
Implicit Representation of Molecular Surfaces
Julius Parulek ∗

Department of Informatics, University of Bergen
Ivan Viola†

Department of Informatics, University of Bergen.

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 1: Ray-casting based visualization of eight proteins represented by the solvent excluded surfaces (SES). Surfaces are defined by implicit
functions computed locally and without performing any precomputation steps. The proteins contain 3023 (a), 2872 (b), 2820 (c), 3346 (d), 12530
(e), 12555 (f), 1718 (g) and 14744 (h). Small discontinuities are caused by the precision parameter that accepts a close vicinity of the 0 iso-level
of the implicit function.

ABSTRACT

Molecular surfaces are an established tool to analyze and to study
the evolution and interaction of molecules. One of the most ad-
vanced representations of molecular surfaces is called the solvent
excluded surface. We present a novel and a simple method for rep-
resenting the solvent excluded surfaces (SES). Our method requires
no precomputation and therefore allows us to vary SES parameters
outright. We utilize the theory of implicit surfaces and their CSG
operations to compose the implicit function representing the molec-
ular surface locally. This function returns a minimal distance to the
SES representation. Additionally, negative values of the implicit
function determine that the point lies outside SES whereas positive
ones that the point lies inside. We describe how to build this im-
plicit function composed of three types of patches constituting the
SES representation. Finally, we propose a method to visualize the
iso-surface of the implicit function by means of ray-casting and the
set of rendering parameters affecting the overall performance.

Keywords: Visualization of Molecular Surfaces, Geometrical
Modeling, Implicit Surfaces, Bioinformatics Visualization

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Sciences—Biology and Genetics I.3.4 [COMPUTER GRAPH-
ICS]: Computational Geometry and Object Modeling—Boundary
representations, Curve, surface, solid, and object representations

∗e-mail: Julius.Parulek@uib.no
†e-mail: ivan.viola@uib.no

1 INTRODUCTION

From the biomolecular point of view, the structure of molecules is
given by three-dimensional organization of atoms. While chemi-
cal structure of the atoms is often quite stable, the overall shape,
generated by force fields of atoms, can vary rapidly. Therefore, to
understand the shape in its full complexity, virtual computer models
of molecules are instrumental.

A specific type of molecules are proteins that actively participate
in various cell processes. Essentially, they are long-chained macro-
molecules that consist of standard amino acids. These amino acids
can contain between 10 and 25 atoms each, where typically the
molecular chain can contain up to a few thousand of amino acids.
The set of atoms that is common for every amino acid is called the
backbone. The set of atoms connected to the backbone is called the
side chain and is unique for every amino acid.

Many proteins are enzymes that need to be triggered by other
biomolecules called ligands. Such proteins can, for instance, trans-
port ligands to different parts of the cell or even between the cells.
In the latter case, these form so-called channels. In order to dis-
cover which ligands can bind to a given protein, one needs to com-
municate the protein shape accordingly. A common approach to
represent protein surface to discover the ligand binding site, is to
utilize a solvent molecule, e.g. the water molecule. The reason is
that the ligand can practically access all the places that are reach-
able by the solvent itself. Therefore, one of the possible structural
representations of the molecules is defined via the solvent which
can reveal possible binding sites.

In molecular visualization, many different methods of represent-
ing molecules have been proposed [31]. One can use different struc-
tural representations like space fill, balls-and-sticks, licorice, back-
bone, and ribbon. These can be shown through distinct illustrative

217

IEEE Pacific Visualisation Symposium 2012
28 February - 2 March, Songdo, Korea
978-1-4673-0864-9/12/$31.00 ©2012 IEEE

techniques, e.g. cartoon representation, or by means of emphasiz-
ing the depth perception like halos and ambient occlusion [28].

One of the most employed advanced representations of molecu-
lar surfaces is called the solvent excluded surface (SES), which was
first proposed by Richards [21]. So far, SES became a very well
established representation of the iso-surface approximating the po-
tential field of atoms while taking into consideration the solvent
molecule. The main utilization of SES representation is studying
the molecular dynamics in order to discover ligand binding sites
and their evolution over the molecular dynamic simulation.

It is important to mention that one can apply more complex,
physically-plausible models, which include electrostatic potential
fields (EPF). The major advantage of using SES representation with
respect to EPF-based representation is its relatively fast compu-
tation mainly when dealing with large molecular dynamic simu-
lations (MDS) containing several thousands of animation frames.
The EPF models are computationally very extensive and are usu-
ally rasterized via partial differential equations on a regular grid.
Although, when such representation is precomputed, one can com-
bine SES and EPF representations into a merged visualization.

The SES representation is obtained by rolling a solvent molecule
(approximated by a sphere of radius R) on the so-called solvent-
accessible surface (SAS). The SAS is represented as the bound-
ary of extended van der Waals spheres by radius R. The resulting
SES then decomposes into three types of surface patches: convex
spherical patches, concave spherical patches (spherical triangles)
and toroidal patches (Fig. 2).

Figure 2: An example of a molecular surface. The solvent excluded
surface (union of full circles and their toroidal interconnections) is
formed by rolling a ball (blue circle) on van der Waals spheres while
the center lies on the boundary of solvent accessible surface (union
of dashed circles). The SES representation depicts a single residual
sequence of proteinase 3 (Pr3) peptide containing 360 atoms. The
SES surface can be be described by three types of patches, the con-
vex spherical one (green), the concave spherical one (blue) and the
toroidal one (red).

The main drawback when using SES representation in visual ex-
ploration is the lack of interactivity, since the geometric SES repre-
sentation requires usually substantial precompution [24, 30]. Here,
to delimit the atom selection, participating in the SES representa-
tion, or just to adjust the solvent radius R, requires recreating the en-
tire surface. The essential parameter settings interaction during the
visual exploration of a macromolecule can not be performed in real-
time. Moreover, to represent the surface for time-varying protein
simulations the heavy load is put to the precomputation step even
further. Essentially, one needs to to preprocess several time-steps
in advance. Therefore, biologists often prefer to limit the binding-
site analysis to the particular key frames of the simulation. With

the recent advance of computational hardware capabilities, larger
and larger dynamic protein sequences are being produced, which
clearly demands more flexible SES representation that would allow
for an instant surface representation without having done any pre-
computational steps.

In this paper, we propose a novel approach to represent SES sur-
face without precomputation. Our new representation is based on
theory of implicit surfaces, namely its generalization called func-
tional representation [18]. We propose a rendering approach to
achieve interactive visualization by introducing several rendering-
quality parameters affecting the overall performance.

The instantaneous SES representation allows us to provide in-
teractivity necessary for protein analysis. Particularly, we aim at
providing biologists with the possibility of performing changes of
solvent radius R and seeking at any time intervals of the simulation.

2 RELATED WORK

We relate our work to three areas. Firstly, we introduce techniques
of molecular visualization. Secondly, we describe implicit model-
ing techniques. Finally, we present real-time rendering techniques
of implicits.

2.1 Visualization and Representation of Molecular Sur-
face

There are several types of molecular surface representations intro-
duced in the literature. One of the basic representations is when the
protein atoms are depicted as spheres, where the radius corresponds
to the van der Waals force (vdW surface) [13]. The extension of this
surface by a solvent radius is called the solvent accessible surface
(SAS). The most widely used representation is denoted as solvent
excluded surface (SES) [21, 6]. In 1992, Edelsbrunner and Mücke
introduced α-shape representation and in 2007, Ryu et al. extended
it to the β -shape. In 1999, Edelsbrunner [4] also proposed a new
representation of molecules called the skin-surface.

In our work, we focus on representing and visualizing the SES
representation, because it is a standard technique and was requested
by our biology cooperation partners for binding-site exploration.

There has been a lot of effort put into generation of SES in the
literature. In 1983, Connolly [3] proposed an analytical descrip-
tion of the SES representation. More than ten years later, Sanner
et al. [24] presented the reduced surface algorithm for construction
of SES representation. In the same year, Totrov and Abygyan in-
troduced the contour-buildup algorithm [30] to form the SES repre-
sentation. Recently, Lindow et al. [14] proposed a speeding up and
parallelization of contour-buildup algorithm. The visualization is
then performed by a ray-casting method. In 2009, Krone et al. [11]
introduced the utilization of the reduced surface method for direct
ray-casting of molecular surfaces. Here, all techniques exploit pre-
computation steps necessary to render the final surface.

Triangularization methods of SES are popular as well, with the
most recent ones being proposed in 2009 by Ryu et al. [22]. Addi-
tionally, SES can be decomposed into a set of quadrics, which can
be efficiently rendered on the GPU (Section 2.3). In 2011, Krone et
al. [12] introduced an approximation of the SES representation via
quadratic polynomial kernels. This work was aimed at the track-
ing of protein cavities. Here, nevertheless, the resulting iso-surface
only imitates the exact SES representation.

In our work, we utilize Protein Data Bank (PDB) file format,
which stores the protein information (e.g., atom types, residual se-
quences). The trajectories of the atoms are stored in the DCD file
format that is used as a standard in the Visual Molecular Dynamics
(VMD) tool [9]. The file can contain tens of thousands of protein
trajectories. The other popular molecular viewers are for instance
PyMOL [25], MetaMol [2] and QuteMol [28] to name a few. So far,
none of these tools can visualize dynamic trajectories and/or would
allow for interactive visual protein explorations.

218

To the best of our knowledge, there are no approaches that would
allow for direct visualization of SES representation without any pre-
computation. We cross this gap by introducing a new approach that
computes the SES instantly on the fly during ray-casting. Contrary
to the previous approaches, we employ a theory of implicit surfaces,
where the geometry of a single atom is described by its distance
based implicit function.

2.2 Implicit Modeling
Implicit surfaces (implicits) provide a way to easily model complex
dynamically changing geometric objects. Moreover, they naturally
enable the modeling of smooth, sponge like objects in a convenient
way.

The set of techniques, known today as implicit modeling, was
used for the first time by Blinn [1]. Pasko et al. generalized the
representation of implicits, by combination of the different forms
of implicit models [18], and denoted it as function representation
(Frep). The inequality (1) describes an implicit solid (object):

f (p)≥ 0, (1)

where p = (x1,x2,x3) ∈ E3. Function f is called an implicit sur-
face function (implicit function), which classifies the space into two
half-spaces f (p)> 0 and f (p)< 0.

Complex objects can be created from simple ones via Construc-
tive Solid Geometry (CSG) operations. The basic set-theoretic op-
erations can be defined using the min and max operators:

union(f1, f2) = f1 ∪ f2 = max(f1, f2)
intersection(f1, f2) = f1 ∩ f2 = min(f1, f2)
subtraction(f1, f2) = f1\ f2 = min(f1,− f2).

(2)

Analytical expressions that approximate these operators were pro-
posed by Ricci [20]. The other analytical definitions of the set-
theoretic operations are known as R-functions [18]. Nevertheless,
the analytical versions do not preserve the distance characteristics
as well as min/max operators do [5]. Therefore, in our work we
utilize the basic min and max operators (2) since they are fast to
compute and preserve distance characteristics of the implicit func-
tion better. However, they are discontinuous where f1 = f2. This
has been studied by Fayolle [5]; which we took as an inspiration for
our solution.

2.3 Real-time rendering of implicit objects
In order to visualize models based on implicits, one can convert
them to a mesh representation prior to rendering them as a set of
patch primitives [16]. However, when dealing with complex models
and shapes, such as for instance the molecular surfaces, one would
need to generate millions of triangles to perform a fully detailed
surface representation.

Therefore, in recent years, authors turn to direct visualization
techniques, which is being represented by ray-casting methods.
Since implicts encompass different forms of geometrical models,
the actual ray-casting method is proposed according to the type of
implicits we are dealing with.

For example, the ray-casting of algebraic surfaces is covered
extensively by computer graphics literature, which goes back sev-
eral decades. Hanrahan introduced ray-casting of algebraic implicit
models up to the fourth order [7]. Later work addressed ray-casting
of large number of quadrics on GPU aimed at molecular visualiza-
tion as well [29, 19, 15]. Later on, Sigg et al. [26] introduced very
fast GPU rendering of spheres, ellipsoids and cylinders focusing
mainly at molecular rendering. Nevertheless, these papers assume
that the input set of quadrics is already formed, which is not the
case with our instant implicit representation.

In 1992, Hart introduced a more robust approach for ray-casting
of distance based implicit surfaces called sphere tracing [8]. Since

in our work, we are dealing with distance based implicit functions
also, we adopted Hart’s technique, because it is easy to implement
and performs very well on distance based surfaces.

The recent work addresses ray-casting of general implicit sur-
faces on GPU using interval arithmetics [10] and via so-called adap-
tive marching point method [27]. However, their methods assume
that the function is defined globally, whereas our function is com-
puted locally only.

3 METHOD OVERVIEW

Our algorithm computes the implicit function representing SES on
the fly during ray-casting. This function returns the minimal dis-
tance from a sample point p (given on a ray) to the surface. To
compute the function, the following procedures are performed.

The k closest atoms to the point p are retrieved in the ascend-
ing order. According to the number of atoms k the function fSES is
generated. Here, all possible pairs

(k
2
)

of atoms are tested, whether
there might be an intersection between their solvent extended iso-
surfaces. If the test is positive, the intersection point that is the clos-
est one to p is estimated and stored. Then all possible triplets

(k
3
)

are checked according to the retrieved pair-wise intersection points
and neighboring atoms. Again, if the test is positive, the intersec-
tion point of the triplet is estimated and stored. To evaluate fSES
all the stored intersection points then generate the solvent sphere
function.

Afterwards, using computed fSES, the ray is advanced to a next
point, by the function value. When the value of fSES is close to 0 (to
the iso-surface), a depth and a normal at the point p are stored. The
implementation of our ray-casting method is performed and paral-
lelized using CUDA, where the ray-traversal and the function evalu-
ation is done per every image pixel. Finally, according to the stored
depth values and the computed normals, we perform the shading
computation and enhance the depth perception by means of screen
space ambient occlusion [17].

4 SES REPRESENTATION

Let us first introduce the geometrical basics allowing us to repre-
sent the surface using implicit modeling techniques. The goal is to
define an implicit function describing the surface in a certain 3D
neighborhood of a given point p, in order to evaluate fSES(p). The
implicit function fSES fulfils the following properties:

• for the given 3D point p the function fSES(p) will return the
minimal distance to SES representation.

• fSES(p)> 0 for p inside the object, fSES(p)< 0 for p outside
the object and fSES(p) = 0 means the p lies on the boundary
(iso-surface).

• function fSES is C1 continuous in a neighborhood of the sur-
face, i.e. gradient ∇ fSES is continuous in this neighborhood.

Let us assume that the set of atoms is defined as C =
{(c1,r1), . . . ,(cn,rn)}) with the solvent radius defined by R. We
define a set of implicit functions (implicits) defined as F =
{ f1, f2, . . . , fn}, where each fi(p) = ri − ||p − ci|| represents an
atom ci with the corresponding van der Waals radius ri. Note that
function f delimits the space into the interior and the boundary
(f ≥ 0) and the exterior (f < 0) half-space. We also define an ex-
tended set of implicits, where sphere atoms are enlarged by the sol-
vent radius R, as G = {g1 = f1 +R,g2 = f2 +R, . . . ,gn = fn +R}.
Since fi and gi are distance functions the gradient of both is defined
via

∇ fi(p) = ∇gi(p) =
ci −p

||ci −p|| .

Additionally, we define a set of atom centers Sp that are closer
to a point p than 2R, Sp = {ci| fi(p) ≥ −2R ∧ ci ∈ C}. The set
Sp ⊆ C delimits the point set C to atoms that might participate in

219

generating the surface (Fig. 3a), according to the point p that is
a parameter of the implicit function. The expression of set S is
derived directly from the detection of two incident atoms which
holds if ||ci −c j||< 2R+ ri + r j (Fig. 3b).

c
1

2

(a) (b)

c

p
p

2R
2R

R

Figure 3: Forming the point set Sp. a) Out of all the points, the set
Sp contains those which belong to the area of influence of the point p
(full circles). b) The point p lies above the R distance from the atom
c2, but it might still participate in forming the final iso-surface.

After forming set Sp the resulting function can be expressed as
follows:

fSES(p) = fSAS(p)−
⎛
⎝ ⋃

x∈ f−1
SAS(0)

(R−||x−p||)
⎞
⎠ , (3)

where fSAS is defined as follows:

fSAS(p) =
|S|⋃
i=1

gi(p), (4)

where the
⋃|S|

i=1 gi = max{g1, . . . ,g|S|}.
The term f−1

SAS(0) represents all iso-surface points of the func-
tion fSAS, on which the union of the solvent spheres is performed.
This union is subsequently subtracted from the fSAS. The formula
(3), however; does not have a closed form solution. Therefore, our
solution, reproducing Eq. 3, is based on building, in a piece-wise
fashion, the SES implicit function according to a given point p and
the size of the set S, |S|= k. We denote the resulting implicit func-
tion as fSES(p) = fS(p).

In the following sections, we describe the construction of fS ac-
cording to |S|. We introduce four essential cases, i.e. when S con-
tains no atom, one atom, two atoms, and three or more atoms.

The first two cases can be solved easily. When there is no atom
included in Sp, the implicit function is defined as

fSES(p) =
n⋃

i=1
fi(p). (5)

In practice, since there is no atom in 2R neighborhood of the point
p, we can set the fSES(p) = −2R, in order not to evaluate all the
points. In a case when there is only a single atom closer to p than
2R, S = {c1}, the resulting fS(p) is defined solely by the atom c1,
fS(p) = f1(p).

4.1 Toroidal implicit function
In a case when there are two atoms closer to p than 2R, |S|= 2, the
resulting fS(p) describes a toroidal patch that blends smoothly with
both atom spheres. Let us assume that Sp = {c1,c2}. We firstly
detect whether point p lies in the toroidal section of both extended
spheres, g1 and g2 (Fig. 5a, the blue triangle). The toroidal section
clips the toroidal iso-surface within the possible extent.

In order to assess whether point p lies inside this area, we firstly
generate two points p1 and p2 that are projections of the point p

to both iso-surfaces of g1 and g2, i.e. p1 = p− g1(p)∇g1(p) and
p2 = p−g2(p)∇g2(p) (Fig. 5b). Now we define a predicate

B1−2 ≡ g1(p2)≥ 0∧g2(p1)≥ 0, (6)

which represents whether point p lies within the the toriodal sec-
tion.

Furthermore we define a distance based implicit function de-
scribing the surface inside the toroidal section. In order to do so, we
exploit the fact that the toroidal iso-surface can be defined as min-
imal distance of p to the points belonging to the intersection circle
of g1 and g2, I = {x|g1(x) = g2(x) = 0}. However, computation
of all the points would be very impractical. Therefore, we compute
only the closest point x1−2 ∈ I to p directly

x1−2 = argminx∈I |x−p| . (7)

Once we have this point x1−2, we define the resulting implicit func-
tion fS(p) = f1−2, connecting c1 and c2, as follows:

f1−2(p) =
{

R−||p−x1−2|| i f B1−2
f1(p)∪ f2(p) otherwise, (8)

where f1(p) ∪ f2(p) is required to merge smoothly the toroidal
patch with the both spheres. Figure 4 demonstrates the resulting
implicit function iso-lines of the analogous scenario in 2D. Note
that the resulting function correctly computes distance values up to
the extent of R from the SES iso-surface.

Figure 4: A 2D version of the toroidal implicit function with rendered
iso-levels. The function returns correct distance values from the sur-
face up to R distance from the surface (arrows).

To evaluate the intersection point x1−2 of g1 and g2 we exploit
Newton’s iterative formula. The natural solution would be to uti-
lize an analytical approach to solve the intersection of two spheres;
nevertheless we aim at providing a more robust approach that could
possibly handle other types of atom representation than spheres.
For example, in a case when two atoms are very close to each other
(overlapping) they can be approximated by an implicit tube, which
can occur quite frequently. Additionally we estimate the closest in-
tersection point only, which is a prerequisite for Eq. 8. Therefore,
we approximate both extended functions g1 and g2 at an unknown
point x, where g1(x) = g2(x) = 0, by means of their first order Tay-
lor expansion at points g1(p) and g2(p):

0 = g1(x)≈ g1(p)− (x−p) ·∇g1(p)
0 = g2(x)≈ g2(p)− (x−p) ·∇g2(p),

(9)

where (x−p) expresses the vector leading to the desired point x.
Additionally, it is required that the vector (x− p) lies in a plane

220

perpendicular to both gradients ∇g1(p) and ∇g2(p) (Fig. 5c):

(∇g1(p)×∇g2(p)) · (x−p) = 0. (10)

Using Eqs (6,9,10), we obtain a system of three linear equations
where we would like to express an unknown point x from:⎡

⎣ g1(p)
g2(p)

0

⎤
⎦= (x−p) ·

⎡
⎣ ∇g1(p)

∇g2(p)
∇g1(p)×∇g2(p)

⎤
⎦ (11)

By denoting the matrix of gradients as M(p) for the point p, and
the left side vector of the equation by v(p)T , the solution can be
obtained by

x = v(p)T ·M(p)−1 +p (12)

Please note that when B1−2 ≡ 1, the point p lies in the close vicinity
of point x. However, it is still an approximation, and it is necessary
to iterate through system (11) numerous times. Eq. 12 changes then
to:

xi+1 = v(xi)
T ·M(xi)

−1 +xi, (13)

where x0 = p is the initial guess. The formula (13) has been already
utilized to compute the intersection of two implicit functions in [5],
which was aimed at generating distance approximation of boolean
operations on functional represented objects.

The system (13) stops when the point x lies in close vicinity (εN)
of both iso-surfaces, |g1(x)| ≤ εN ∧ |g2(x)| ≤ εN . Here, we can
delimit the number of the maximal number of steps, since the point
p lies close to x. For instance we evaluated an average number of
steps required for x1−2 evaluation between two spheres, for εN =
0.0001, to 3−7 steps.

In a case when a self-intersection occurs i.e the condition de-
scribed by Ryu et al. [23] (Fig. 5e), we benefit from the fact that
point x1−2 always lies closest to point p (7). Therefore, self-
intersection is tackled implicitly, which is an another reason for
preferring Newton’s iterative method over the analytical root find-
ing.

In Figure 5d, we showcase the final toroidal iso-surface for two
atoms, where we also demonstrate the self-intersection scenario
(Fig. 5f).

In the following, the intersection point x retrieved via (11) be-
tween gi and g j is denoted as xi− j .

4.2 Spherical triangle implicit function
In a case when there are three or more points closer to p than 2R,
|S| ≥ 3, the resulting fS(p) describes a spherical triangle. Here,
the resulting function create spherical triangle patch that blends
smoothly with three toroidal patches.

For simplicity, let us assume that Sp contains only 3 points,
Sp = {c1,c2,c3}. In order to discover whether point p lies in the
spherical triangle section (clipping the spherical triangle), we will
exploit the intersection points computed in the previous case.

Firstly, we extend the predicates B1−2 (6) to B′
1−2 to encompass

not only toroidal section but also an additional region that might be
encompassed by the area of influence of the third point c3 (Fig. 6a).
Additionally, it must be fulfilled that intersection point x1−2, ob-
tained via (11), lies within the opposite extended implicit function
g3 (Fig. 6b). Therefore, the new predicate B′

i− j is defined as fol-
lows:

B′
1−2 ≡ g1(p)≥−R∧g2(p)≥−R∧g3(x1−2), (14)

where g3(x1−2) is the extended function of the third point evaluated
at the intersection point of gi and g j .

Now, in order to determine whether point p lies inside the spher-
ical triangle section, we defined predicate B1−2−3 as follows:

B1−2−3 ≡ B′
1−2 ∧B′

1−3 ∧B′
2−3. (15)

c c

c

c

1 1

1

1

2

21

2

2

2

1-2

1-2

12

(a)

(c) (d)

(b)

c

gg

c

c

c

p

x

x

p
p

p

p

g g� �

1 2

(e) (f)

Figure 5: Forming the toroidal patch for two atoms. a) The toroidal
patch (red) lies only in the area marked by the blue triangle. b) In
order to determine that the given point p belongs to this area, we per-
form (1) projection of Bp to iso-surfaces g1(p1) = 0 and g2(p2) = 0 and
(2) evaluation of both functions for opposite points. c) In a case that
the point p lies inside the toroidal section, we retrieve the intersection
point x1−2 of g1 and g2 using the fact that the vector (x1−2 −p) lies in
the plane perpendicular to both gradients ∇g1(p) and ∇g2(p). d) The
visualization of the toroidal patch. The atoms are close enough to
get the continuous iso-surface. e) Self-intersection can occur when
the solvent is thicker than the height of the actual toroidal section. f)
The visualization of the self-intersected toroidal patch.

Visual comparison of forming a concave spherical patch using
original predicates B and their updated version B′ is shown in Fig-
ure 6c and 6d.

Furthermore, in order to specify the spherical implicit function
defined by c1,c2 and c3, we locate an intersection point fulfilling
g1(x) = g2(x) = g3(x) = 0. Accordingly, we define the resulting
implicit function fS(p) = f1−2−3, connecting c1,c2 and c3, as fol-
lows:

f1−2−3(p) =
{

R−||p−x1−2−3|| i f B1−2−3
f1−2(p)∪ f1−3(p)∪ f2−3(p) otherwise,

(16)
where the second branch is required to smoothly connect the spher-
ical triangle with the all three toroidal patches.

In order to locate the point x, we utilize Newton’s iterative
method of root finding of all three functions, where the system (11)
changes to the following:⎡

⎣ g1(p)
g2(p)
g3(p)

⎤
⎦= (x−p) ·

⎡
⎣ ∇g1(p)

∇g2(p)
∇g3(p).

⎤
⎦ (17)

In order to solve (17) we utilize again the iterative formula pre-
sented in (13). The system (17) stops when the point x lies in
close vicinity (εN) of all three iso-surfaces, |g1(x)| ≤ εN ∧|g2(x)| ≤
εN ∧|g2(x)| ≤ εN . The definition of fS(p) for all the points in Sp is
straightforward:

fS(p) =
⋃

(i, j,k)∈(|S|3)

fi− j−k(p). (18)

221

Similarly to the previous case, when a self-intersection occurs;
we utilize the fact that point x1−2−3 lies closest to point p and the
self-intersection is tackled implicitly (Fig. 6e). We showcased the
example composed of 12 atoms in Figure 6f.

c c
1 32

1

2

1-2

c

c

c

x

p
p

(a) (b)

1-2x

(c) (d) (e) (f)

Figure 6: The formation of the spherical triangle patch. a) Evaluation
of the predicate B′

1−2. The point x1−2, representing the intersection of
g1 and g2, must lie inside the area of influence of g3. Therefore the
area (the blue ellipse) for x1−2 estimation is extended to all the points
that fulfil g1(p) ≥ −R∧ g2(p) ≥ −R. b) Once the intersection point
x1−2 is computed, it is evaluated against the third extended function
g3(x1−2)≥ 0 (Eq. 14). c) When using the original predicates artifacts
can appear caused by the fact that the intersection point xi− j lies too
far away from the point ck. d) The example of the corrected predicate
B′, where the cracks disappeared. e) The self-intersection issue is
solved implicitly using the property of the point x1−2−3. f) An example
of the SES, defined by (18), composed of 12 atoms.

5 IMPLEMENTATION

Our implementation of the visualization pipeline is performed us-
ing modern GP-GPU techniques, namely CUDA and GLSL. On
CUDA, we perform the ray-casting of the whole scene and store
the iso-surface points and their normals. Afterwards, using GLSL
shaders we perform an image based enhancement by means of the
screen space ambient occlusion [17]. The parallelization is done on
the ray basis, where a single ray is generated for every pixel.

5.1 Data Structure
The crucial part of our method is to retrieve the set Sp that repre-
sents all neighboring points that might participate in forming the
function. There have been several efficient GPU structures pro-
posed to retrive k-closest points to a given one [33]. Neverthe-
less, we utilize a simple and straightforward approach that is based
on an uniform spatial subdivision. This has has been already uti-
lized by the broader molecular visualization community [11, 14].
The atoms are sorted into cubic voxels with a lateral length of
2radiusmax + 2Rmax, where radiusmax represents maximum (van
der Waals) radius of all included atoms and Rmax represents maxi-
mal allowed radius of the solvent. We set the maximal allowed ra-
dius to 2, which means that values of R can be interactively varied
from 0 to 2. The sorting of the atoms into the grid is done in O(n),
which also represents the only and the necessary precomputation
step in our pipeline. Then in order to build the set Sp it is required
to visit 3x3x3 neighboring voxels for a given point p. Thus, for a
given time-step, we need to send to GPU only the atom centers and
their radii, and the voxels with Ids of atoms.

5.2 Rendering Parameters
The rendering process depends on several parameters, which affect
the overall rendering performance and the precision ratio. With this
respect these parameters can be taken as level of detail parameters.

In the general case, the size of the set Sp, might contain an un-
limited number of atoms, which would make it impossible to store
them in CUDA memory, even with the version 4.0 that allows to
allocate dynamic arrays. Fortunately, Varshney et al. has experi-
mentally shown that a typical atom in a protein has approximately
45 neighboring atoms within the radius of a water molecule [32].
Therefore, we limit the maximum size of S to 45 = |S|. However,
such a configuration would still produce

(45
3
)
= 14910 triplets to

evaluate in Eq. (18). Accordingly, we introduce parameter kmax
which specifies the maximum number of atoms being stored when
building the set Sp, with the maximal limit being 45.

With respect to this limitation, we have to choose which atoms
are retrieved. Therefore, all the atoms in Sp are stored in the
increasing order, i.e. S = {c1,c2, . . . ,ck| f1(p) ≥ f2(p) ≥ . . . ≥
fkmax(p) ≥ −2R}. Since we are ordering only kmax number of
items, the time complexity of the sorting is O(1). We evaluated
the quality of the resulting surface according to different kmax val-
ues. Here we noticed that for kmax > 10, we obtained only small
surface improvements (Fig. 7). On the other hand, when rendering
cavities in details, the number of S-included atoms has to be in-
creased since all the atoms along the cavity circumference (and for
which fi(p)≥−2R) might participate to the final surface.

Figure 7: Comparison of the SES visual quality when having set the
parameter kmax = 5 (left), kmax = 10 (middle) and kmax = 15 (right). Note
that there are only negligible improvements between the last two.

The resulting implicit function defines the implicit surface at
points fSES(p) = 0, which can cause a performance bottleneck dur-
ing the evaluation of the exact points laying on the iso-surface.
Therefore, we determine whether the point p lies on the iso-surface
if and only if | fSES(p)|< ε , where ε represents the minimal allowed
proximity to the surface. Here, the exact ε value is specified on the
fly; either to increase performance or to improve the surface quality.

When evaluating both systems (11) and (17), we specify the εN
and the maximum allowed number of iterations L available for in-
tersection point estimations, i.e xL = v(xL−1)

T ·M(xL−1)
−1+xL−1.

Since the intersection is always evaluated when point p is close to
the intersection points themselves, we set L = 10.

5.3 Ray-casting
As was mentioned before, the parallelization is done on the ray ba-
sis. Here we compute the ray entry (tmin) and exit (tmax) parameters
within the bounding box of the currently bounded scene. For sim-
plicity, we perform only the first hit traversal. A generated ray is
processed in a step-wise fashion until the tmax is reached or we hit
the iso-surface. Since the set Sp is ordered increasingly from p, we
perform both toroidal and spherical triangle implicit computations
only when |Sp|> 0 and g1(p)≥ 0. This reflects the fact that p must
lie at least in one area of influence of all the points in Sp. Therefore,
the function fSES(p) returns a signed distance value representing
the closest proximity to the SES iso-surface, although only when
being closer to the surface than R. Using this fact, the raycasting

222

procedure increment the ray parameter t by − f , since the function
has negative values outside, i.e. t = t − f (Fig. 8). The noticeable
deficiency is that it is necessary to perform many steps when being
close to the surface.

-f

p

Figure 8: Ray-casting a simplified scene. We perform steps of the
size of fSES, in order not to skip the existing iso-surface.

5.4 Function evaluation

One of the disadvantages of implicit function evaluation is the time
complexity when evaluating the function for all the points in Sp. In
general case, where the points have arbitrary topology, the evalua-
tion of spherical triangle function would lead to O(|S|3) complex-
ity. Fortunately the number of atoms participating generation of
implicit function is upper bounded. With respect to this restriction
we store the required combinations of

(k
2
)

and
(k

3
)
, used by Eq. (18)

into linear arrays into the constant CUDA memory. Computations
of predicates, intersections and function values is achieved in O(1),
since we are iterating over systems (11,17) in the upper bounded
number of computational steps. While evaluating, the only real bot-
tleneck is being traversal of neighboring points in order to construct
the set S. This is done in linear time O(n). To optimize the ray-
casting, we cache the intersection points while progressing along
the ray.

5.5 Performance

We evaluated the performance of the new rendering method on the
sequence of eight proteins (Fig. 1); murine coronin-1 (3023 atoms,
a), g-actin (2872 atoms, b), potassium channel (2820 atoms, c),
proteinase 3 (3346 atoms, d), immunoglobin (12530 atoms, e) pro-
liferatic cell nuclear antigen (12555 atoms, f), bacteriorphodopsin
(1718 atoms, f) and tubulin (14744 atoms, h). We were varying all
presented parameters affecting the performance (kmax, ε , εN). The
performance measurements were done on a workstation equipped
with two (2 GHz) processors and 12.0 GB RAM and with the
GPU, NVIDIA GeForce GTX 480. It is important to mention here
that we do not aim at outperforming any existing rendering tech-
niques [11, 14] regarding FPS, since we compute the iso-surface
on the fly. On the other hand, our aim here is to define SES repre-
sentation in a simple way and to provide users with an interactive
response for changing any protein or solvent parameters. Further-
more, to study molecular dynamics using visualization of arbitrary
sections of the sequence without the need of any precomputation
steps. Therefore, the performance (FPS) is more about the fact that
such a system can provide an interactive response when, for in-
stance, included in the existing protein exploration environment.

The level of interactivity is dependent on the three aforemen-
tioned parameters, kmax,ε and εN . We observed that the rendering
performance is affected significantly by the parameter kmax. For in-
stance, by setting ε = 0.01, εN = 0.005, R = 1.4 and by increasing
incrementally kmax from 5 to 20, we get the following FPS:

kmax a b c d e f g h
5 15 18 18 14 9 10 20 8

10 13 15 16 12 8 9 16 7
20 4 5 6 3 2 2 8 2

Nevertheless, by setting ε < 0.00001 and setting kmax > 20 we get
< 1 FPS for all the proteins. Therefore, this configuration can be
used to provide high-quality images but a less interactive response.
To guarantee constant framerates (above 15FPS), we implemented
a progressive refinement strategy that automatically reduces these
parameters,e.g.; ε = 0.2, εN = 0.005 and kmax = 5, when perform-
ing visual exploration (zooming, rotation) or seeking for different
time-steps. When a user does not interact with the scene, these pa-
rameters are automatically increased to the higher level to get the
finer details.

We demonstrated the sequence of two of presented proteins (pro-
tein d an f, where we set kmax = 10 as a constant) to the bioinformat-
ics scientist, where we achieved satisfactory interactivity. Here, the
feedback, which we have received was that visualization provides a
sufficient amount of details for an overview on the protein surface
with respect to the cavity exploration. Additionally, the provided
interactivity was highly appreciated.

6 ERROR ESTIMATION AND LIMITATIONS

The visual surface precision is directly affect by the minimal al-
lowed proximity, ε , to the iso-surface during the ray-casting. The
parameters kmax and εN affect the function evaluation error. When a
given point x on the ray r fulfils f (x)≤ ε , the point x is considered
to lie on the iso-surface, which actually holds only if ray r intersects
the surface in a point x′, i.e. f (x′) = 0. Since the function f is C1

continuous, via the mean value theorem in several variables, there
exist such a parameter t ∈ [0,1] that

f (x)− f (x′) = ∇ f
(
(1− t)x+ tx′

) · (x−x′). (19)

When denoting point c = (1− t)x+ tx′ and since f (x′) = 0, we get
the error E dependent on the following equation

∇ f (c) · (x−x′) = f (x)≤ ε. (20)

Using Eq. (20) we can identify the case, when function values vary
rapidly and gradient magnitude can become very high, then dis-
tance between x and x′ needs to be significantly smaller in order to
fulfil Eq. (20). In our approach, this creates the artifacts since the
parameter ε is taken as a constant during ray-casting. Instead, as a
future work, it needs to be adjusted according to function complex-
ity in the neighborhood of x′.

We have discussed the corresponding visualization artifacts with
the bioinformatical specialist. Since the SES representation is uti-
lized in cavity discoveries predominantly, which are recognized
only when a ball of radius R fits inside an opening, the artifacts
were considered insignificant when setting ε R.

As a consequence, the major limitation of utilizing our implicit
representation for visualization purposes is that it does not have
to be a 100% SES representation. Here, the difference to existing
approaches lies in the fact that while these approaches generate a set
of quadrics, our implicit function is defined globally and therefore
we have to rely on the numerical approach while tracking the iso-
surface.

Additionally, even one specifies kmax = 45, it can theoretically
happen that the number of neighboring atoms can become higher
(with the respect to MD simulations). Nevertheless, this is not the
typical case, since we have noticed only little improvements when
setting kmax > 10.

Another limitation is dependent more on the utilized graphics
hardware, for which GPU can stall when evaluating too many points
in set S.

223

7 UTILITY POTENTIAL

Our implicit representation is tailored for the purpose of detecting,
analyzing and visualizing cavities; i.e tunnels or channels. Tunnels
are essentially pathways leading from a cavity to a protein core.
Channels lead through the whole protein structure having cavities
on both ends. The study of how these pathways evolve is highly im-
portant and required for drug design. Usually, to discover a channel,
it is necessary to find the cavity and then track the cavity during the
protein simulation, to find out whether it reaches the surface.

Contrary to previous approaches [11, 14], for a given point x our
SES implicit function (Section 4) computes the closest distance to
the surface, the gradient at x, and classifies x according to whether
it lies inside or outside of the protein atoms. By means of numer-
ical methods, we can compute the volume area of the cavity using
point-to-object classification. Another utilization is to track down
the cavity automatically using the distance property of the implicit
function and using its gradient. We can delimit the cavity detection
only to places, where a solvent will fit in. In other words, we locate
points where fSES < −R, i.e. points that are above the distance of
solvent radius R.

8 CONCLUSION

We presented a new method of representing SES by means of func-
tional representation of objects. The implicit function computes
SES representation locally. For a given point p the function re-
turns the correct minimal distance to the surface, although only up
to the distance of the solvent radius R. Additionally, the function
is positive inside the SES object and negative outside. The main
contribution is that we represent the molecular surface without pre-
computation, thus enabling instantaneous visual analysis.

Moreover, we proposed a simple ray-casting method which is
used to render even large proteins at reasonable interactivity. We
introduced a set of parameters that affect the overall rendering per-
formance. These can be adjusted in accordance with the rendering
performance versus a precision ratio.

Since the work forms the first steps in a new direction of SES
representation, we have performed only an informal evaluation. We
showed the implementation of our method to specialists where we
demonstrated it on a sequence of the two presented proteins. The
possibility of changing the solvent radius or even to pick up atoms
in related views, was found to be highly interesting and promising.

ACKNOWLEDGEMENTS

We give thanks to Nathalie Reuter for providing the molecular
dynamics simulation datasets and the necessary feedback, and to
Armin Pobitzer for final touches with mathematical formulas.

REFERENCES

[1] J. Blinn. A generalization of algebraic surface drawing. ACM Trans-
actions on Graphics, 1:235–256, 1982.

[2] M. Chavent, B. Levy, and B. Maigret. MetaMol: high-quality visu-
alization of molecular skin surface. Journal of molecular graphics &
modelling, 27(2):209–16, Sept. 2008.

[3] M. Connolly. Analytical molecular surface calculation. Journal of
Applied Crystallography, 16(5):548–558, 1983.

[4] H. Edelsbrunner. Deformable smooth surface design. Discrete &
Computational Geometry, 21(1):87–115, 1999.

[5] P.-a. Fayolle. Technical Report 2009-001 Distance to set operations in
constructive modeling of solids. City, 2009.

[6] J. Greer and B. L. Bush. Macromolecular shape and surface maps by
solvent exclusion. Proceedings of the National Academy of Sciences
of the United States of America, 75(1):303–7, Jan. 1978.

[7] P. Hanrahan. Ray tracing algebraic surfaces. SIGGRAPH Comput.
Graph., 17:83–90, July 1983.

[8] J. C. Hart. Sphere tracing : a geometric method for the antialiased ray
tracing of implicit surfaces. Computer, pages 527–545, 1992.

[9] W. Humphrey, A. Dalke, and K. Schulten. VMD: visual molecular
dynamics. Journal of molecular graphics, 1(14):33–38, 1996.

[10] A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Ha-
gen. Fast Ray Tracing of Arbitrary Implicit Surfaces with Interval
and Affine Arithmetic. Computer Graphics Forum, 28(1):26–40, Mar.
2009.

[11] M. Krone, K. Bidmon, and T. Ertl. Interactive visualization of molec-
ular surface dynamics. IEEE transactions on visualization and com-
puter graphics, 15(6):1391–8, 2009.

[12] M. Krone, M. Falk, and S. Rehm. Interactive Exploration of Protein
Cavities. Computer Graphics Forum, 30(3):673–682, 2011.

[13] B. Lee and F. M. Richards. The interpretation of protein struc-
tures: estimation of static accessibility. Journal of molecular biology,
55(3):379–400, Feb. 1971.

[14] N. Lindow, D. Baum, S. Prohaska, and H. Hege. Accelerated Vi-
sualization of Dynamic Molecular Surfaces. In Computer Graphics
Forum, volume 29, pages 943–952. Wiley Online Library, 2010.

[15] C. Loop and J. Blinn. Real-time GPU rendering of piecewise alge-
braic surfaces. ACM Transactions on Graphics (TOG), 25(3):664–
670, 2006.

[16] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. SIGGRAPH Comput. Graph., 21:163–
169, August 1987.

[17] T. Luft, C. Colditz, and O. Deussen. Image enhancement by un-
sharp masking the depth buffer. ACM Transactions on Graphics,
25(3):1206–1213, jul 2006.

[18] A. A. Pasko, V. Adzhiev, A. Sourin, and V. V. Savchenko. Function
representation in geometric modeling: concepts, implementation and
applications. The Visual Computer, 11(8):429–446, 1995.

[19] G. Reina and T. Ertl. Hardware-accelerated glyphs for mono-and
dipoles in molecular dynamics visualization. In Proceedings of EU-
ROGRAPHICSIEEE VGTC Symposium on Visualization, volume xx,
pages 177–182, 2005.

[20] A. Ricci. A constructive geometry for computer graphics. The Com-
puter Journal, 16(2):157–160, 1972.

[21] F. M. Richards. Areas, volumes, packing, and protein structure. An-
nual Review of Biophysics and Bioengineering, 6(1):151–176, 1977.

[22] J. Ryu, Y. Cho, and D.-S. Kim. Triangulation of molecular surfaces.
Computer-Aided Design, 41(6):463–478, June 2009.

[23] J. Ryu, R. Park, and D. Kim. Molecular surfaces on proteins via beta
shapes. Computer-Aided Design, 39(12):1042–1057, Dec. 2007.

[24] M. F. Sanner, a. J. Olson, and J. C. Spehner. Reduced surface: an
efficient way to compute molecular surfaces. Biopolymers, 38(3):305–
320, Mar. 1996.

[25] Schrödinger, LLC. The PyMOL molecular graphics system, ver-
sion 1.3r1. August 2010.

[26] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-based ray-casting
of quadratic surfaces. In Eurographics Symposium on Point-Based
Graphics, pages 59–65. Citeseer, 2006.

[27] J. M. Singh and P. J. Narayanan. Real-time ray tracing of implicit sur-
faces on the GPU. IEEE transactions on visualization and computer
graphics, 16(2):261–72, 2010.

[28] M. Tarini, P. Cignoni, and C. Montani. Ambient occlusion and edge
cueing to enhance real time molecular visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1237–1244,
2006.

[29] R. Toledo and B. Lvy. Extending the graphic pipeline with new gpu-
accelerated primitives. Technical report, INRIA-ALICE, 2004.

[30] M. Totrov and R. Abagyan. The contour-buildup algorithm to calcu-
late the analytical molecular surface. Journal of structural biology,
116(1):138–43, 1996.

[31] M. van der Zwan, W. Lueks, H. Bekker, and T. Isenberg. Illustrative
Molecular Visualization with Continuous Abstraction. pages 683–
690, Bergen, Norway, 2011. Eurographics Association.

[32] A. Varshney, F. P. Brooks, Jr., and W. V. Wright. Computing smooth
molecular surfaces. IEEE Comput. Graph. Appl., 14:19–25, Septem-
ber 1994.

[33] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construc-
tion on graphics hardware. In ACM SIGGRAPH Asia 2008 papers,
SIGGRAPH Asia ’08, pages 126:1–126:11. ACM, 2008.

224

