5 4 5 3 4 5 3 4,42

I4 The context menu (see image) helps me to create stories more
efficiently *

5 5 5 5 5 5 5 5 5 5 5 5 5,00

I5 Linking the nodes to create the story I would like to tell is easy
and self-explanatory

3 5 3 5 4 4 4 5 5 5 4 4 4,25

I6 Creating a story with the editor does not need pre-existing
knowledge about designing storyboards *

5 5 4 5 4 5 2 5 5 5 5 5 4,58

I7 Adding questions for the viewer to decide which path the story
shall go is easy and intuitive

4 4 4 5 4 4 4 5 2 5 5 3 4,08

I8 The interaction methods used to define the volume visualiza-
tion are intuitive and easy to use

4 4 5 2 3 3 4 5 4 5 4 4 3,92

R1 The tree view on the final website helps me to know in which
path of the story I am.

4 5 4 5 5 3 4 5 3 4 5 5 4,33

R2 The resulting webpage reflects the intention I had when design-
ing the story in the editor *

5 5 5 5 4 5 4 5 4 5 5 5 4,75

R3 The viewer interaction (decisions) is nicely integrated on the
website

5 5 4 5 5 3 4 5 4 5 4 3 4,33

SUS System Usability Scale 90 97,5 82,5 100 87,5 82,5 80 100 90 90 92,5 95 90,63

T Time to create the second story 04:36 05:39 03:36 03:50 02:56 02:46 04:42 09:30 04:18 05:17 07:20 08:21 05:14

D.7 Evaluation

To evaluate the usability of our web-based authoring tool, we invited twelve people with
diverse professional backgrounds. E1-E6 are masters students in computer science, E7-
9 are PhD candidates in the field of visualization, E10 is a PhD candidate in the field
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of machine learning, and E11 holds a PhD degree in cell biology and is a post doc in
the field of cancer imaging since 2018. Finally, E12 holds a PhD degree in medical
imaging physics. None of the participants were involved in the development of our
tool.

In the beginning of the evaluation, we invited the participants to watch a ten minute
long ScrollyVis introduction and a tutorial video that is included in the additional ma-
terials. After that, participants were invited two create two different stories with the
editor. The first story had the goal to familiarize the study participants with the differ-
ent node types and interactions the editor provides by asking them to construct a story
about a black grouse. In this story, the participants could still ask for help if they got
stuck or had questions regarding the editor. The requirements for this story were that it
has to include the following node types: decision, image, video, text and volume visu-
alization. If these requirements were fulfilled, the first story was finished. The second
story authoring task was more specific and included map views, image views, a deci-
sion node and text views. The participants also had to define both main paths as well
as sub-paths to fulfill the task requirements. For this part of the evaluation, we only
monitored the work of the participants but did not help them to reach their goal. Fur-
thermore, we measured the time it took the attendants to fulfill the requirements. We
used a think-aloud protocol where we asked participants to vocalize their thoughts and
share their experience while they created the stories. After the study, the participants
were invited to answer a questionnaire with 21 questions regarding different aspects of
ScrollyVis. In addition to our evaluation form, the participants filled out the system us-
ability scale (SUS) designed by Brook et al. [17]. All statements are evaluated based
on a 5-point Likert scale with some statements negatively formulated.

D.7.1 Evaluation Results

The results of the evaluation are shown in Table D.1. All questions which are marked
with a star were negatively formulated and we present them here in their positive form
with inverted responses for ease of interpretation. Overall, the study participants pro-
vided positive feedback about the editor. The lowest average value in our study is
3.92 out of 5 regarding the volume visualization methods and the two most positive
responses with 5 out of 5 are about the integration of videos in a story and the use-
fulness of the context menu. The study participants were positive about the preview
windows we integrated in the editor, but some wished for a more accurate depiction
of how things will be aligned on the final website. The current functionality of plac-
ing text in horizontal and vertical alignment presets was sufficient for the participants,
but some wished to see where the text box will be displayed in the node preview. One
participant mentioned that he thinks some help was needed during the creation of the
website, but overall, the score for that point is 4.17 out of 5. One evaluation partici-
pant suggested that some previous knowledge on working with storyboards is helpful.
Another participant thought that the decision node usage could be improved by high-
lighting the options along the paths exiting the decision node. All participants generally
agreed that they do not need prior web development knowledge (4.92/5) and most par-
ticipants would like to use the editor in the future (4.58/5). We further received positive
feedback about the clone feature and that the resulting website reflects the intention of
the story creators (4.75/5).



D

D.7 Evaluation 117

System Usability Scale Scores Our SUS scores are presented in the last row of the
evaluation result in Table D.1. The results range from 82,5 to 100. On average, our ap-
plication reached a SUS score of 90.63. Bangor et al. [5] introduced different ways of
interpreting SUS scores, including the acceptability range, a grade scale, and an adjec-
tive rating scale. ScrollyVis achieved the highest score possible in all three categories:
the acceptance rate is Acceptable, the grade scale score is A, and the application re-
ceived an adjective rating of Excellent.

Story Creation Time The user evaluation included a section where participants cre-
ated a well-defined story on their own after familiarizing themselves with the editor.
For this part of the evaluation, we report the average and individual story creation time.
The average story creation time was 5 minutes and 14 seconds. The shortest time was
2 minutes and 46 seconds and the longest was 9 minutes and 30 seconds. In our results,
the master students of computer science were the quickest, followed by the PhD stu-
dents. The two participants with backgrounds in medical physics and cell biology took
slightly longer to create their stories.

We conclude from this initial study that ScrollyVis was considered useful by stu-
dents and researchers of various backgrounds. In general, ScrollyVis received positive
feedback from all participants and the most of them would like to use the editor in the
future for various tasks. For example, some stated they would like to create a review of
their achievements in the last year or to present the latest research results. The partic-
ipants reported that the editor features all necessary and relevant features to use it for
creating scrollytelling websites. Still, the participants had feature requests to improve
the user experience even more. However, none of the evaluation participants felt that
features were currently missing in order to effectively work with the editor.

D.7.2 Expert Feedback

To gain further insights into the utility of our approach, we conducted an interview with
an expert in scientific storytelling via interactive articles. He holds a PhD in Computer
Science and Engineering and worked collaboratively with designers, developers, and
scientists at Apple, Microsoft Research, and the NASA Jet Propulsion Lab. We pre-
sented the expert our editor and all capabilities it provides and afterwards we discussed
the stories created in our case studies. In general, the expert found that current tools
capable of creating stories comparable to our results are cumbersome and involve ex-
tensive knowledge of web development skills. One similar approach called Idyll [29]
focuses mainly on parameter exploration and does not support as many media types out
of the box as our editor does. According to the expert, the support of immersive media
like 3D volumetric and surface data is unique and makes our editor stand out compared
to other approaches. Furthermore, the non-linear path support makes the stories more
engaging and interesting to explore. The expert thought that the stories we presented
were of high quality and was impressed by the ease of use of our editor. Normally, de-
veloping such scrollytelling experiences involves different skills and may include teams
of 6 to 12 people, whereas with our editor it is feasible for one person alone to create
a similar story if suitable assets are already available. Furthermore, the expert thought
that scrollytelling websites are an important aspect of scientific communication and he
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believes that our editor could make significant contributions to the developments in this
field.

D.8 Discussion

Our approach can generate guided interactive narratives in a scrollytelling environ-
ment. In our prototype authoring tool, authors without programming experience can
create such interactive narratives with simple drag, drop, and linking interactions. Dur-
ing our case studies with experts from different fields, we noted high engagement both
in viewing and authoring stories. Our approach has potential for outreach to the general
public and as well as for more specialized applications such as medical education. For
example, scientific communication goals could be achieved by including ScrollyVis-
authored stories on the web to advertise museum exhibitions or to communicate re-
search results. Other potential use cases for ScrollyVis are the creation of additional
materials for scientific papers and anatomy education based on scanned anatomical
specimens. ScrollyVis could be a part of paper submission materials as well as ’sci-
ence in plain English’ presentations of scientific results. While scrollytelling in general
might not be the best fit for all visualization goals, in particular for tasks that are of a
more exploratory or analytical nature, we believe that in combination with guided dy-
namic narratives it can be an effective way to present information. As demonstrated by
our use cases, all experts were excited about the potential ScrollyVis offers and have
concrete plans for use of ScrollyVis in the future.

One potential avenue of improvement frequently mentioned by the experts is lim-
ited support for mobile devices in the current prototype implementation. One solution
would be to use server-based rendering for some of the more computationally heavy
visualization techniques. In addition, the style sheet for the exported websites is cur-
rently not designed for mobile devices. Furthermore, we would like to explore the
possibilities of including a Latex and Python interpreter to our editor in able to allow
researchers to present their mathematical formulas in the same way as in their papers. A
Python interpreter would be beneficial as it would simplify the creation of information
visualization on the fly in a form many researchers are used to. Currently, we support
all dynamic narrative structures introduced by Munday [107], but some improvements
could be made in the context of concentric narratives, where it may be convenient for
viewers to automatically return to the initial decision node after having reached the end
of a story segment.

D.9 Conclusion and Future Work

With ScrollyVis, we introduce an authoring approach for realizing guided dynamic nar-
ratives as scrollytelling websites. We designed a extensible web-based story authoring
tool that exports results ready for deployment on a web server. Our approach utilized a
hybrid node-link storyboard editor which allows storytellers to get a good understand-
ing of the resulting story during the authoring phase. Furthermore, a story tree view is
available during story viewing that shows the story extent at a glance and where in the
story viewers currently are. Finally, our story nodes support a variety of different media
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types including images, videos, audio, interactive maps, direct volume rendering and
surface visualizations. Our system was designed with extensibility in mind, allowing
for the easy integration of additional content.

We present a quantitative user evaluation with twelve independent participants with
various professional backgrounds. Overall, ScrollyVis got a positive response from the
study participants. The System Usability Scale was on average at the best possible
grade level. The participants would like to use the editor in the future and think all rel-
evant features are included to effectively work with the editor. Furthermore, we present
four case studies, three of them collaboratively authored with experts from three differ-
ent scientific disciplines. Overall, all experts were highly engaged in both authoring and
viewing the stories. They expressed interest in using our approach in future projects,
ranging from blog posts to creating additional publication materials. Furthermore, we
invited an expert in the creation of interactive online articles to qualitatively evaluate
the ScrollyVis editor and the quality of the created stories. The expert thinks that our
approach has great potential and fills a gap in the scrollytelling editor landscape. The
quality of the stories matches those created by big news agencies, but the creation does
not require a large team of web developers. In general, the expert is convinced that
ScrollyVis is valuable and useful for scientific outreach.

With this work, we demonstrate the potential for our approach to create immer-
sive guided dynamic scrollytelling web experiences without having to write any code.
We are confident that our authoring tool is a basis for further research in guided dy-
namic narrative structures and their effectiveness for scientific communication and ed-
ucational purposes. Viewer engagement is a top priority for storytellers and with Scrol-
lyVis we empower authors to create dynamic stories and explore their effect on viewers.
In the future, we would like to extend our authoring tool and provide default templates
to further lower the barrier to getting started with ScrollyVis. These templates could
provide general structures used in different story types and the authors can then bring
in custom content. We also envision a collaborative editing process where multiple au-
thors can work on the same story. Furthermore, we would like to enhance the tree view
with interactive navigation actions to directly access various story elements and to add
further node transition possibilities between nodes of different types. With our work,
we aim to inspire people to share their stories as we are confident that everyone has a
story worth telling.
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