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ABSTRACT
Tumor tissue characteristics derived from imaging data are gaining
importance in clinical research. Tumor sub-regions may play a criti-
cal role in defining tumor types and may hold essential information
about tumor aggressiveness. Depending on the tumor’s location
within the body, such sub-regions can be easily identified and deter-
mined by physiology, but these sub-regions are not readily visible to
others. Regions within a tumor are currently explored by comparing
the image sequences and analyzing the tissue heterogeneity present.
To improve the exploration of such tumor sub-regions, we propose
a visual analytics tool called ICEVis. ICEVis supports the identifi-
cation of tumor sub-regions and corresponding features combined
with cluster visualizations highlighting cluster validity. It is often
difficult to estimate the optimal number of clusters; we provide
rich facilities to support this task, incorporating various statistical
measures and interactive exploration of the results. We evaluated
our tool with three clinical researchers to show the potential of our
approach.
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1 INTRODUCTION
Cancer is globally the second leading cause of death according to
a report published by the World Health Organization in 2018 [2].
Different tumor types exist, ranging from low-grade tumors with a
favorable prognosis to high-grade tumors associated with a high
risk of relapse and cancer spread. Surgery is the most common
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treatment type. Early diagnosis and treatment planning are crucial
for optimizing the therapy of endometrial cancer [1]. A challenge
that can arise when dealing with endometrial tumors, as well as
other types of cancer, is tumor heterogeneity [1]. The number
and composition of tumor sub-regions may vary between different
patients. Still, their identification may be an essential factor for di-
agnosis, tissue sample (biopsy) selection, and/or therapy planning.
At present, tissue heterogeneity is examined by the acquisition of
histopathological data from tissue biopsies and, in recent research,
by analyzing the tumor imaging data as a whole using radiomic
tumor profiling [6, 12, 22]. Feature detection from medical imaging
data alone could potentially replace invasive biopsies and improve
the expected quality of life of the patients after treatment [27, 34].
The clinical imaging routine for endometrial cancer detection and
therapy includes standard MRI sequences. In some cases, addi-
tional sequences that might better distinguish tumor patterns are
acquired for research purposes. This enables the consideration of
different tumor characteristics that are visible in various imaging
sequences [18]. The combination of multiple MRI sequences is often
referred to as multiparametric medical imaging data. To enable clin-
ical researchers to explore and evaluate tumor sub-regions in cancer
research, we propose ICEVis. ICEVis is part of an ongoing collab-
oration with two clinical experts and enables endometrial cancer
researchers to interactively explore hierarchical clustering results
based on their multiparametric medical imaging data. The main
contribution is a visual analytics approach that supports the assess-
ment of individual distinct tumor sub-regions and relevant features
in single patients across imaging sequences. Our approach employs
a hierarchical clustering embedded in a visual analytics platform
which allows for detailed tumor sub-part analysis. To confirm the
utility of our approach, we conducted a qualitative evaluation in-
cluding three experts in machine learning and gynecological cancer
imaging research.

2 MEDICAL BACKGROUND
One of the main research goals of our collaborators is the explo-
ration of endometrial and cervical cancer imaging biomarkers to
improve predictions and personalized treatment strategies. Ongo-
ing research aims to analyze relevant imaging features such as
texture as well as to develop automatic methods for segmentation
and classification [5, 9, 11, 34]. For this reason, the tumor is seg-
mented before the analysis phase, which is currently done mainly
manually, taking only one of the several sequences into account.
Our collaborators acquired multi-parametric scans of 92 patients
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Figure 1: A: a t-SNE result based on all available sequences with subsequent k-Means clustering (k=3). B: hierarchical clustering
applied before dimensionality reduction and visualized in the same t-SNE result. C: The hierarchical clustering results in a
slice-based view as an overlay on the medical imaging data. The last image shows a necrotic core within the tumor in blue,
which would not have been found using k-Means on the t-SNE result.

with endometrial cancer and performed manual segmentation. The
seven available sequences for this work are the apparent diffusion
coefficient (ADC), Diffusion-weighted magnetic resonance imaging
(b1000), peak enhancement (PE), time to peak (TTP), area under
the peak enhancement curve (AUC), T2, and contrast-enhanced
VIBE (T1-weighted sequence). These multiple sequences provide
complementary information, e.g., about the blood flow within the
tumor, vascularity, and other physiological properties. They are all
aligned via co-registration based on data derived from the scanner.
Together with two involved medical collaborators, we analyzed the
requirements for our application:

• R1: Find relevant tumor sub-regions based on imaging char-
acteristics per patient

• R2: Support the decision of how many tumor sub-regions
are most likely present in the given patient’s data

• R3: Enable spatial analysis of the clustering results
• R4: Enable exploration of the results concerning the given
imaging characteristics

3 RELATEDWORK
In the medical domain, several clustering approaches deliver re-
markable results in tissue classification. Juan-Albarracín et al. [15,
16] analyzed malignant brain tumors and managed to improve
results obtained by supervised methods. They evaluated five unsu-
pervised voxel classificationmethods, including K-means clustering,
fuzzy K-means, Gaussian Mixture Models (GMM) as a generaliza-
tion of K-means, and the Gaussian Hidden Markov Random Field
(GHMRF) model. Ng et al. [23] used K-Means for medical image
segmentation and additionally combined it with an improved water-
shed algorithm. Raidou et al. [27] applied dimensionality reduction
and K-means clustering for cohort analysis of different tumors. In-
formed by these approaches, we analyzed our data by applying
the same techniques but found the results unsatisfactory with our
data. After careful consideration, we decided on using a hierarchi-
cal clustering approach instead. A comparison with the t-SNE and
K-means approaches is visible in Figure 1.

Hierarchical Clustering: Selvan et al. [29] discussed how hier-
archical clustering could aid diagnostic imaging data analysis. They
outline examples such as the interpretation of X-ray mammography
and multi-parametric prostate MRI. In the implementation, they
chose the appropriate number of clusters by minimizing the dissim-
ilarity within each cluster. In contrast to their work, we use several

statistical parameters to identify a meaningful number of clusters
providing the user with additional decision support.

Visualization for Tumor Tissue Exploration: In 2019, Qu et
al. [26] published a review of visual analytics tools for genomic and
cancer data, comparing traditional and new methods, among them
scatter plots, cluster visualization, and networks. Existing systems
for visual analytics in oncologic tissue exploration focus either on
the exploration of perfusion data or the distinction between tissues
belonging to the tumor and unaffected, healthy regions [27]. In
most of the cases [7, 8, 24, 25], perfusion data is used to distinguish
between healthy and malignant tissue. We do not have this data
available in our approach and work with multi-parametric data of
up to seven modalities instead. Yu et al. [35] presented an approach
using a heatmap in combination with a dendrogram to analyze the
validity of the calculated clusters. In contrast to their approach, we
analyze tumor sub-regions instead of the whole tumor volume. Our
work is inspired by the approach of Raidou et al. [27]. They propose
a visualization tool for the visual examination of the feature space
resulting from pre-defined imaging-derived tissue characteristics.
Like a related approach [28], they support the assessment of the
effect on the parameter space due to different model-based varia-
tions in DCE-MRI. A central dimensionality-reduced scatter plot in
combination with a density plot guides the interactive exploration.
In comparison to their work, we enable clustering of the tumor
imaging data before a dimensionality reduction, potentially leading
to more accurate clustering results.

4 ICEVIS
Based on the requirements defined together with our medical col-
laborators, we propose ICEVis. ICEVis consists of a pre-processing
pipeline and a visual analytics platform to calculate potential tumor
sub-regions. Furthermore, we assist clinical researchers in identify-
ing the optimal number of sub-regions based on imaging charac-
teristics. The pre-processing step of ICEVis employs hierarchical
clustering taking all available sequences into account. It is carried
out using all available data within the tumor segmentation without
prior dimensionality reduction. This step fulfills requirement R1.
Informed by previous work, we analyzed the results of different
clustering techniques (k-Means on the entire dataset, k-Means on
the t-SNE result, and hierarchical clustering on the full dataset).
We concluded that hierarchical clustering on the full dataset de-
livered the most promising results. One example of our analysis
is presented in Figure 1, where k-Means clustering on the t-SNE
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Figure 2: ICEVis consists of a 3D tumor view and calculated cluster information. A parallel coordinate plot, a dendrogram, a
silhouette plot, a t-SNE representation of the tumor segmentation, and three optimal cluster number plots are embedded to
support the clustering exploration process.

development is juxtaposed with the hierarchical clustering result
before applying t-SNE. As an example of the benefits of our ap-
proach, a potential histo-pathologically relevant part of the tumor
(a necrotic core) is depicted in blue. This important feature was not
identified correctly when using t-SNE followed by clustering.

Hierarchical Clustering. To perform hierarchical clustering,
different sub-steps are necessary. We first pre-process the data and
create feature vectors based on tumor segmentation voxels. Then,
we calculate a distance measure by defining the criterion accord-
ing to which the clusters are split. We normalize the data using
min-max normalization. The voxel intensities of each of the seven
sequences represent the feature vectors. To compute cluster proxim-
ity, different metrics are available. After analyzing the performance
of other methods applied to our data (single link, average link, and
Ward’s method [21]), we decided to use Ward’s method [21] for
our application. A centroid-based approach defines the proximity
between two clusters by calculating the increase of the sum of
squared errors (SSE) when potentially merging those two clusters.
Like K-means, it minimizes the sum of the squared distances of data
objects from their corresponding group centroid.

Determining the Number of Clusters. To support the user in
determining an optimal number of clusters and therefore to fulfill
requirement R2, we present the user with the result of three differ-
ent measures: the elbow method, the average silhouette method,
and the gap statistic. The elbow method is a function of the within-
cluster sum of squares. The optimal number of clusters here is
the amount where adding another cluster would not improve the
result [31]. Kaufman and Rousseeuw [17] introduced the average
silhouette method, defining the optimal number of clusters like
the one which maximizes the average silhouette score. The last
method we support is the gap statistic method by Tibshirani et
al. [33]. They propose comparing the within-cluster variation with
the expected variation under a reference null distribution. The op-
timal value is derived by the maximized gap statistic, meaning the
cluster structure has the most significant difference in a uniform
distribution of points. As there is no definitive answer to how many
clusters constitute the optimal solution, we provide the expert with
an ensemble of different methods to support the decision process.
In Figure 2 on the right side of the first image, all three methods are
visualized with the optimal number of clusters highlighted. Note
that there is not necessarily agreement among these three methods,

so there is a manual process involved in finding interesting tumor
sub-regions by exploring the different cluster number results.

Visualizations. Our tool consists of spatial and non-spatial
visualizations, as presented in Figure 2, enabling medical experts
to find the optimal number of tumor sub-regions as well as inspect
how they change in the imaging data. In close collaboration with
our clinical experts, we found these visualization idioms to be the
most effective and meaningful use within the proposed application.
To enable the analysis of the resulting clusters concerning the
underlying imaging data, we employ three orthogonal slice views
and a 3D visualization of the data. The clusters are presented as
an adaptable semi-transparent overlay, and the underlying medical
data is presented in a grayscale colormap. Users can choose which
sequence they would like to see. The 3D visualization reveals cluster
information in the same colors used in the rest of the tool. This
visualization can be used to analyze the spatial relationship between
the clusters. These two visualizations fulfill requirement R3. To
meet requirement R4 and therefore to characterize clusters by their
imaging data content, we add a parallel coordinates plot (PCP). Each
feature vector is represented as a polyline, and the axes correspond
to the individual features. The PCP is further enriched inspired by
box plots [19]. We chose this design over drawing a line for each
voxel within the cluster to avoid visual clutter. For each region,
the median value of voxel intensities is marked on the axes of the
modalities. Their connection forms a line and is visualized in an
opaque manner. The more transparent bands around the median
lines represent the inter-quartile area to give a better impression of
the value range within the clusters.

Cluster Representation. To ensure a meaningful representa-
tion of each clustered region, we assign a specific color consistent
throughout the different views within the application. We chose
the colors using the common ColorBrewer [10] tool. To visualize
the hierarchical clustering, we created a dendrogram, as shown in
Figure 2 on the right side. It shows the hierarchical structure as
a tree with distance-based connections between sub-clusters. The
length of the vertical lines represents the distance between those
clusters, measured by using the Euclidean distance [32]. Further-
more, a cutting line is included based on the selected number of
clusters. The vertical lines crossed by the cutting line represent the
associated clusters. In addition, the clustering result is presented on
top of a t-SNE embedding of the imaging data within the tumor. The
feature vectors for the embedding are the seven image sequences
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(a) In this particular example, the optimal amount of clusters is two. According to
our collaborators, the red area represents the tumor periphery border.

(b) In this example, three clusters differ in ADC, b1000 and in TTP according to the
parallel coordinate plot. The blue cluster highlights the necrotic core of the tumor,
a region consisting of dead cells within the tumor.

Figure 3: ICEVis use cases presenting interesting cases defined by our clinical collaborators. (a) is showing a necrotic core and
(b) is presenting the peripheral border of the tumor.

available for exploration. This allows the medical experts to see
if there is a clear difference in clustered voxels within the tumor
based on the distance between the clusters in the t-SNE plot.
5 IMPLEMENTATION
Our tool was implemented in Python. For data handling and work-
ing with high-dimensional feature arrays, we use theNumPy library
and for hierarchical clustering we employ the computationally effi-
cient library fastcluster [20]. The dendrogram and label extraction
are calculated using the SciPy [14] cluster hierarchy package. The
application was developed with PyQt5 [4] using the matplotlib [13]
library and the PyQtGraph [3] package for visualizations. Further-
more, the 3D visualization uses pyvista [30].
6 RESULTS
Figure 2 depicts the complete user interface for our tool. The num-
ber of clusters can be selected via a slider in the analysis settings
on the right sidebar. In this case, two clusters have been selected.
Below, detected regions with their assigned colors are listed. A slice
view allows you to scroll through the slices with a segmentation
mask overlay in x-, y-, and z-direction. The slice position is shown
numerically in addition and updated when scrolling through the
volume. To examine the regions or the imaging data in more de-
tail, the opacity of the segmentation can be adjusted with a slider
or by entering a percentage in the corresponding text field. The
background sequence can be changed to one of the seven available
sequences. The dendrogram, silhouette plot, 3D view, PCP, and
t-SNE view, as introduced in Section 4, assist in the exploration and
update when changing the number of clusters.

Case Studies and Expert Feedback. We describe four different
case studies for our tool based on expert feedback. The first inter-
esting case we found is shown in Figure 3(a). In this case, we found
a shell around the tumor. Our experts hypothesized that this region
might comprise an inflamed region outside the tumor. This result
could impact the treatment decision and may guide the extent to
which surgical treatment is carried out. In the second case study
presented in Figure 3(b), our medical experts found several three
clusters to potentially correlate with histo-pathological properties
of the tumor, one of them comprising a necrotic core, which is a dis-
tinct pattern within the tumor composed of dead tumor cells. The
last case study is included as part of the supplementary material. We

present a case where multiple sequences are not aligned correctly,
i.e., misregistration. This can be checked within the ICEVis tool
by analyzing the imaging data together with the PCP when using
just two clusters. If there is a region that has very distinct values in
the PCP in a coordinate axis and any modality, the modality might
be wrongly registered. Our collaborating experts see an enormous
potential in using ICEVis to spot such cases and then re-registering
these using landmark-based registration methods. The result after
the correct registration can be seen in Figure 2.

We invited two radiologists involved in gynecological cancer
imaging research and one expert in machine learning for medical
imaging data to give us feedback on our approach to evaluate our
application. All invited experts are not co-authors of this paper but
are part of ongoing collaborative research. We got positive feedback
on our application, and the experts found exciting and compelling
use cases for our application. The two radiologists stated that the re-
gions could be linked to histo-pathological properties, which would
have to be confirmed by correlating our results with corresponding
surgical findings. When this pattern is established, our application
could have an essential impact as such histo-pathological proper-
ties could then be considered at the time of imaging and treatment
decision. Furthermore, the radiologists would like to use our tool to
find areas of the tumor which seem to be the most aggressive parts
based on imaging data to consider these for further analysis, e.g.,
targeted biopsies, especially in case of cervical or prostate cancer
where conservative treatment in low-risk patients is more common.
The machine learning expert sees a potential use case in further
analyzing the results of our approach in a radiomic tumor profiling
setup to correlate to clinical variables, e.g., the aggressiveness of the
tumor. Overall, all three experts find the helpful tool for different
purposes and would like to use it for analyzing their data.

7 CONCLUSION
We proposed ICEVis, an interactive clustering exploration tool with
a hierarchical clustering approach embedded in a visual analytics
application. The tool includes visualizations to explore clusters and
their validity and the characterization of cluster content. We devel-
oped our application in close collaboration with cancer imaging
experts and conducted a qualitative evaluation including three ex-
perts from different fields. Our results show two interesting cases
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where the clinical experts were able to find histo-pathological in-
teresting regions within the tumor, which they will compare with
the histo-pathological results after the surgery of the tumor. In
a future continuation of this work, we would like to enable the
clinical experts to analyze the results in an even more interactive
way by improving the linking and brushing capabilities of ICE-
Vis. In addition, the application could be used to assist in manual
segmentation. Finally, this work represents a step toward patient-
specific tumor sub-region exploration for endometrial cancer. It
could, in the future, potentially serve as a supportive tool guiding
more personalized treatment strategies.
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