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Integrated Dual Analysis of Quantitative and
Qualitative High-Dimensional Data

Juliane Müller, Laura Garrison, Philipp Ulbrich, Stefanie Schreiber, Stefan Bruckner, Helwig Hauser,
Steffen Oeltze-Jafra

Abstract—The Dual Analysis framework is a powerful enabling technology for the exploration of high dimensional quantitative data by
treating data dimensions as first-class objects that can be explored in tandem with data values. In this work, we extend the Dual
Analysis framework through the joint treatment of quantitative (numerical) and qualitative (categorical) dimensions. Computing
common measures for all dimensions allows us to visualize both quantitative and qualitative dimensions in the same view. This enables
a natural joint treatment of mixed data during interactive visual exploration and analysis. Several measures of variation for nominal
qualitative data can also be applied to ordinal qualitative and quantitative data. For example, instead of measuring variability from a
mean or median, other measures assess inter-data variation or average variation from a mode. In this work, we demonstrate how these
measures can be integrated into the Dual Analysis framework to explore and generate hypotheses about high-dimensional mixed data.
A medical case study using clinical routine data of patients suffering from Cerebral Small Vessel Disease (CSVD), conducted with a
senior neurologist and a medical student, shows that a joint Dual Analysis approach for quantitative and qualitative data can rapidly
lead to new insights based on which new hypotheses may be generated.

Index Terms—Dual Analysis approach, High-dimensional data, Mixed data, Mixed statistical analysis
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1 INTRODUCTION

V ISUAL analytics provides valuable mixed-initiative ap-
proaches, where computational data analysis complements

interactive visual exploration. This enables the study of rich
datasets from a large variety of fields, including data-driven sci-
ences as well as big data applications in business and society. Such
a mixed-initiative approach augments powerful statistical tools
with interactive visualization to permit an iterative analysis for
rapid hypothesis generation. Approaches addressing mixed data,
however, are rare and visual analysis of such data remains a major
challenge of increasing relevance. Many existing approaches treat
quantitative (numerical) and qualitative (categorical) data sepa-
rately, where qualitative data are used only for variable group-
ing [1], [2], [3]. Since most descriptive statistics are not applicable
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to both data types, an integrated analysis of all dimensions or items
is difficult. This then prevents the user from exploring the entire
space of dimensional relations in hypothesis generation.

The Dual Analysis framework [4] is an advanced method
for high-dimensional data analysis that provides a hypothesis-
generative and correlation exploratory approach through interac-
tive visual analysis. It allows for simultaneous investigation of data
items and dimensions, achieved by (1) plotting summary statistics
of dimensions, (2) equipping the plots with brushing facilities,
and then (3) linking these to corresponding item plots. This Dual
Analysis concept is especially useful for correlation analysis in so-
called “wide and shallow” datasets, such as clinical routine data,
which are characterized by many dimensions (columns in a table),
few observations (rows), and often, a high frequency of missing
values. This dataset type is difficult to analyze using standard
statistical approaches. Although imputation methods can assist in
correlation analysis when data are missing, the results are strongly
affected by the proportion of missingness [5]. Therefore, visual
approaches, such as the Dual Analysis approach, are a valuable
complement in hypothesis generation for this type of data.

A critical limitation of the current Dual Analysis approach is
that qualitative data can only be employed for selection purposes
due to the lack of joint statistics for both quantitative and qualita-
tive data. Using quantitative statistical measures without account-
ing for the qualitative dimensions may overlook interesting and
relevant patterns and relationships. The lack of joint descriptive
statistical measures for both quantitative and qualitative data in
this approach therefore may only provide a partial picture of the
relevant relationships and patterns in a given dataset. Consider for
instance a synthetic dataset containing four quantitative [height,
weight, waist circumference, BMI], one date [birthdate], and six
qualitative [education level, workout frequency, smoking, gender,
eye color, cardiac risk] dimensions. Some of these measures are
interrelated irrespective of their specific data type. For example,
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Fig. 1. The Dual Analysis approach. Users treat quantitative dimen-
sions (A) and items (B) as first order objects. Selecting a subset of
patients taller than 1.8m (B), we note the changes in dimension statistics
given by deviation lines pointing from the original value in descriptive
statistics for the whole dataset to the measure resulting from subset
selection in the deviation plot (C). In this context, high deviations, as
given for weight, height, and BMI, are indicators for a possible correlation
with the subset selector, in this case: height.

height (quantitative measure) is correlated with gender (qualitative
measure), which would be missed in the original Dual Analysis
approach when investigating possible correlations with height.

Statistical tools such as SPSS [6] and PSPP [7] are com-
monly used for complex data analysis. While such tools support
numerous computation methods and rudimentary visualization
capabilities, they lack interactivity. Interactive exploration of var-
ious data subsets, however, aids in the identification of patterns
and correlations. This style of interaction necessitates a naturally
iterative approach that is difficult to accomplish with standard sta-
tistical packages. Approaches that employ interaction techniques
for iterative exploration, without limitation by data type, provide
the user an opportunity to follow a line of inquiry and then rapidly
change tracks as new, interesting patterns become visible.

With this paper, our key contribution is the introduction of
an integrated approach to hypothesis generation by the joint
treatment of quantitative and qualitative data in the Dual Analysis
framework. We build our method on the existing Dual Analysis
approach by Turkay et al. [4] to enable a more free form approach
to hypothesis generation. Our main contributions include:
• An integrated visual analysis approach for both quantitative and

qualitative data in the Dual Analysis model.
• Validation of our integrated quantitative and qualitative data

analysis approach in a case study with real-world medical
cohort data recorded in clinical routine.

The source code of our interactive visual approach is
publicly available online (https://github.com/JulianeMu/
IntegratedDualAnalysisAproach MDA).

2 BACKGROUND: DUAL ANALYSIS APPROACH

The Dual Analysis method, developed by Turkay et al. [4], [8],
is a visual approach allowing for a simultaneous investigation of
data items and data dimensions in two linked spaces, dimension
space and item space (Fig. 1). In dimension space, each visual
mark represents a dimension of the data (column of the dataset),
such as height or weight, whereas in item space, each visual mark
represents a data item, e.g., a row of the dataset. Since individual
dimensions are comprised of different data types with different
data ranges, they cannot be easily compared unless presented by
descriptive statistics, e.g., Interquartile Range (IQR) and standard
deviation (σ). The Dual Analysis approach adopts this method for
presenting dimensions, and is thus able to treat both items and
dimensions as first-order objects for a simultaneous investigation
of the whole dataset [4], [8]. This treatment assists in obtaining a
better overview on the distribution of the data. For example, in our

synthetic dataset we can see that height, weight, and BMI form a
cluster, due to similar standard deviations and IQRs, whereas waist
circumference is an outlier in this context (Fig. 1, A).

With a possible hypothesis in mind, the user can quickly
and iteratively check their assumed correlations by selecting a
subset of interest and investigating the related changes among
the descriptive statistics between the whole dataset and selected
subset. In this context, high deviations within the descriptive
statistics indicate a possible correlation between the dimensions,
with respect to the selection. For this purpose, Turkay et al. [4], [8]
integrated a deviation plot presenting the changes in the statistical
computations resulting from subset selections (Fig. 1, (C)). This
allows for investigating clusters of dimensions behaving simi-
larly in the data subset. In the synthetic dataset, for example,
the possible correlation between weight, height, and BMI (all
quantitative measures) becomes rapidly visible when selecting a
subset of persons taller than 1.8m (Fig. 1, (C)). This is emphasized
when investigating the resulting high change in IQR and σ in the
deviations plot.

A key limitation of this approach, however, is in its unbalanced
treatment of mixed data. Qualitative dimensions are only used to
define data subsets, or are converted to numeric representations, if
they are used at all for hypothesis generation. No visual emphasis
of changes in descriptive statistics for qualitative data is provided.
Consequently, a possible correlation between BMI (quantitative
measure) and workout frequency (qualitative measure) would have
been missed, e.g., when selecting only persons with a BMI > 25.

3 RELATED WORK

There is an extensive body of work detailing methods for in-
teractive visual analysis of high-dimensional data; Kehrer and
Hauser [9] provide a thorough review of these methods. Coordi-
nated multiple views with brushing and linking mechanisms have
consistently proven useful in retrieving patterns and relationships
from the data. Widely-used applications, for instance Tableau [10],
exemplify such interaction methods. Computational methods such
as aggregation, clustering, and overview statistics have also been
frequently used for studying high-dimensional datasets on a regu-
lar basis [9], [11].

Visual Analysis of Mixed Data. Kehrer et al. [12] provide
a variety of statistical moments to explore data outlyingness as
well as relationships between data items. In a medical context,
Angelelli et al. [13] presented a data-cube model which used qual-
itative attributes as dimensional filters for quantitative measures.
These and other visual and computational analysis methods aid in
coping with high dimensionality, but have focused on quantitative
variable analysis in their approach. Qualitative data are often
visualized as subset selectors for quantitative data – an approach
often used is that of pivotization, which manifests as trellis-style
displays as seen in Tableau or Polaris [2]. Kehrer et al. [1] describe
and use this technique in scatterplots, function plots, and map
visualizations. SeekAView similarly uses qualitative data primarily
as subset selectors within subspaces to reduce the dimensionality
of mixed high-dimensional data [14]. A second common method
of analysis for mixed data focuses on investigating the associations
between quantitative and qualitative data by correlation analysis,
such as in causality analysis [15], [16], or through the use of
correlation maps [17].

Statistical Analysis of Qualitative Data. Descriptive statistics
tools commonly focus on the analysis of qualitative data via fre-
quencies, proportions, or marginal distributions. Central tendency
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Fig. 2. Conceptual workflow for hypothesis generation in the Integrated Dual Analysis framework. We represent quantitative data as blue, qualitative
data as red, and dates (considered for the sake of analysis as quantitative data) as yellow. Beginning with tabular data as input, users are provided
with an overview of quantitative and qualitative data in linked dimension and item views using scatter- and parallel coordinates plots, respectively (A).
Subsequent item exploration allows for item selection. These selections may be interactively observed in the dimensions plot (B). Deeper exploration
of joint descriptive statistical measures of variability and missingness for quantitative and qualitative data can be seen in specialized deviation plots:
deviation overview and combined deviation measures. Combined deviation measures, sorted by data type, present the average of all descriptive
statistical measures calculated in our approach. In this context, a higher deviation is an indicator for a possible correlation with the applied subset
selection. The correlation type for the data subset can then be investigated in the item view. At any stage in the process subset selections may be
updated, or the user may return to the beginning of the process to initiate a new exploration path (C).

measures beyond the mode are often meaningless in nominal data,
but variation methods offer a handful of analysis options. We focus
our utilization of statistical measures on nominal data methods
since these are the greatest limiting factor of all data types.
Applicable measures of variation for nominal data use the concept
of diversity rather than variation from a central tendency measure.
These diversity measures subscribe to two basic principles: (1)
variation increases as relative probabilities become increasingly
equal, and (2) variation typically is normalized over the range
of [0, 1] [18]. The simplest approach, variation ratio, determines
the proportion of the number of items outside of the mode against
the total number of items [19]. Normed entropy (H*) [20] and the
index of qualitative variation (IQV) [18] are continuous functions
of all probabilities, but their results can embellish the variation
in the data. The coefficient of nominal variation (CNV) is a mea-
sure that extends the robustness of IQV and normalized entropy
proposed by Kvålseth [21]. The coefficient of unalikeability is a
relatively new method that measures how often values differ in
pairwise comparison within a dimension [22]. In contrast to the
previously mentioned methods, it can measure the variation of
both quantitative and qualitative data without the need for binning
the former. We utilize this measure in our approach. Wilcox intro-
duced several similar measures of qualitative variation; VarNC and
StDev indices are analogous to quantitative measures of variance
and standard deviation, which we utilize alongside the previously
mentioned coefficient of unalikeability [23]. Additional closely-
related measures of variation are domain-specific. For example,
Simpson’s diversity index [24] in ecology and social sciences
measures population diversity. Since such measures utilize slight
variations of the same formulae, we do not include these.

Visual Analysis Approaches for Qualitative and Mixed
Data. While some works have explored the integration of nominal-
focused descriptive statistics, their solutions have been primarily
limited to domain-specific scenarios. One approach by Pearlman
et al. [25] represents variation as diversity using glyphs. However,
their technique does not scale well for many-attribute datasets,
which are the target of our approach. Simpson’s diversity index, a
measure similar to the coefficient of unalikeability, is utilized by
Mackin and Patterson [26] in analyzing diversity of opinions in
large social media networks. However, this is designed solely for
network data. Diversity Maps by Pham et al. [27] use normalized
entropy as a diversity measure for the ecology domain to visualize
large-scale multivariate data with a heatmap-based approach. An
extension to this approach by Wee [28], the adaptive diversity
table, implements a broader set of interactions and color schemes.
Each of these approaches are domain-specific, and emphasize only
one core statistical measure (diversity). Our approach integrates
several variation measures while using a different set of visual
encodings. Finally, Blade Graph by Kobayashi et al. [29] measures
the frequency-based variation from a central tendency measure to
create color-coded area plots based on the calculated magnitude
of variation. While this approach allows comparison of subset
distributions, it is limited to quantitative data. Our Integrated
Dual Analysis approach leverages statistical measures applicable
to both quantitative and qualitative data, and is generalized for
analysis of any domain.

4 INTEGRATED DUAL ANALYSIS APPROACH

Real world data is often complex and mixed. Advanced visual
analytics tools, like the existing Dual Analysis approach, provide
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only limited means for analyzing these data. Filtering quantitative
data items with qualitative data subset selections is possible, but
correlations between quantitative and qualitative data and vice
versa cannot be investigated. Instead of separately analyzing these
data, our introduction of qualitative data to a common statistical
analysis amounts to a significant extension of the analysis space by
a novel freeform approach to hypothesis generation. Our encoding
for qualitative data includes only nominal data; numeric ordinal
data, since they are more closely related to numerical data in
terms of orderability, are grouped with quantitative data. We
provide a conceptual overview of our approach in Fig. 2, where
mixed data in tabular form initiate the analysis pipeline. Users
are then provided with an overview of the data for simultaneous
dimension and item exploration, where quantitative and qualitative
data are visualized together (Fig. 2 (A)). Subset selection and
analysis (Fig. 2 (B)) allows the user to interactively select a data
subset and to track the resulting changes in descriptive statistics
for all dimensions. Visual feedback on individual and combined
deviation measures for each dimension in dimension plot as well
as for the data items in the item plot allow for identifying possible
correlations with the subset selector. These steps may be reset or
repeated (Fig. 2 (C)).

4.1 Measuring Variability
One of our aims in the Integrated Dual Analysis approach is
the implementation of statistical measures that describe both
quantitative and qualitative data. Intradimensional variability is
a key measure for understanding data spread or differences.
This provides implications on data quality and the nature of
a population. For instance, a patient cohort comprised of only
smokers will paint a very different picture of health than the entire
population. Variability may also be measured from different per-
spectives: it can describe the variation around a measure of central
tendency, such as the mean or the mode, or it can describe overall
data variability by pairwise differences between data items –
the latter is known as diversity [22]. Both types of variability
can be equally applied to quantitative and qualitative data. For
variation around the central tendency we use standard deviation
and variance with their corresponding qualitative data analogs,
i.e., stDev and variance analog (VA). To measure diversity we use
the coefficient of unalikeability, which is universal for both data
types. For consistency in the following measure descriptions we
use n to represent the sample size, while k indicates the number
of categories.

4.1.1 Diversity as a Measure of Variability
The coefficient of unalikeability (u) is a relatively new statistical
measure that offers a natural perspective on variability. Rather
than measuring variability from a measure of central tendency,
unalikeability instead measures variability within the data. This
does so by representing the proportion of possible individual
data pairings xi and xj that are unalike for a finite number of
observations n [22]. Presented as a proportional value ranging
from 0 to 1, this measure provides insights on intradimensional
diversity. Formally, the coefficient of unalikeability is defined as:

u =

∑
i6=j

c(xi, xj)

n2 − n
(1)

where

c(xi, xj) =

{
1, xi is not alike xj
0, xi is alike xj .

(2)

Weight (kg)

Female

Male

Small 
variability

Large variability

Fig. 3. Illustrative two-dimensional dataset opposing weight and gender
to demonstrate the coefficient of unalikeability, a measure of dimen-
sional diversity that examines pairwise differences between data items.
While unalikeability is high for body weight (assuming a small threshold
ε), the same measure of variation is low when computed for gender.
This indicates, sensibly, that the data are more diverse, i.e., show more
variation in the body weight dimension while gender is homogeneous
by comparison, since there are only two options to choose from in this
dimension.

An increased u indicates a diverse dataset. A value of 1 indicates
that all values are unique, while a value closer to 0 means that all
values are more similar. Fig. 3 demonstrates an example plotting
two dimensions, weight and gender. We can see that u is high,
indicating large variability, when computed for the body weight
dimension. However, for the gender dimension it is much lower,
which suggests a smaller variability. This tells us that our data are
more diverse, or are more unique, in the weight dimension while
the gender dimension is comparatively homogeneous. This makes
sense, since weight as a quantitative variable can be expressed as
any value within an expected range, while gender usually has only
two options, male or female.

As demonstrated in Fig. 3, we can see that quantitative data
have a tendency to show higher unalikeability relative to their
qualitative counterparts. Although it may be desirable in some
cases to allow this natural tendency to show in analysis, it may
also be useful to allow a looser interpretation of “unalike“ for
quantitative data. This provides closer alignment with qualitative
data measurements. In the comparative example with weight and
gender, a less specific interpretation of unalikeness for weight
would result in more similar measures of unalikeability for both
dimensions. In larger, more complex datasets, such a loose inter-
pretation could act as a means for noise reduction in quantitative
dimensions, and emphasize only meaningful variation. While sev-
eral solutions are possible, we introduce a simple user-adjustable
threshold-based definition as a means to introduce flexibility in
interpreting pairwise equivalence between items in quantitative
dimensions (Eq. 3). The threshold is initially set to five percent of
the range within the variable. We derived this number empirically
in finding a reasonable trade-off between noise removal and
unalikeability representation.

c(xi, xj) =

{
1, |xi − xj | > ε

0, |xi − xj | ≤ ε
(3)

4.1.2 Variation Around the Mean/Mode

In addition to measuring the diversity in a dataset, it is also
often useful to calculate the spread of data from a measure of
central tendency. Variation around the center point(s) of a dataset
provides a different perspective than that given by the coefficient
of unalikeability; in this instance, we can understand the shape, or
width, of the data. In the context of waist circumference values in
a patient cohort, we can use central tendency variation to tell us
how close a given measurement is to the mean waist circumference
reading. A low variation measure informs us that the cohort
waist circumference readings are tightly packed around the mean,
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Fig. 4. Prototype demonstrating the Integrated Dual Analysis method, a visual approach for the joint exploratory analysis of quantitative and qual-
itative data using comparable descriptive statistics. Such treatment permits visual integration for exploratory analysis at both the dimension (A, C)
and item (B) levels. Brushing and linking between these levels allows users to select dimensions of interest in dimension space and emphasize
the selection in item space, to gather items of interest in an adapted parallel coordinates plot (B1), to store and adjust these selections (B2),
and to observe the deviations in statistics and missingness calculations between the entire dataset and the selection. Buttons assist in dimension
investigation using different statistical measures or exclusion of missing values (A1). Light grey lines indicate the magnitude and direction of the
deviations in the dimensions overview (A). The Possibility of Correlations plot (combined deviation measures) presents an aggregate view of all
statistics and missingness information supporting in the investigation of outliers (C) with possibly correlated dimensions, e.g., BMI. Tooltips ease
visualization of overplotted regions (H1) as well as a more detailed presentation of the individual statistics for a hovered dimension (H2). This
information may be used to inform scatterplot axes choices for more detailed examination of dimension behaviors in (A).

which can indicate either a naturally homogeneous population or
a poor sampling method. Standard deviation and variance are
the most familiar measures in this category for quantitative data,
and are utilized in our approach as well. They describe variation
around the mean, where 0 indicates completely homogeneous
data. Unfortunately, such measures are not immediately applicable
for qualitative data. Nominal data have no intrinsic ordering, while
ordinal data are described as discretized values or categories.
However, analogous measures for standard deviation and variance
for qualitative data, known in part as the Wilcox Indices [23],
exist as stDev and variance analog (VA). In our approach, we use
the inverse of these measures to correspond value-wise with their
quantitative counterparts, where 0 is demonstrative of an identical
set of data items. The VA measure is an analogous measure to
variance when the data are normalized to [0, 1] [30], and is robust
to uncertainty when sampling variability is low. The inverse of VA
is defined in Eq. 4, where fi is the frequency of the ith category.

VA =

∑k
i=1

(
fi − n

k

)2
n2(k−1)

k

(4)

The analogous qualitative measure of standard deviation for
normalized data is defined as stDev, which can be represented as
the square root of the Mean Difference Analog (MDA), another
of the Wilcox Indices [23], when analysis includes nominal data.
MDA is given as “the average of the differences of all the possible
pairs of variate-values, taken regardless of sign” [31]. Like VA,
this measure exhibits a low sampling variability, and so is also
robust to uncertainty. The equation for the inverse stDev is:

stDev =

√∑k−1
i=1

∑k
j=i+1(fi − fj)2

n2(k − 1)
(5)

where fi and fj are the frequencies of the ith and jth categories
in the sample, respectively.

Fig. 8 compares variability and central tendency in a scatter-
plot. Given the relatedness of standard deviation and variance we
see the expected parabolic shape, but our interest and questions lie
in the groupings of the dimension points: “Do we see clusters
of dimensions that have similar variability? Is it typical for
these dimensions to have this degree of variability? Do these
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dimensions with similar variability measures remain together as
we subset the data?” For instance, in this patient population, do we
expect to see, e.g., “diagnosis group, exhibiting high variability?”
This could indicate a diverse patient population with numerous
diseases, or an inconsistent method of data entry in the case of
free form text. Discoveries like this, using variability from the
perspective of diversity or variability from central tendency, can
lead to new interesting hypotheses to explore in more detail.

4.2 Understanding Modality
Modes can be used as reliable measures of central tendency
for both quantitative and qualitative data types. Furthermore, we
can learn about the shape of the data distribution through an
analysis of the modes of a distribution. For example, a multimodal
distribution of blood pressure data in a patient cohort would be
an unexpected and highly interesting finding: “What could be the
reason for a cluster of values that are different from the “normal“
healthy result?” We apply Kernel density estimation (KDE) for
quantitative data, while for qualitative data we use thresholding
for high-frequency categories. KDE f̂h(x) is a popular statistical
method for estimating the underlying distribution function of a
given data sample. Given a set of n univariate samples consisting
of (x1, . . . , xn) real numbers, we can estimate the shape and
density of this function (Eq. 6):

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(6)

where K is a non-negative kernel function, integrating to 1,
while h is a smoothing parameter, often called the bandwidth
of KDE. The choice of bandwidth h is strategic and absolutely
critical (while different choices of the kernel function usually
do not have a strong influence). An undersmoothed KDE will
overemphasize the individual data points, while oversmoothing
flattens the distribution and obscures meaningful variations. The
specifics on choosing h are beyond the scope of this paper, but
can be explored in more detail in works specific to KDE, such as
those by Chiu and by Florek and Hauser [32], [33].

Our approach uses the Freedman-Diaconis estimator [34] to
calculate the bandwidth for the KDE. This method makes use of
the Interquartile Range (IQR), rather than the standard deviation
as applied in Silverman’s rule of thumb [35], so it is more robust
to skew and variation within the data. The bandwidth is calculated
from the number of observations n in the data sample x:

h = 2
IQR(x)

3
√
n

(7)

The number of modes present within each KDE dimension can
then be calculated by finding the number of local maxima. In
qualitative distributions, we can use a straightforward method to
determine the mode of nominal and ordinal data. We do this by a
simple check of the most frequent category, minus a small user-
adjustable percentage, e.g., 10%, to set the threshold of qualitative
observations that fall above this value.

Fig. 7 shows a graphical example of how modes are used in
the Integrated Dual Analysis approach. Dimensions with a high
number of modes can provide another indicator for a diverse
dimension distribution. In these outlying cases, the user may then
investigate if this outlyingness results from the description of the
dimension itself, i.e., “Is it expected that liquor examination would
have a multimodal distribution? Is that normal for the recording
modality, and for this population sample?”

4.3 Visual Representation

We base our visual approach primarily on position and hue
(pre-attentive stimuli) to encode data elements and relationships
in both dimension and item space. We do this as a means to
reduce complexity of the targeted data (Fig. 4) [36]. We plot
all quantitative and qualitative data jointly in both spaces. Joint
plotting along a common axis emphasizes ease of comparison for
all data items; position along a common axis has been shown
in prior graphical perception studies as the most effective visual
channel [36].

Dimension Exploration. In dimension space we use linked
scatterplots. These effectively use common axis positioning while
allowing an easy visualization of pairwise correlations for large
datasets. Scatterplot axes may be exchanged between different
statistical measures. We additionally allow plotting of data by their
proportion of missing items in each dimension. For this view we
chose individual scatterplots over scatterplot matrices (SPLOM).
While SPLOMs allow simultaneous visualization of multiple mea-
sures, we found them to be visually overwhelming and difficult to
brush over specific regions of interest with limited screen space.
Our approach utilizes three different scatterplots (Fig. 4 (A and
C), Fig. 6), each of which serves a specific role in hypothesis
generation. All three are connected by brushing and linking. This
allows users to select the appropriate measures to place on each
axis while preserving maximum screen space. To improve the
visual differentiation of dimension points, we apply focus and
context-based hovering techniques, inspired by interactive lenses,
for regions characterized by overplotting issues [37]. Instead of a
force-directed jitter plot distortion, we use an unsorted grid-based
layout for glyph positioning. This allows for easier distinction
between dimensions (Fig. 4, (H1)). The related dimensions are
emphasized with a red circumscription.

We incorporate radar plots displayed while hovering over
a dimension point to represent detailed statistical measures of
the dimension (Fig. 4 (H2)). Our use of radar plots is based
on the spatial pattern-recognition facilities this plot offers [38],
which has been shown to be useful particularly in multivariate
medical studies for hypothesis generation and verification [39]. In
exploring the statistics for each dimension, users may recognize
common shapes formed by the radar plot. This may indicate
relatedness of dimensions by multiple measures.

In dimension space, hue provides a distinction between the
data types; blue, yellow and red indicate quantitative, date, and
qualitative dimensions, respectively. We draw a visual differentia-
tion between these elements to give the user feedback about how
many quantitative, qualitative, and date dimensions are included
in the dataset. This allows for rapid observation of outlying
dimension composition and pattern observation. Although dates
are read as quantitative data, we declare a different hue for this
data type, since dates may be particularly useful for identifying
subsets, e.g., a patient cohort with a series of MR scans over a
period of years, where a specific year is of interest. Our visual
distinction allows for easy interaction facilities to isolate date(s)
of interest through subset selection mechanisms.

Item Exploration. While the dimension overview offers one
data perspective, it is also useful to obtain an overview of item
correlation between dimensions. Numerous graphical methods
have been proposed to visualize high dimensional data, such as
Parallel Coordinates Plots (PCP). This is a standard graphical
tool for multidimensional visualization and correlation that make
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Fig. 5. Interaction facilities allow for navigating all dimensions in the
items plot. When clicking on a rotation button or on a dimension in the
context donut-chart-based glyph, the parallel coordinates plot automati-
cally rotates to the selected dimension in an animated fashion.

efficient use of space [40]. A number of variations on the tra-
ditional parallel coordinates plot exist for the visualization of
data containing, e.g., 20 or more dimensions. Bifocal parallel
coordinates, presented by Kaur and Karki [41] constitutes one such
approach by splitting the parallel coordinates plot into focus and
context regions, where dimensions of interest are mapped having
sufficient space and the remaining dimensions are presented in
a compact manner. However, with dimensions numbering in the
hundreds, the simultaneous presentation of all dimensions fails to
display a coherent focus and context view, as the context area
would be nearly opaque with the necessary degree of condensa-
tion. We instead propose a carousel-inspired plot, similar to the
perspective walls technique [42], to visualize many dimensions
without overcrowding (Fig. 4 (B1)). The parallel coordinates plot
automatically rotates to the dimension which has been brushed
in the dimension view, or rotates incrementally when pushing a
rotation button (Fig. 5). Our approach, paired with sorting by the
aforementioned statistical measures (Sec. 4.1 and Sec. 4.2), pre-
serves an appropriate data-to-ink ratio without increasing cognitive
load or introducing visual distortion in axis height that has been
problematic in other methods [41], [42].

Since our data include both quantitative and qualitative di-
mensions, we utilize a parallel bubbles [43] technique, as op-
posed to parallel sets which are more conducive to qualitative-
only data [44]. We use red bars to better localize the categories
along qualitative dimensional axes, sized by relative frequen-
cies (Fig. 4 (B1)). This color choice helps to distinguish qualitative
from quantitative dimensions, since the interface is predominately
in cool tones.

The axis background color in a shade of grey encodes the
corresponding value of the selected descriptive statistical measure
for sorting (Fig. 9). Interaction techniques such as axis reordering,
rotation and dimension-search further assist in item exploration.
Furthermore, orientation within the carousel-inspired view is pro-
vided through a context donut-chart-based glyph at the bottom
right, in which the current set of visualized dimensions is shown
in dark grey (Fig. 5). Dimensions with subset selections change to
a purple color for quick identification.

Subset Selection and Analysis. Subset selections are made
initially in the parallel coordinates view. These selections
may be refined in the same view or in the subset summary
panel (Fig. 4 (B2)) using range sliders for each selected dimension.
Subset selection with the aid of parallel coordinates provides
additional information that is impossible to obtain with range
sliders alone. Parallel coordinates enable the user to quickly
discover dimensional correlations between the variables repre-
sented by neighboring axes. Secondly, subset selection in one
dimension causes simultaneous selection in all other dimensions.
This “unintentional co-selection” is visualized in the PCP but

BMI

Fig. 6. Deviation plot of all dimensions with the statistical measures
coefficient of unalikeability and relative frequency of missing values
resulting from subset selection of people taller than 1.80m. In this view,
we are interested in looking at the dimensions that show the largest
deviations (in this case, e.g., BMI).

cannot be seen solely based on range sliders. After subset se-
lection the changes among descriptive statistical measures of the
dimensions are emphasized by light grey lines. These lines point
from the original descriptive statistical measures, based on the
whole dataset, to the measures for the new subset (Fig. 4 (B1)).
A scatterplot-based deviations plot is also available after clicking
on the toggle button (Fig. 4 (A1)). In this view, all dimensions
are plotted by their deviation in descriptive statistics, as resulting
from the subset (Fig. 6). This allows the user to easily visualize the
degree and direction of change in statistics, which is helpful for
hypothesis formation. Additionally, the possibility of correlations
plot (Fig. 4 (C)) presents the dimensions’ overall deviation. This
is defined as the normalized aggregation of the deviations among
all descriptive statistical measures resulting from subset selection
sorted by data type. This serves as a concise presentation of the
most likely correlated dimensions with the subset selector.

Missingness. As previously discussed, the degree of miss-
ingness in the data is crucial to understand in the formation of
hypotheses. Our choice to include, rather than exclude, missing
data is predicated on the idea that missing data are data elements
themselves. These deserve visual representation, as they can
provide invaluable information about the reliability of an item
or dimension. Dimensions with predominately missing data may
be less reliable to use for analysis, but reviewing and filtering
out the missing items may produce an interesting and reliable
subcohort for exploratory analysis with that dimension. We utilize
different approaches for conveying missingness in dimension and
items space. In dimension space we use transparency to encode
the relative frequency of missingness for each dimension. More
transparent items correspond to more incomplete dimensions. As
we expect most real-world data to exhibit a degree of missing-
ness, our use of transparency allows us to emphasize clustering
of dimensions around certain descriptive measure values, since
these regions will be more opaque [45]. In item space we treat
missing data as real values, displayed at the bottom of the parallel
coordinates plot. Our inclusion of missing values as visual design
elements provides users with this crucial information so that they
may make informed choices based on the certainty of their data.
For the statistical analysis, the user can toggle between integrating
and excluding missing values since two missing values cannot
always be interpreted as the same value. This especially has an
impact on the coefficient of unalikeability since this measure either
treats missing values as a category or not.

5 VISUAL HYPOTHESIS GENERATION

We demonstrate the general process of hypothesis generation us-
ing our approach in Fig. 2. This process includes the simultaneous
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exploration of items and dimensions to obtain an overview of the
data, subset selection and analysis, and investigation of sub-space
deviations.

Simultaneous Dimension and Item Exploration. Our ap-
proach to hypothesis generation enables an overview at two dif-
ferent intrinsically linked levels: (1) dimension space, and (2) item
space (Fig. 2 (A). Beginning in dimension space, one can freely
explore the entire dataset at a bird’s eye level. With this, the user
can quickly develop an overview of common characteristics of the
data, including general spread and data type characteristics. In this
context, dimension space is useful for identifying dimensions with
special features (structure of missing values, special distributional
properties, etc.). Dimension space also allows for observation of
the structure between the dimensions, answering questions like:
“Are there groups of dimensions that show similarities? Are there
‘outlying dimensions’?”

In practice, high-dimensional datasets often come with a high
portion of missing data. There is a need for visual facilities to
reveal the degree and possible patterns of missing data. This lack
of information has an understandably high impact on hypothesis
generation, although recent efforts have begun to cope with this
information gap. Alemzadeh et al. [46], for example, developed
new approaches to visually encode missing data in item space.
However, there is no analogous approach to emphasize missing
data in dimension space. Integrated overviews of all missing data,
for all data types, can give a sense of the completeness and quality
of the dataset.

Statistical measures for dimension characterization and com-
parison allow for hypotheses generation. For example, by inves-
tigating outlying or grouped dimensions, information about their
similarity can be gathered: “Do they share similar properties?”
These statistical measures may be observed individually in the
dimension plot, or simultaneously through the radar plot revealed
when hovering over a dimension.

The item level provides facilities for further investigation of
the dimensions within item space. This allows for in-depth explo-
ration of distributions and inter-dimensional correlations, as well
as outlier and missingness identification. Axis reordering based on
the same statistical measures and missingness frequency facilitates
inter-dimension comparison. Users may also begin directly with
this view and generate hypotheses within this area by creating
subsets of the data. These subsets can then be used for analysis
in the dimensions overview. The core idea with both overviews
is to smoothly move between both dimension and item space in
this exploratory analysis phase, where quantitative and qualitative
dimensions are studied together.

Subset Analysis. Zooming and subsetting provide a means of
refining hypotheses formed in the overview process (Fig. 2 (B)).
At this stage, users can selectively view dimensions of interest
deemed valid for the current hypothesis. Subset seletcion in item
space allows for redefining the desired subcohort of data. While
brushing, the related changes in descriptive statistics emphasize
possible correlations. Here, we want to follow the change in
any outlying dimension or outlying group: “Does a group move
together?” and “Which impact do the applied selections have
on statistical measures of all dimensions (both quantitative and
qualitative dimensions)?”

Analysis of Sub-Space Deviations. After selecting a data
subset, dimensions with related large deviations are highlighted
regardless of their data type, since they convey possible corre-
lations (Fig. 2 (B)). Inspection of the possibility of correlations

plot (Fig. 4 (C)) provides a rapid summary of dimensions with
the largest deviations. The radar chart on hover reveals a detailed
breakdown of descriptive statistics for each dimension of interest.
This information can be used to analyze possible correlations by
individual descriptive statistics in the deviation plot. A review
of the missingness, through the radar plot or in the deviation
view, for each dimension provides a mechanism to understand the
reliability of the indicated hypothesis. Identification of possible
correlations through large deviations and outliers can be a major
step in hypotheses generation.

6 CASE STUDY

Clinical cohort data represent an ideal use case to demonstrate our
approach since they are typically highly complex and mixed (i.e.,
contain a combination of quantitative and qualitative attributes)
with many missing elements [47]. For this case study, we employ
a clinical routine dataset of 307 patients suffering from Cerebral
Small Vessel Disease (CSVD) recorded at the university hospital
of Magdeburg, Germany. CSVD is an umbrella term for abnormal-
ities related to small brain vessels, such as white matter hyperin-
tensities, microbleeds, lacunes, subcortical infarcts, and enlarged
perivascular spaces (EPVS). It has been reported as an important
precursor of stroke, dementia, cognitive decline, and psychiatric
disorders [48], [49]. The research around biomarkers in CSVD
is complex and highly debated – biomarker expression is highly
variable, even among patients with similar risk profiles, for the
disease. This dataset comprises 193 mixed dimensions related to
demographic information, laboratory results, genetic data, educa-
tion, and lifestyle, as well as 24 dimensions derived from medical
images of the patients. In a volumetry analysis of T1-weighted
Magnetic Resonance Imaging data using FreeSurfer [50], the
volume of 24 brain structures, e.g., hippocampus, putamen, and
caudate, was determined. Missing values comprise 76% of the
data among dimensions of all data types.

In joint paired analysis sessions with two medical experts we
investigated this clinical routine data using our Integrated Dual
Analysis protoype implemented as an interactive client-server web
environment utilizing JavaScript, D3.js [51], Python, and Flask
framework [52]. We chose a joint paired analysis to understand
the cognitive processes of the domain experts and allow for a
fluent data exploration and hypotheses generation [53]. One expert
participant is a senior neurologist with more than ten years of
experience in this area of research and mainly assisted in designing
the tool. The other participant is a medical student specializing in
the study of CSVD with one year of experience. Both domain
specialists are co-authors of this paper. Although CSVD is well-
studied, numerous open questions remain. Our collaborating medi-
cal experts are especially interested in finding reasons why CSVD
patients with similar disease risk profiles may express different
biomarker patterns. Their standard analysis approach would be
to utilize advanced and mature statistical analysis tools, such as
SPSS [6], to identify such biomarker relations.

Prior to exploration with our approach, we observed one expert
analyze the data using their standard approach with SPSS. The
purpose of this analysis was to establish a baseline for the analysis
effort in an exploratory approach, relative to our method; we
describe the key takeaways and results with this goal in mind. The
paired session lasted two hours in total, and followed a “think-
aloud” protocol. Since the expert was unfamiliar with this dataset,
they were chiefly interested in establishing a general picture of
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Fig. 7. Four dimensions (pathology finding (A), liquor examination iden-
tifiers and liquor sample identifiers (B), and patient id (C)) within the
dataset contain a significantly outlying number of modes (circled), which
is linked to a larger unalikeability within these dimensions.

patterns in the data, centered around the dimension “Group”,
which specifies patient diagnostic subgroups exhibiting different
pathologies of CSVD. The expert’s main method of doing this was
a series of comparisons of diagnostic test and lifestyle variables
for each diagnostic group. The building of each of these factor
tables, with subsequent analysis of these tables, was extensive,
and required 1.5 hours. Through this process, the expert began
to build a general sense of the typical patient characteristics for
each diagnostic subgroup. Building of these factor tables is a
lengthy process that is often conducted over several sessions.
The expert explained that their next series of steps would be
pairwise or factor analysis on each of the variables that appeared
interesting from these lifestyle and diagnostic variable tables.
This analysis sequence would aim to further identify interesting
correlated variables in several iterations with different subsets. The
expert stated that this is a lengthy and cumbersome procedure that
may be spread out over the course of several days.

Although SPSS produced statistical results for a priori hy-
potheses in a compact form, with basic visualization options,
we observed that selecting and iterating analyses over various
possibly interesting subcohorts was inefficient and cumbersome.
Establishing correlation between dimensions of different data
types requires different measures, each of which takes time to
identify and run. When interested in comparing a subset of
the data to the whole, there also is a time cost in identifying
dimensions of interest for analyzing the subset relative to the entire
dataset. The expert noted that they found SPSS most powerful
if they already have a hypothesis established with variables of
interest; using SPSS to simply explore a dataset for interesting
relationships is not part of their ideal workflow. By investigating
only a priori hypotheses, however, interesting new relationships
can be missed in the process and therefore, an exploratory analysis
for hypotheses generation is preferred.

We now demonstrate our approach for exploring and reasoning
about interesting correlated subcohorts and outliers prior, or in
addition, to a more targeted analysis in SPSS or similar tools with
two medical experts.

Data overview. In our exploratory analysis, we focus on
exploring patient demographic and test score variables alongside
imaging-related dimensions. In the course of this exploration we
take note of the degree of missing data for each variable we
analyze, since this has an impact on the reliability and reasoning
for hypotheses we can generate. The first task is dimension explo-
ration, where we investigate the data using descriptive statistical
measures to obtain an overview of all dimensions.

Interestingly, we see that the number of modes within each
dimension acts as an indicator of central tendency for both
quantitative and qualitative data types. By investigating the modal
distribution of the data, we observe that there are four dimensions

A

B

C

D

Fig. 8. Comparison of standard deviation/stDev and variance/VA among
all dimensions. We can see two primary groupings of dimensions,
divided at about 0.6 along the x-axis. The group of dimensions with
higher values for both measures include: diagnosis group (A), fluid-
attenuated inversion recovery (FLAIR) imaging sequence (B), recorded
diagnosis (C), and susceptibility weighted imaging modality (SWI) (D)
(circled region). The notably larger intradimensional spread for this
grouping may be interesting to follow up on in later analysis.

with notably more modes (pathology finding, liquor examination
identifiers, liquor sample identifiers, and patient id) as shown in
Fig. 7. The likely reason for such a high number of modes can be
confirmed by high unalikeability within these dimensions. Since
the pathology finding is recorded as free text and identifiers are
naturally unique, these dimensions contain almost only unique
values. We expect these dimensions to be outliers then when plot-
ted with these types of descriptive statistics, and our expectation
is verified visually.

By investigating standard deviation and variance in compari-
son, clusters of dimensions become visible (Fig. 8). Dimensions in
the encircled cluster with higher standard deviations and variances
include susceptibility weighted imaging modality (SWI), recorded
diagnosis, fluid-attenuated inversion recovery (FLAIR) imaging
sequence, and diagnosis group. This shows us that these dimen-
sions are more spread out and could be interesting for further
investigation into relatedness. It could be that the higher values
for these dimensions arise from the entry type, i.e., free form text
entry, or are indicative generally of a broad range of conditions to
select from, as in the diagnosis dimension. Through this type of
graphical exploration we can easily visualize outlier dimensions
and make inferences about the range and consistency of the data
input method in clinical routine.

APOE. Following our data overview we want to identify
possible correlations that could merit further exploration. We
first investigate the apolipoprotein E (APOE) genotype. This
genotype is a combination of APOE-A1 and APOE-A2, and is
a known risk factor for cerebral amyloid angiopathy (CAA), a
combination of pathologies forming a subtype of CSVD. We select
the four patients with an APOE genotype of [4; 4] in the item
(parallel coordinates) plot (Fig. 9-1,2). Observing the changes in
descriptive statistics in the dimension scatterplot (Fig. 9-3), we
note that the largest changes arise from the coefficient of unalike-
ability and percentage of missing values. The contextual radar
plot (Fig. 9-4) that is available by hovering over each dimension
assists in identifying these large changes, alongside the trail lines
extending from the dimension plot points. Setting unalikeability
and percent missingness as the x- and y-axes, respectively, we
switch to the deviation plot view to better observe the deviations
resulting from the APOE subset selection (Fig. 9-5). Within the
deviation plot we note two clusters, one cluster consisting of more
complete data, and containing the APOEvariables that defined our
subset.

We then use the possibility of correlations plot to clearly
identify dimensions with the greatest overall deviation, and thus
most likely correlated with the APOE subset (Fig. 9-6). The top
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Fig. 9. When selecting only patients having a combination of the known
risk factor apolipoprotein E (APOE) genotype-A1 and APOE-2 of [4; 4],
large value changes in descriptive statistics for Boston/STRIVE criteria,
Group (CAA/HA/Mixed), and education in years become visible. Inspec-
tion in the parallel coordinates with axis ordering by overall deviation
allows for inspection of correlation direction.

dimensions with the greatest changes include: Boston/STRIVE
criteria, Group (CAA/HA/Mixed), and education in years
(Fig. 9-6). Although education in years is quantitative, we note
that Boston/STRIVE and Group (CAA/HA/Mixed) are qualitative,
and their relations would not have been observed with common
statistical tools (at least not without searching for this relation
explicitly in these tools).

It is established clinical knowledge that APOE 4 is a genetic
risk factor for CAA and correlates with a positive diagnosis of
CAA applying the Boston criteria [54], [55]. Since the STRIVE
criteria are imaging features for all CSVD subtypes and not
specific for CAA, they are not applicable in this case. After
subset selection, the subgroups are not equally distributed and
are rather small, a clear limitation, but recognizable through our
framework. To validate the identified possible correlations, one
should consider a more equally distributed and complete dataset
or conduct a clinical study. In the future, testing for APOE genetic
variants could be used as an early biomarker determining the risk
and course of disease.

The relationship between APOE expression and the remaining
dimension (education in years) in this group is well studied
but very complex, and requires deeper investigation and vali-
dation [56]. Having narrowed our dimensions of interest, we
can revisit and reorder the parallel coordinates axes by overall
deviation for more information on the correlations between these
dimensions (Fig. 9-7). Observing a possible negative correlation
between APOE 4 and education, we hypothesize that CAA, since
this relates to APOE 4, may be connected to fewer years of
education. However, this hypothesis requires detailed investigation
with a larger expression cohort and additional cognitive data.

Fig. 10. Selecting patients having more than 15 years of education
highlights possible correlations with sex, total tau, amyloid-beta 40
(Ab 1-40), total proteins, and amyloid-beta 42 (Ab 1-42) in the cere-
brospinal fluid. Susceptibility-weighted images (SWI) and diagnosis are
neglected since they include missing values only after subset selection.

Education level. The possible influence of education on
CSVD is a ripe area of inquiry in CSVD research; for some high-
risk patients there is a possibility that increased education levels
might mitigate the cognitive effects of CSVD pathology [57].
In the parallel coordinates plot we create a subset of patients
with 15 years or more of education (comparable to a Bachelor’s
degree) (Fig. 10-1). To quickly identify the dimensions most
affected by our education subset, we examine overall deviations in
the bottom panel. The highest-deviating dimensions, and therefore
the most likely to be correlated with high education level, are
three qualitative (susceptibility-weighted images (SWI), Diagnose
based on Boston/Strive criteria, and sex) and four quantitative
dimensions (total tau, amyloid-beta 40 (Ab 1-40), total proteins,
and amyloid-beta 42 (Ab 1-42)).

Hovering with the radar plot provides detailed information on
how the descriptive statistics have changed for these dimensions.
We set the x- and y-axes in the deviation plot to standard deviation
and coefficient of unalikeability, respectively, to visually search
for any possible clusters in our high education subset. Although
no distinct clusters form, we see that sex has changed significantly
by the two measures shown in the plot; we also note that the
cerebrospinal fluid tests for Ab 1-40, Ab 1-42, total proteins,
and total tau have increased in unalikeability with little change
in standard deviation (Fig. 10-3). Although large deviations for
SWI and Diagnose have been observed, these dimensions are
neglected since they do not contain any values after subset
selection (Fig. 10-4).

Revisiting the parallel coordinates panel and reordering axes
by overall deviation allows us to discover more details on the
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Fig. 11. Exploring the relationship between many (>20) enlarged
perivascular spaces in the centrum semiovale and other dimensions,
possible correlations with diagnosis (A), susceptibility-weighted im-
ages (B), and Boston/STRIVE criteria are indicated (C).

relationship of sex, total tau, Ab 1-40, total proteins, Ab 1-42 with
education (Fig. 10-4). We note that sex mostly is restricted to
the male item for this subcohort; this is likely a product of the
social norms of previous decades, where men were more likely to
complete a university education.

Amyloid beta (Ab 1-40 and Ab 1-42) is a hallmark of the
Alzheimer’s disease pathology. We observe that by applying the
education level selection (≥ 15 years of education), amyloid-beta
deposition is decreased in cerebrospinal fluid and thus, increased
and having a higher pathology within the brain. This finding may
support clinical literature that higher education levels provide
resilience against disturbed amyloid metabolism (deposition or
clearance mechanisms) and Alzheimer’s disease [57]. Follow up
with a detailed analysis of patient cognitive status and demo-
graphic information is a necessary next step to investigate the
validity of this very interesting hypothesis.

Furthermore, we observe that the cerebrospinal fluid test
biomarkers total tau, indicating neurodegeneration, as well as total
protein, which is linked to disturbed blood-brain-barrier function,
also decrease with higher levels of education [58]. This is an
indicator for less pathology and thus, more resistance, within the
brain. To the best of our knowledge, this relation is not well
studied, and thus forms a new hypothesis valuable for further
investigation by our medical experts.

Enlarged perivascular spaces. We lastly explore the rela-
tionship between enlarged perivascular spaces (EPVS), an ordinal
qualitative variable, evaluated in different brain regions. EPVS
ratings for the hippocampus (hc), basal ganglia (bg), centrum
semiovale (cs), and midbrain (mb) are often reported for elderly
patients and thought to be early indicators for CSVD, particularly
in bg and cs. However, recent studies have found that this rela-
tionship is more ambiguous than previously thought [59], [60]. In
the parallel coordinates plot we create a subcohort of patients with
an EPVS rating in cs rating of 3 or higher (more than 20 EPVS
in cs) and again check the deviation in descriptive statistics in the
dimension deviation plot for possible correlated dimensions.

We note that there is some change in descriptive statistics for
diagnosis (probable CAA, CON, HA), SWI., and Boston/STRIVE
criteria with application of this subset selection (Fig. 11). With
our findings that a higher EPVS rating is more likely related
to CSVD diagnosis (CAA or HA) and a higher Boston/STRIVE
criteria score, our dataset corroborates the established association
to CSVD pathology.

SWI is a MRI sequence especially sensitive to venous blood
and iron and useful for microbleeds detection [61]. EPVS, how-
ever, are usually counted in T1- or T2-weighted images. The
medical domain experts rated this possible correlation as artificial
and the presence of SWI images is related to logistic, patient-
specific or medical reasons.

Our clinical collaborators were surprised that EPVS showed
no correlation with, e.g., APOE genotypes,—this merits deeper
investigation. [49]. Furthermore, they suspected correlations with
the EPVS ratings in other brain regions. This observation, how-
ever, was not present within our dataset and forms a new and
interesting hypothesis in CSVD research.

Practical impact. The domain experts emphasized the fast,
straightforward, and iterative analysis process using our approach.
Although it indicates possible correlations only, the domain ex-
perts state that it allows for identification of interesting patterns in
“wide and shallow” datasets, such as clinical routine data, which
would be hard or very time-consuming to analyze using common
statistical tools, such as SPSS. These indicators can then form a
basis for future clinical studies.

7 DISCUSSION

This paper presents the successful use and integration of qual-
itative statistical measures into the joint analysis of quantitative
and qualitative data. Through our case study of real clinical data
we found a number of interesting patterns and relationships for
the underlying patient cohort using our integrated approach. We
were able to identify well-known relations and support previously
known knowledge. Furthermore, we identified a hypothesis that
is of interest for the clinician. Our approach allows users to get
an overview about the dimensions within their (high-dimensional)
data and to identify interesting variables for further investigation
or exclusion from statistical analysis. By integrating a video tuto-
rial before entering the framework, we addressed the challenges
medical experts might have when moving from standard statistical
tools, such as SPSS, to using our proposed framework. The case
study participants stated that this movie fulfills their demands
on the framework explanation but stated that users probably
need to watch it multiple times to understand all functionalities.
One concept that was hard to assess for medical experts in the
beginning was the differentiation between correlation indicators
and p-values. However, since our Integrated Dual Analysis is
conducted after data gathering and before statistical analysis for
hypothesis verification, the participants appreciated its value and
especially emphasized the fast hypothesis generation using the
tool.

The primary limitation to our approach lies in the restrictions
we face in its application to all possible data types in a dataset. In
our search we found a small handful descriptive statistics suiting
our needs. Although it is substantiated that stDev and VA for
qualitative data are analogous measures to standard deviation
and variance for quantitative data, respectively, the depiction of
the analogous measures on one axis may yield to confusion. To
overcome this issue, we emphasize the dimension’s data type via
color and thus, also the related statistical measure. Since all of
these mentioned measures result in a range of [0, 1], we argue
for showing them on one axis. Furthermore, we neglect well-
known and widely applied descriptive statistics, such as mean,
skewness, and kurtosis, because of the data type restrictions.
However, in applying the proposed methods and demonstrating
the identification of valuable hypotheses, we have shown the
suitability of the measures applicable for all data types.

By adding extra parameters for the computation of the modal-
ity and variation as a measure of diversity, we introduce some de-
gree of uncertainty within our results. We decrease this uncertainty
by providing pre-defined parameter settings and by allowing users
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to modify the thresholds for modality and unalikeability com-
putation. Thus, the user is provided with direct visual feedback
about the related deviations resulting from parameter adaptation.
As future work we see a number of opportunities to explore these
parameters in more detail for fine-tuned hypothesis generation.
Additionally, a number of nominal qualitative variation measures
exist that do not have direct analogs in quantitative statistics. An
interesting avenue of further exploration may be to test how each
of these nominal measures vary from or relate to the quantitative
measures of variance and standard deviation, as a method to
determine the degree of coherence.

8 CONCLUSION

Exploratory methods for iterative hypothesis generation are be-
coming essential with increasing data complexity and mixed
data types across all domains. In this paper we introduced an
Integrated Dual Analysis approach to hypothesis generation via
the joint analysis of quantitative and qualitative data. This method
extends the Dual Analysis framework by Turkay et al. [4], offering
the opportunity for iterative, free form exploration of linked
dimension and item spaces within complex and mixed data. To
enable such a combined analysis of mixed data we introduced a
set of descriptive measures, including a relatively new statistical
measure, the coefficient of unalikeability, as well as measures
of the modal distribution, variance and its qualitative analog,
and standard deviation and its qualitative analog. Unlike the
Dual Analysis approach in its original form, we do not perform
data imputation, instead preserving the missing data items and
explicitly presenting them for comparative analysis. This serves as
a highly informative visualization for the uncertainty of the given
data, and was exemplified by our clinical routine case data that
contained over 70% of missing entries.

Our chosen visual encodings and interactions for each aspect
of the Integrated Dual Analysis method are designed to sup-
port an iterative and exploratory workflow. We described this
workflow in a generalized analysis of the hypothesis generation
process, and provided a concrete example of this workflow in a
paired clinical case study with a senior neurologist. Using this
workflow to analyze a cerebral small vessel disease dataset, our
clinical collaborator was able to iteratively explore dimensions and
item subgroups to form new hypotheses and corroborate findings
from medical literature. These hypotheses were formed from the
simultaneous analysis of both qualitative and quantitative data
dimensions and items, which would not have been possible to
perform as efficiently or easily with existing statistical toolsets.

While our presented approach introduces new opportunities
in the visual analysis of mixed data, we also see areas for
further development. Looking to the future, expansion into sta-
tistical paired correlation analysis and dimensionality reduction
techniques are natural areas for investigation to increase the
power and efficiency of the Integrated Dual Analysis method.
Furthermore, our approach can be applied beyond the medical
domain to similarly heterogeneous datasets. Future work includes
investigating our method within such domains as ecology, climate
change and finance.
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