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Fast Blending Scheme for Molecular Surface Representation

Julius Parulek, Member, IEEE, and Andrea Brambilla, Student Member, IEEE

Fig. 1. Three molecular surface representations of the phospholipase (blue) bound to the lipid membrane (red) (34490 atoms in total).
Left: Gaussian surface model. Middle: Our representation. Right: Solvent excluded surface model. The function evaluation of the
implicit surface has linear complexity for the Gaussian model and cubic complexity for the solvent excluded surface. Our technique
has linear complexity and is able to produce a surface representation that resembles the solvent excluded surface model.

Abstract—Representation of molecular surfaces is a well established way to study the interaction of molecules. The state-of-the-
art molecular representation is the SES model, which provides a detailed surface visualization. Nevertheless, it is computationally
expensive, so the less accurate Gaussian model is traditionally preferred. We introduce a novel surface representation that resembles
the SES and approaches the rendering performance of the Gaussian model. Our technique is based on the iterative blending of implicit
functions and avoids any pre-computation. Additionally, we propose a GPU-based ray-casting algorithm that efficiently visualize our
molecular representation. A qualitative and quantitative comparison of our model with respect to the Gaussian and SES models is
presented. As showcased in the paper, our technique is a valid and appealing alternative to the Gaussian representation. This is
especially relevant in all the applications where the cost of the SES is prohibitive.

Index Terms—Molecular visualization, geometry-based techniques, implicit surfaces

1 INTRODUCTION

The research field of computational molecular biology aims at im-
proving the understanding of the molecular machinery of life at the
highest magnification level. Molecules are not static objects and it
is necessary to take their dynamics and their mutual interactions into
account. Molecular interactions can be studied through the analysis
of molecular dynamics (MD) simulations. The simulations result in
large datasets, called trajectories, containing the sequence of molec-
ular structures (thousands of MD structures) as they vary along the
simulation time.

With respect to molecular visualization, the essential requirement
is to display a large amount of atoms at interactive frame rates in or-
der to enable the visual analysis of molecular surfaces. Moreover,
simulated datasets do not longer consist of only one moderately sized
macromolecules, but instead of molecular systems representing com-
plex interactions, e.g., a phospholipid vesicle membrane together with
proteins anchored in the membrane (Fig. 1). Therefore, one can eas-
ily obtain datasets where tens or hundreds of thousands of atoms are
animated throughout thousands of time-steps.
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Computational biologists are now approaching a new level of inter-
active molecular dynamics that allows for changing the MD structure
in real-time by utilization of coarse grained simulations [6]. Here, MD
datasets have to be visualized directly from the simulation: streamed
molecular surface visualization. In such a case, preprocessing of
frames should be eliminated and the sequence should be rendered in
real-time without adopting any proxy structure, such as octree or other
space partitioning schemes.

The exploratory process of MD simulation is often concerned with
the visual identification of binding sites of ligands to a host macro-
molecule. Usually 3D molecular visualization conveys the molecular
structure so that the binding sites can be located through visual inspec-
tion. The state-of-the-art molecular representation is called solvent ex-
cluded surface (SES) [33]. It reveals possible binding sites by rolling
a solvent (approximated by a ball of radius R) on the solvent accessi-
ble surface. The main drawbacks of the SES representation, with re-
spect to visual exploration, are the high computational complexity and
the need for substantial pre-computations [35, 42]. There are several
approaches in the literature that generate and visualize the SES repre-
sentation on the GPU [22, 16]. They can achieve fast rendering per-
formances, but they rely on pre-computations and their scalability is
limited. Additionally, their primary focus is on the rendering aspects,
while the actual volumetric representation still remains unsolved.

For these reasons, the Gaussian model is still preferred in practical
applications. It is easier to implement, to render and it can be also
easily converted to a voxel-based representation [3]. However, the ap-
proximation provided by the Gaussian model does not fully imitate the
solvent accessibility [17]. Recently, Parulek and Viola [29] introduced
an implicit representation for SES. Their approach allows to perform,



for instance, the voxelization of the model. However, the computa-
tional complexity still remains very high.

In our paper, we propose a new representation for molecular sur-
faces that is easy to implement and evaluates the molecular function
locally, similarly to the Gaussian model. As a reference we take the
SES representation, where we imitate the rolling of the solvent sphere
using a new blending scheme. Initially our scheme blends two atoms
together while computing the first and second order partial derivatives,
that are later employed to iteratively merge all other atoms. Moreover,
we introduce a method that efficiently visualizes such a function by
means of ray-casting. We adopt the A-buffer technique [4, 44] that
lets us determine the ray-surface intersection without employing any
underlying data structure. We compare our new representation qual-
itatively and quantitatively with the Gaussian and SES models. Our
contribution can be summarized as follows:
i) a new solvent excluded representation for molecular surface, that
needs no pre-computations, and is free of any supporting structure,
i.e., no grids nor octrees.
ii) a demonstration of the potential of our approach for interactive
molecular dynamics visualization, i.e., real-time adjustments of sol-
vent radius and atom positions.

2 RELATED WORK

We relate our work to three areas. Firstly, we introduce techniques
of molecular representation and visualization. Secondly, we describe
implicit modeling techniques. Finally, we present real-time rendering
techniques of implicit surfaces.

2.1 Representation of Molecular Surfaces
There are several types of molecular surface representations that can
be found in the literature. Due to space limitation, we address only the
ones closely related to our technique. One of the basic representations
is given by depicting the atoms as spheres. The radius of the spheres
corresponds to the so-called van der Waals force (vdW surface) [21].
The extension of spherical radii by a solvent radius R is called solvent
accessible surface, and it provides information about the areas acces-
sible to a solvent molecule of radius R. Closely related to the solvent
accessible surface is the SES representation. It is formed by rolling a
sphere of radius R (the solvent), over the vdW spheres, while its cen-
ter lies on the boundary of the solvent accessible surface [33, 10]. The
SES is the most widely used representation for binding site analysis.
However, due to its high-computational cost, convolution kernels are
frequently preferred [36].

One of the most popular kernels with respect to molecular surfaces
is based on the Gaussian model [3]. Our approach does not involve a
kernel function, but instead it iteratively blends atoms together accord-
ing to the solvent sphere radius. We develop a method that efficiently
incorporates the solvent sphere and, at the same time, retain interac-
tivity. In 2007, Bates et al. [2] described a method that generates the
molecular surface by means of curvature minimization. This entire ap-
proach requires a grid representation of the molecular structure, where
the surface is iteratively minimized by computing eigenvalues of Hes-
sian matrices. In contrast, in our blending scheme, we specify one of
the surface principal curvatures using the circular model directly.

There has been a lot of effort put into efficient generation and visu-
alization of SES in the literature. In 1983, Connolly [5] proposed an
analytical description of the SES representation. More than ten years
later, Sanner et al. [35] presented the reduced surface algorithm for
construction of SES. In the same year, Totrov and Abygyan introduced
the contour-buildup algorithm [42] to form the SES representation,
which was later optimized and parallilized by Lindow et al. [22]. The
visualization is then performed using a ray-casting method. Recently,
Krone et al. [18] improved the computation of the contour-buildup al-
gorithm. In 2009, Krone et al. [16] also introduced the utilization of
the reduced surface method for direct ray-casting of molecular sur-
faces. Both these GPU techniques focus only on rendering aspects,
and build quadric and quartic primitives prior to surface rendering.

In 2012, Parulek and Viola [29] proposed an algorithm that com-
putes a signed distance to the SES representation. Their approach

provides direct computation and visualization of the molecular sur-
face. Nevertheless, the implicit function evaluation at a given point
has cubic time complexity, which limits the interactive performance.
Moreover, it also requires an underlying data structure to hold the atom
locations. In our approach the function evaluation complexity is linear.
Additionally, no supporting data structure is required, which allows us
to instantly render molecular surfaces from a given set of atoms.

2.2 Modeling through Implicit Space
Implicit surfaces (implicits) provide a way to easily model biological
structures [7]. They naturally enable modelling of smooth objects in a
convenient way.

The set of techniques, known today as implicit modeling, was pro-
posed for the first time by Blinn [3]. Blinn introduced the Gaussian
convolution kernel in order to blend atom potentials. Later on, Pasko
et al. generalized the representation of implicits, by combination of
the different forms of implicit models [30]. This generalization was
described by the inequality f (x) ≥ 0. This predicate describes an im-
plicit solid object, where x = (x1,x2,x3) ∈ R3. Function f is called
implicit surface function (implicit function), and it classifies the space
into two half-spaces, i.e., f (x) > 0 and f (x) < 0. We employ this
representation to form the molecular surface function. The major ad-
vantage is the possibility to build more complex objects using binary
operators, such as union or intersection [8]. More advanced model-
ing techniques use the so-called implicit space, proposed by Barthe et
al. [1]. A user can interactively sketch the required shape modifica-
tions in the space formed by the potential fields of both input func-
tions, I2 = [ f1(x), f2(x)]. Nevertheless, this method does not reflect
the mutual orientation and position of the objects at a given point x.
In 2008, Fayolle et al. [8] proposed a method that computes a correct
distance surface measure for CSG operations in I2. However, the ob-
vious limitations are the same as in the work of Barthe et al. [1]. In
2012, Gourmel et al. [9] introduced a technique that allows to specify
the final surface shape according to the function values and also their
gradients. In our approach, we use I2 to form a circular model based
on the radius R and the gradients of both input objects. Therefore, the
work of Gourmel et al. is related to ours in terms of gradient-based
modeling. Their work was primarily focused on merging two objects
only, while blending more than two objects was just sketched, and
thus remained unsolved. Here we propose how to solve the blending
between multiple objects that in our case are molecular atoms.

2.3 Real-time Rendering of Implicit Objects
In order to visualize models based on implicits, one can convert them
to a mesh representation and later render them as a set of patch prim-
itives [24]. For instance, efficient triangulation of SES was proposed
by Ryu et al. [34]. However, when dealing with complex models and
shapes such as molecular surfaces, we would need to generate millions
of triangles in order to obtain a fully detailed surface representation.

Therefore, with the recent advancements of GPU hardware, re-
searchers turned to direct visualization techniques, in particular to ray-
casting methods. Since implicts encompass different forms of geomet-
rical models, the various ray-casting methods are designed according
the type of the implicit that has to be rendered. The ray-casting of
SES presented by Krone et al. [16] and Lindow et al. [22] is per-
formed by ray-tracing quadrics, after the molecular surface has been
decomposed into set of basic spherical and toroidal primitives. In gen-
eral, the ray-casting of algebraic surfaces, such as quadrics, is exten-
sively covered by the computer graphics literature and goes back sev-
eral decades. Hanrahan introduced ray-casting of algebraic implicit
models up to the fourth order [11]. Later work addressed ray-casting
of large number of quadrics on GPU aimed at molecular visualization
as well [41, 32, 23]. Later on, Sigg et al. [37] introduced very fast
GPU rendering of spheres, ellipsoids and cylinders, focusing mainly
on molecular rendering.

In 1994, Hart introduced a more robust approach for ray-casting
of distance-based implicit surfaces called sphere tracing [12]. Hart’s
technique is efficient and easy to implement. So, since we also deal
with distance-based implicit functions, we included it in our pipeline.



Several studies address ray-casting of general implicit surfaces on
the GPU using interval arithmetic [15]. Nevertheless, interval arith-
metic requires the definition of dedicated mathematical operators,
which is very challenging when dealing with compound objects. An-
other GPU-based ray-casting of implicits is achieved via the adaptive
marching point method [38]. However, this method assumes the func-
tion is defined globally, whereas our function is computed only locally.

The fast rendering of metaballs on GPU hardware was proposed by
Szecsi and Illes [39], which employs the A-buffer technique or frag-
ment linked list. Here we present a similar approach, although the
function computation is different, since, in their work, the main goal
was to render molecules defined by blobby objects. Additionally, they
assume that the scene is already ordered. In contrast, we make no as-
sumptions regarding ordering, and our rendering parameters defining
the molecular surface can be varied arbitrarily.

3 PROPOSED APPROACH

MD datasets are composed of a large set of atoms describing the struc-
ture of one or more molecules. Specifically, let m be the number of
atoms in a dataset. The atom i ∈ {1,2, . . . ,m} is described by its cen-
ter ci ∈ R3 and the corresponding van der Waals radius ri ∈ R.

We define a set of m implicit functions G = {g1,g2, . . . ,gm}, such
that

gi(x) = ri −||x− ci||, (1)

with x ∈ R3. Then, every atom i can be represented by the iso-surface
gi(x) = 0 of the corresponding implicit function. Each function gi is
a distance function and it divides the spatial domain into two half-
spaces: the interior of the atom (gi(x) ≥ 0) and the exterior (gi(x) <
0). From now on, when the meaning is clear, we will not specify the
spatial location x, e.g., we will write gi = 0 instead of gi(x) = 0.

We define an implicit function l : R3 → R such that the iso-level
l = 0 represents the surface of the molecule. For a given point x, l(x)
expresses a distance measure of the point x from the molecular surface,
with positive values inside and negative values outside the molecule.
The function l(x) is evaluated locally by blending a subset Gx ⊆ G of
the atom functions according to the solvent radius R. At a given lo-
cation our blending scheme requires the gradient ∇gi and the Hessian
Hgi of each atom function gi. The whole computation process is iter-
ative, and the gradient ∇l and the Hessian Hl of function l have to be
evaluated at each iteration (Alg. 1).

Algorithm 1 Evaluation of the implicit function for a point x.
1: build the set of atoms Gx = {g1,g2, . . . ,gn} affecting x (Eq. 4)
2: for each gi, compute ∇gi and Hgi (Eqs. 1,2 and 3)
3: initialize l, ∇l and Hl
4: for all g ∈ Gx do
5: if x lies in the area influence of l and g (Eq. 6) then
6: compute the dot product k = ∇l ·∇g
7: update l (Eq. 9)
8: update ∇l (Eq. 11)
9: update Hl (Eq. 13)

10: end if
11: end for
12: return l

Let us first give a formal definition of ∇gi and Hgi . Recall that the
gradient is a vector given by the first order partial derivatives. Let
v = (x− ci). Then, the gradient of an atom function gi is

∇gi(x) =
1
|v|

[vx,vy,vz]
T . (2)

The Hessian Hgi , instead, is the matrix of second order partial deriva-
tives

Hgi(x) =
1

|v| 3
2

−(v2
y + v2

z ) vxvy vxvz
vxvy −(v2

x + v2
z ) vyvz

vxvz vyvz −(v2
x + v2

y)

 . (3)

The algorithm begins by determining the set of atoms Gx ⊆ G that
may affect the function value in x (line 1). This is in analogy to
the Gaussian representation, which takes into account only the atoms
within the area of influence of the Gaussian kernel. More details are
provided in Section 3.1.

The function l is then evaluated by looping over the set Gx. At every
iteration, a new atom gi ∈ Gx is taken into account. A simple test (line
5) determines if gi has to be blended with the current function l. If
the test is passed, the merging procedure is carried out. The blending
scheme is based on the implicit space approach: the two functions are
blended by an implicit circle whose radius is defined by the solvent
radius R (Sec. 3.3). This results in a new function value representing
a distance measure to the spherical blend of both input functions. The
computation involves the gradient ∇l and the Hessian Hl of the current
function. These values have to be updated every time a new atom is
blended, since they will be required in the next iteration (Sec. 4).

The computation of l is performed on the fly during ray-casting.
After l is evaluated at a location x, the ray-casting procedure contin-
ues and the ray advances to the next point. The intersection between
the ray and the molecular surface is detected when the value of l(x)
is close to 0 (up to a small threshold). We based our ray-casting pro-
cedure on the A-buffer technique, since it allows for fast empty space
skipping. Moreover, it lets us determine the set of relevant atoms Gx
in a simple and efficient way (Sec. 5.1).

The ray-casting algorithm is implemented in CUDA and runs in
parallel on the GPU. Ray-traversal and the consequent function eval-
uations are performed for every image pixel. Finally, according to the
evaluated function values, depth and normals/gradients, we compute
shading, silhouettes and depth enhancement by means of screen space
ambient occlusion [25].

3.1 Relevant Atoms

The set Gx = {g1,g2, . . . ,gn} is given by all the atoms that may affect
the value of the target function l at point x. Specifically, Gx is consti-
tuted by the functions gi such that x lies within a distance of 2R from
the iso-surface gi = 0, i.e.,

Gx = {gi|gi(x)≥−2R}. (4)

An example of this can be seen in Figure 2. The definition of Gx
is directly derived from the detection of two incident atoms, which
holds if ||ci − c j||− ri − r j ≤ 2R. This property was already shown by
Varshney et al. [43].

Before initiating the main loop, in order to improve efficiency, each
function gi is evaluated in x. The gradients ∇gi and the Hessians Hgi

are computed as well.
Function l is computed iteratively, so its initial value (and the initial

values of its gradient and Hessian) has to be set. Theoretically, any
gi ∈ Gx could be used for the initialization l. However, we obtain
better results if we use the function gi with the highest value, i.e., the
one corresponding to the closest atom to x. This difference is related

2R

Fig. 2. Forming the point set Gx. Out of all the atoms, the set Gx rep-
resents those (yellow circles) that belong to the area of influence of the
point x (blue circle).



to the approximation scheme adopted for the higher order derivatives
(see Section 4.2).

3.2 Implicit Space Model
For the sake of simplicity, let us first focus on the case where only
two atoms are contributing to the evaluation of l. Let f and g be the
implicit functions representing the two atoms, that is Gx = { f ,g}. Our
goal is to determine the new value of l by blending f and g in a way
that resembles rolling a ball of radius R.

This is achieved by performing a circular blend in the so-called im-
plicit space [1, 8]. The current point x is mapped to a bi-dimensional
space where each axis represents one of the participating functions. In
our case, the implicit coordinates of point the x are [ f (x),g(x)].

The direct way of computing the union of two implicit functions at
x is to take the maximum of the values of the two functions. However,
this approach generates sharp discontinuities, as shown in Figure 3
(top). In the implicit space, our goal can be reformulated as defining
an implicit function that smoothly blends the iso-lines of f and g ac-
cording to a circle of radius R. It is also required that the shape of the
circular blend is preserved for every iso-level (Fig. 3 bottom-right).
Such a function can be constructed by sweeping an implicit circle of
radius R along the line f = g, passing through the origin. We express
the center of this circle as (l−R, l−R). Then the circle is given by the
equation:

( f − (l −R))2 +(g− (R− l))2 = R2.

Here l represents the distance of the current point from the circumfer-
ence, which is also the value we need to express. For more designing
principles, we refer the readers to the study of Fayolle et al. [8].

Solving the previous equation for l yields two solutions:

l =
1
2

(
2R+ f +g±

√
2R2 − ( f −g)2

)
. (5)

It is sufficient to consider only the top-right circular section (Fig. 3
bottom-right), which is represented by the smaller of both distances,
i.e., the one with the minus sign in Equation 5.

Additionally, Equation 5 has to be evaluated only for points that
lie between the two dark blue lines (Fig. 3). Outside this area we
employ the direct union operator max( f ,g) in order to merge the two
functions. This test corresponds to line 5 of Algorithm 1. In order to
evaluate this condition, the following inequalities have to be fulfilled:
f ≤ g+R and g ≤ f +R. For simplicity, they can be put together into
a single predicate:

( f (x)−g(x))2

R2 ≤ 1. (6)

Figure 3 (bottom-left) shows the result of this approach when merg-
ing two atoms. Although the iso-contour of f is indeed smooth, the
curvature increases as the iso-contour approaches the area lying in-
between the circles. This distortion is due to the fact that the implicit
space model does not take into account the actual spatial relationship
between the two input functions. Additionally this causes holes (Fig. 5
left) for atoms having their iso-contours separated by a distance within
[R,2R], while they should be merged.

3.3 Model Scaling
One of the possible ways to overcome this issue is to adaptively scale
the radius R. We propose to encode the information regarding the spa-
tial relationship between the functions using the dot product of their
gradients, i.e., k(x) = ∇ f (x) ·∇g(x). The utilization of gradients to
encode spatial relationships has been already proved to be efficient for
implicit modeling [9]. We replace the constant radius R with the func-
tion r(x) = Rrk(x), where rk : [−1,1]→ R depends on the dot product
k. The radius scaling function rk affects the curvature of the blend-
ing regions. It can be defined in different ways, but it has to sat-
isfy the following constraints. Since we have to compute its second
derivatives (Sec. 4.1), rk must be at least C2 continuous. It should be
monotonically decreasing, because the radius should decrease as the
angle between the gradients gets smaller (and vice versa). Finally, the

l(x)

l(x)

[-R,-R]

Fig. 3. An illustration of implicit space blending. Top-Left: Function
values of the functions f and g. Function f represents an implicit cir-
cle with center [1,0] and radius 0.8, and function g a circle with center
[−1,0] and the same radius 0.8. The 0 iso-contours (in black) are de-
fined using the max operation, i.e., the union of f and g. Top-Right: The
function values represent a two dimensional point in the implicit space.
The x-axis stands for the 0 iso-surface of function f while the y-axis is
the 0 iso-surface of function g. The iso-contours are defined again by
the max operator although in the implicit space this time. Bottom-Right:
When the point belongs to the area delineated by two blue lines f +R
and g+R (Eq. 6), we evaluate the implicit circle model of center [−R,−R]
with radius R (Eq. 5). Elsewhere, the resulting function equals max( f ,g).
Bottom-left: The final object obtained in the spatial domain. The effec-
tive area (Eq. 6) in object space is delineated by the two blue curves.

scaled radius should be positive, therefore rk must be positive as well
in [−1,1]. According to these constraints, we set

rk(x) = 1− sin
(π

4
k(x)

)
, (7)

which we found suitable for mimicking the SES representation
(Sec. 6). Figure 4 (left) shows a plot of rk against the values of the
dot product, while Figure 4 (right) shows rk(x) with respect to the two
atom examples of Figure 3.

We replace R with r(x) in Equations 5 and 6. Using the scaled
radius, our target function l becomes

l =
1
2

(
2r+ f +g−

√
2r2 − ( f −g)2

)
. (8)

By applying Equation 8 to the example in Figure 3, the resulting func-
tion is shown in Figure 4 (bottom). Now, in the situation when the
distance between the iso-contours is within [R,2R], Equation 8 cor-
rectly produces a smooth blend between the two atoms (Fig. 5 right).

4 ITERATIVE REPRESENTATION

The previous considerations are limited to the simple case of two
atoms. When the set Gx includes more than two atoms, we propose
to compute l using an iterative approach.

The basic idea is to start from a single atom. Then, at every iter-
ation, a new function from Gx is blended with the current function,
according to the implicit space model. In practice, we are iteratively
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Fig. 4. An example of scaling the circular model. Top-left: To scale the
solvent radius R, we employ function (7) applied to the dot product of
both input gradients. Top-right: Depiction of the function rk in R2. Note
the way how the function/radius increases (the arrow) towards the line
segments connecting both sphere centers (line segment). Bottom: An
example of the final iso-contour obtained by the scaled radius rk for the
same spheres as in Figure 3. The area of influence (6) is marked by two
vertical curves.

evaluating Equation 8, and every time we replace f with the function
computed in the previous iteration.

Formally, given the set of relevant atom functions
Gx = {g1,g2, . . . ,gn}, we consider a series of functions {l1, l2, . . . , ln}.
The i-th function li is given by the iterative blending of the functions
{g1,g2, . . . ,gi}. Therefore, the n-th function ln corresponds to our
target function l.

As mentioned before, we start the iteration from the atom closest to
the point x. Therefore, without loss of generality, we assume that the
first function g1 represents such an atom. We start by setting l1 = g1,
∇l1 = ∇g1 and Hl1 = Hg1 . Then, at each iteration, li is computed
according to Equation 8 with f = li−1 and g = gi:

li =
1
2

(
2r+ li−1 +gi −

√
2r2 − (li−1 −gi)2

)
. (9)

The main difference is that, after the first iteration, function f does
not represent an atom but a compound object, so we cannot evaluate
it according to Equation 1. Similarly, we cannot use Equation 2 to
compute its gradient, but we have to define a proper formula.

It is worth pointing out that, at every iteration, the predicate of
Equation 6 has to be evaluated using the atom gi and the previous
function li−1. If the condition is not satisfied, gi is not taken into ac-
count. In rare cases, it may happen that the test fails because li−1 has
not been fully evaluated yet. This issue can be simply addressed by
iterating over Gx one more time. During this second pass, ln has been
already computed, so the functions gi, that were incorrectly excluded,
will now be correctly taken into account.

4.1 Derivatives of l
Let us have a closer look at a single iteration i. For the sake of simplic-
ity, in the following discussion we adopt the notation of Equation 8.
We refer to the current function li as l, to the previous function li−1 as
f , and to the current atom gi as g. In every single iteration, our goal is
to compute l(x). The function l depends on the scaled radius function
r, which in turn depends on the dot product k = ∇ f ·∇g. Since g = gi
represents an atom, ∇g can be computed analytically (Eq. 2). On the
other hand, ∇ f = ∇li−1 is the gradient of l from the previous iteration,
so it has to be computed iteratively. Since l is a composite function,
its derivation is based on the chain rule:

dl
dx

=
∂ l
∂ f

d f
dx

+
∂ l
∂g

dg
dx

+
∂ l
∂ r

dr
dx

. (10)

Switching to the nabla notation, and taking into account that r is a
function of the dot product k, Equation 10 can be rewritten as:

∇l =
∂ l
∂ f

∇ f +
∂ l
∂g

∇g+
∂ l
∂ r

∂ r
∂k

∇k. (11)

The partial derivatives of l are obtained deriving Equation 8:

∂ l
∂ f

=
∂ l
∂ g

=
1
2

(
1+

( f −g)
q

)
,

∂ l
∂ r

=

(
1− r

q

)
,

where q =
√

2r2 − ( f −g)2. The partial derivative of r depends on
how rk is defined, and in our case (Eq. 7) it is given by

∂ r
∂k

=−πR
4

cos
(π

4
k
)
.

Finally, the gradient ∇k can be obtained by applying the derivation
rule for the dot product [20]:

∇k = ∇(∇ f ·∇g) = H f ∇g+Hg∇ f , (12)

where H f and Hg are the Hessian matrices of function f and g respec-
tively.

In analogy with the gradients, Hg can be computed analytically
(Eq. 3). In contrast, H f should be computed iteratively and the re-
sulting formula would include third order derivatives. In other words,
the exact evaluation of li requires derivatives up to order i−1 from the
previous iterations.

It is worth mentioning that the product H f ∇g could be computed
directly using the algorithm proposed by Pearlmutter [31]. However,
his approach is based on special differential operators applied in an
iterative manner. This would mean evaluating a whole iterative proce-
dure every time a new function gi is taken into account, resulting in a
drastic loss of performance.

Fig. 5. Two atoms whose iso-contours are separated by a distance
between R and 2R. Using the constant radius R (Eq. 5), the two atoms
will not blend. When applying the scaled radius (Eq. 8), the correct
blended surface is obtained.



Fig. 6. Comparison of two different approximations. Left: second order
derivatives are neglected. Right: second order derivatives are com-
puted iteratively, while third order derivatives are neglected; this results
in a smoother surface with less discontinuities.

4.2 Approximated Evaluation
Dealing with derivatives of arbitrary order is highly challenging, es-
pecially when real-time performance is a requirement. However, we
do not need an exact evaluation of the function l: since thousands of
atoms are shown simultaneously, the global structure of the molecule
is much more relevant than the fine details. We can achieve different
trade-offs between accuracy and performance (and memory consump-
tion) simply disregarding the derivatives from a certain order on.

A first rough approximation can be obtained by neglecting the sec-
ond order derivatives, i.e., setting H f (x) = Hg(x) = 0. In practice, we
are implicitly assuming that the gradients ∇ f (x) and ∇g(x) do not
change within an infinitesimal neighborhood. Consequently, their dot
product k(x) does not change as well, which means ∇k(x) = 0. The
result obtained from this approximation can be seen in Figure 6 (left).
The global structure of the molecule is well conveyed, and the typical
blobby appearance of the Gaussian representation is avoided (compare
with Figure 1 left).

The red circle in Figure 6 (left) shows a 3x magnification of a small
area of the molecule. The connections between atoms present small
discontinuities, which are due to the approximation scheme. Since
higher magnification levels are sometimes required for specific tasks,
such as cavity inspection and analysis, it is worth investigating better
approximations.

Second order derivatives can be also computed. The Hessian Hg
can be computed analytically according to Equation 3. In contrast,
H f = Hli−1 is the Hessian of our iterative function l, so it has to be
computed iteratively as well. The components of the Hessian Hl are
given by the second derivatives of l:

H i j
l =

d2l
dxidx j

=
d

dxi

(
dl

dx j

)
.

In practice, we have to derive once again the gradient ∇l, given by
Equation 11. Applying again the chain rule, Hl can be rewritten as:

Hl =
∂ l
∂ f

H f +
∂ l
∂g

Hg + JT ḢlJ+
∂ l
∂ r

∂ 2r
∂k2 ∇k (∇k)T +

∂ l
∂ r

∂ r
∂k

Hk, (13)

where J is the matrix obtained from function gradients taken
column-wise

J =

[
∇ f ,∇g,

∂ r
∂ k

∇r
]
,

and Ḣl is the symmetric matrix of second partial derivatives

Ḣl =


∂ 2l
∂ f 2

∂ 2l
∂ f ∂g

∂ 2l
∂ f ∂ r

. ∂ 2l
∂g2

∂ 2l
∂g∂ r

. . ∂ 2l
∂ r2

=
1
q3

r2 −r2 −r( f −g)
. r2 r( f −g)
. . ( f −g)2

 .

The second derivative of r is in our case

∂ 2r
∂k2 =

π2R
16

sin
(π

4
k
)
.

The last unknown variable in Equation 13 is the Hessian Hk of the
gradients’ dot product k. It can be computed by applying the derivation
rules for sum and product to the right-hand side of Equation 12:

Hk =
d
dx

(∇k) =
dH f

dx
∇ f +

dHg

dx
∇g+2H f Hg,

which includes third order derivatives.
At this point, we can define a new approximation scheme by ne-

glecting the third order derivatives. In practice, we compute the Hes-
sian of k as Hk = 2H f Hg. Figure 6 (right) shows a result obtained with
this approximation: the surface has a smoother appearance and, even
when magnified, no significant discontinuities can be detected.

Notice that the actual difference between this and the previous ap-
proximation scheme is the evaluation of Equation 13. We have im-
plemented our technique on the GPU, which is particularly efficient in
handling vector and matrix operations, therefore there is just a slight
decrease in performance. But most importantly, the computational
complexity of the algorithm is unchanged.

Considering also third or higher order derivatives may lead to even
smoother results. However, deriving the necessary equation would be
increasingly challenging, while the actual visual improvements would
be smaller and smaller.

5 VISUALIZATION

We describe a method to visualize our molecular function instantly
using the well-known A-buffer technique. Afterwards, we discuss the
benefits for MD and also the potential for interactive MD.

5.1 Ray-casting
Since the molecular representation is evaluated on the fly, the render-
ing pipeline consists of several steps. In the first one, we render the van
der Waals atoms as spheres with an increased radius that defines their
area of influence (Fig. 7). This area is defined by the solvent diameter
2R, i.e., each atom is rendered as a sphere with its van der Waals ra-
dius increased by 2R. We do not perform sphere ray-casting, we just
quickly splat spheres using billboarding [40]. The splatted spheres
are not displayed, but stored in the so-called A-buffer [4]. For each
pixel of the image space sphere, the correct entry and exit depths are
computed and stored [39, 27]. The implementation exploits the recent
shader extension that allows to simultaneously read and write data in

2R

X

Fig. 7. An illustration of the ray-casting procedure based on the A-buffer.
The entry and exit point of the extended spheres can be located along
the ray (black and red lines). Therefore, at any location along the ray
the set of influencing atoms Gx can be easily computed. For example,
point X (blue point) is affected by the two pink atoms. Ray-casting starts
from the first sphere along the ray (yellow point). When a point is in
an area not affected by any atom, it is automatically shifted to the first
unprocessed atom boundary along the ray (orange point).



Fig. 8. Top: Illustration of instantaneous updates after the MD structure is changed. Interactive displacements of atoms demonstrates the interactive
rendering capabilities of our approach. The overall displacement increases from left to right. The example is demonstrated on Proteinase 3 (3523
atoms). Bottom: Interactively changing the solvent radius on proliferatic cell nuclear antigen (12555 atoms). Our method allows quick adjustments
of the solvent radius, from left to right: R = 1.4Å, R = 1.8Å, R = 2.2Å and R = 2.6Å.

the fragment shader. Essentially, the A-buffer is a linked list of frag-
ments generated for every individual pixel using atomic operations on
the GPU [44]. Here, the limitation is the amount of graphics memory,
since the linked lists can become very long for large datasets. This can
be easily solved by avoiding rendering all the atoms at once, but rather
render them in a slab-wise fashion.

In the second step, before the actual ray-casting, we sort the frag-
ment records in ascending order of entry depth. This is a worthy in-
vestment, since, when looking for the ray-surface intersection, it lets
us easily identify the relevant atoms (Fig. 7 vertical lines on the ray).

In the third step, the A-buffer is rendered. Here, a ray is cast for
each image pixel, and an input 3D point x is generated according to
the entry depth of the first sphere (Fig. 7, yellow point). Afterwards, in
analogy with the sphere tracing algorithm [12], we process the ray in
a step-wise fashion until either the iso-surface is hit, or the last sphere
exit depth is reached. The step size is determined by the approximated
distance function value s = l(x)/|∇l(x)|. Additionally, when the ray is
in an area where no sphere of influence is present, it is automatically
advanced to the first unprocessed sphere along the ray, i.e., the next
one in the linked list (Fig. 7, orange point). This allows us to perform
empty space skipping very efficiently.

The precision threshold used to detect the ray-surface intersection
(|l| ≤ ε) drives the overall performance of the rendering. It is crucial
to specify the threshold value ε reasonably in order to maintain the
surface details, especially for areas close to the viewer. On the other
hand, we can afford a lower precision for areas far away from the
viewer. Therefore we adjust ε adaptively according to the depth of the
current point x. We set ε = ε0d(x)/(2c), where d(x) is the ray depth
of the point x, c represents the camera distance to the projection plane
and ε0 is the overall iso-surface precision. In our demonstrations we
specify ε0 = 0.1R, where R is the solvent radius.

When the surface is hit, we compute the Phong shading model.

Additionally, we compute silhouettes using edge-detection in image
space. In the last step of our rendering pipeline, we add screen space
ambient occlusion based on the method proposed by Luft et al. [25].

5.2 Molecular Dynamics
We demonstrate the potential of our approach to visualize the struc-
tures of MD simulations. We employ the Protein Data Bank (PDB)
file format, which stores the protein information (e.g., atom types and
initial positions). The MD trajectories of the atoms are stored in the
DCD file format that is a standard in the Visual Molecular Dynam-
ics (VMD) tool [13]. We studied two MD datasets, one containing
only Proteinase 3 (Pr3, 3523 atoms) (Fig. 8 top) and one where Pr3
is bound to a lipid membrane (34490atoms) (Fig. 1). These datasets
are composed by thousands of timesteps, therefore it can be difficult to
identify the ones containing features of interest. In order to visualize
a molecular surface, the proposed approach simply requires to upload
the corresponding set of atoms to the GPU. Therefore, our system can
be used as a tool for browsing through large temporal datasets (see the
attached video). The only limitation here is given by the time required
to upload the large amount of data to the GPU.

Thanks to the lack of pre-computations, our approach can be poten-
tially integrated into steering systems for MD simulations. The area
studying interactive steering of molecular dynamics is called interac-
tive molecular dynamics [6]. The goal is to provide instant feedback
from the MD simulation, so that a domain expert can interactively
tune, for example, simulation parameters, the molecular context and
the environment. We do not have access to such simulation systems
yet, therefore, in order to imitate the changes of MD structures, we
simply apply a random motion to each atom. Through a simple user in-
terface, we can add a small displacement to the positions of the atoms.
As shown in the enclosed video, the updated molecular representation
is instantly visualized. An example illustrating the instant update of



the MD structure is shown in Figure 8 (top).
Our technique also allows to interactively configure the molecular

representation. In MD applications, the solvent radius is typically set
to approximate the size of the water molecule (R = 1.4Å). Our method
allows to change the radius on real-time basis. Typically, existing ap-
proaches have to firstly update underlying support structure, and then
recompute the surface primitives, either by reduced surface [16] or
Voronoi diagrams [22]. In our case, we just need to splat again the ex-
tended spheres using the updated solvent diameter 2R. A demonstra-
tion of increasing the solvent radius is depicted in Figure 8 (bottom).

6 QUANTITATIVE AND QUALITATIVE COMPARISON

We compare our technique with Gaussian and SES models via visual
comparison and in terms of frames per second (FPS). We also compute
volumes and surface areas of all the three representations, in order
to provide a quantitative comparison. We considered the following
biomolecular structures: (a) Proteinase 3 bound to the lipid membrane
(34490 atoms), (b) Proteinase 3 alone (3523 atoms), (c) Proliferatic
cell nuclear antigen (12555 atoms), (d) Aquaporin (1852 atoms), (e)
Immunoglobin (12530 atoms) and (f) Tubulin (14744 atoms).

6.1 Visual Comparison
Figures 1 and 10 showcase the three molecular surface models in a
side-by-side visualization. Our technique is in the middle. The first
noticeable difference is that the sharp surface features present in the
SES model (Fig. 10 right) appear often smoothed in our model. This
is a direct consequence of the definition of our implicit surface, since
Equation 9 cannot represent sharp discontinuities. On the other side,
compared to the Gaussian model, our representation approximates the
solvent radius more closely. We discussed our results with compu-
tational biologists. The most relevant point they raised was that our
visualization provides sufficient details with respect to binding site ex-
ploration. More specifically, the information conveyed by our model
is equivalent to the one provided by the SES representation.

6.2 Performance
We evaluated the performance of our approach on several static struc-
tures and MD simulations. We implemented our framework in Python,
utilizing the pyCUDA and PyOpenGL libraries for the implementation
of the GPU-based ray-casting algorithm. In order to achieve better per-
formance, we plan to migrate our framework to C++.

It is important to mention here that the existing rendering ap-
proaches [16, 22] can achieve higher FPS compared to our approach,
since they rely on pre-computed auxiliary primitives that are then ef-
ficiently rendered. On the other hand, due to the simple volumetric
representation, it is possible to voxelize our implicit function into a
3D scalar grid, which then can be efficiently rendered via marching
cubes on the GPU, similarly to Krone et al. [19].

Nevertheless, we are able to achieve interactive frame rates via ray-
casting even for very large proteins (Fig. 9). The performance mea-
surements were carried out on a workstation equipped with two 2GHz
processors, 12GB of RAM and a NVIDIA GeForce GTX 680 GPU.
We implemented the Gaussian model [3] and the full SES representa-
tion [29] in the same framework, and we computed them on the same
workstation. We evaluated the performance on six proteins, with the
solvent radius set to the approximate size of the water molecule, i.e.,
R = 1.4Å. Please note that the A-buffer is re-created every time the
scene is rendered. The performance results, including the A-buffer
formation, are summarized in the following table (in FPS):

Models\Molecules (a) (b) (c) (d) (e) (f)
SES 4 4 3 5 4 4
Our 9 12 10 10 11 10

Gauss 13 16 13 12 14 13

Note that our framework shows almost the same performance for
either small (such as (e)) or large molecules (such as (d)). This can be
explained by the actual size of the A-buffer. Some molecules can oc-
cupy the buffer evenly, while others can lead to unbalanced fragments

min(r) max(r)

Fig. 9. Visualization of asymmetric chaperonin complex (58674 atoms)
and bacteriophage containing 5 monomers (150720 atoms). Even for
these large molecules, we are still able to achieve 9 and 4 FPS respec-
tively. The colors represent the scaled radius r of the implicit circle.

distributions, causing bottlenecks for certain pixel areas. When com-
pared to the Gaussian model, our technique is almost at the same level
of performance. On the other hand, the improvement with respect to
the implicit SES representation is at least by factor of 2.

Domain experts found this level of interactivity satisfactory. Al-
though they have not been provided with the tool yet, they positively
commented our demonstrations. They stated that our model has a
strong potential with respect to the interactive update of MD structures
and the rapid browsing through large temporal datasets. They com-
pared our system with the tool they normally use, i.e., VMD. They
found our models on the same qualitative level as the ones obtained
with VMD. Moreover, in VMD, it is necessary to wait until the model
is polygonized for each simulation time step.

6.3 Volume and Surface Areas
We performed a quantitative model verification by computing two
global surface measures. Specifically, we computed the volumes and



Fig. 10. Side-by-side comparison of the three surface models of immunoglobin. Our method (middle) resembles solvent excavation more closely
than the Gaussian model (left). On the other hand, our representation is not as sharp as the SES (right).

the surface areas of the molecular representations for each of the three
models. Note that the evaluation of local shape measures, such as the
mean or Gaussian curvature, would require the definition of a molecu-
lar metric for the curvatures. To the best of our knowledge, there is no
literature describing such a measure.

A possible way to compute volume and surface area is to convert
the functional representation into a volumetric one. However, this
would require a very high grid resolution in order to achieve the nec-
essary level of detail. In the case of large molecules the resulting grid
would be massive and consequently difficult to handle. Therefore we
opted for an evaluation based on Monte-Carlo integration techniques.
The basic idea is to approximate the volume and surface integrals by
evaluating the implicit function in randomly placed sampling points.
The points are normally generated within a bounded region, e.g., the
bounding box of the molecule [26]. The estimated volumes and sur-
face areas are summarized in the following tables:

Vol[Å3] Gauss Our SES
(a) 1055454.04 1018930.58 1029501.77
(b) 93373.02 91135.80 91567.08
(c) 508396.12 503230.08 502167.23
(d) 122147.32 117167.49 117610.99
(e) 2125091.32 2096048.53 2102671.54
(f) 1951053.17 1895995.82 1898555.65

Surf[Å2] Gauss Our SES
(a) 15372.75 10762.57 12574.02
(b) 1319.60 949.49 1077.82
(c) 4203.28 3375.89 3511.86
(d) 1725.94 1555.23 1699.44
(e) 12240.70 11018.95 11701.34
(f) 16558.48 13981.01 12875.31

We observe that our model is very similar to SES with respect to
volumes. The surface area is instead slightly underestimated, but, on
average, much closer to the SES than the Gaussian model.

7 SUMMARY AND FUTURE WORK

We proposed a conceptual framework for representing an approxi-
mation of the solvent excluded molecular surfaces. The core of our
system is a blending operator defined by a circular model in implicit
space. We compared our model qualitatively and quantitatively with
the Gaussian and the SES representations. The comparisons showed
that our technique is better than the Gaussian in approximating the
SES model. At the same time, the rendering performance of our tech-
nique is much better than the SES and it approaches the same frame
rates of the Gaussian.

The necessary mathematical foundations has been discussed and
the resulting equations are described throughout the paper. Therefore,
re-implementing our function evaluation procedure is straightforward.

One of the disadvantages is that our representation does not match
any specific physical property of the model: while the SES correctly

conveys the rolling of the solvent sphere, we just provide an approxi-
mation of the solvent radius.

As a next step, we believe that our model can be reformulated as
a convolution-based approach. The related kernel would take into ac-
count the two areas of influence defined by 2R and by Equation 6. This
will be subject of future investigations.

Our system allows for the immediate visualization of MD structures
as molecular surfaces. This allows for a wide range of future exten-
sions. As already discussed, we plan to integrate our technique into
interactive molecular dynamics tools. This would let domain experts
investigate potential binding sites while modifying the MD structure.

The functional representation can be easily sampled, as we show-
cased in Section 6.3. This property can be exploited in order to ease
the detection and the analysis of potential binding sites [28]. We could
also take advantage of the functional representation, for example, for
developing a probe for 3D molecular exploration. A user could place
the probe in the spatial domain and observe the actual distance of the
probe from the molecular surface.

Due to the space limitation, we have not gone into details about dif-
ferent definitions of the scaling function rk. A spline, for instance,
would be a valid alternative, since it could be interactively edited
through a transfer function widget, while the resulting surface is im-
mediately displayed.

The implementation of clipping objects is straightforward. Essen-
tially, it is sufficient to take into account only the atoms that lie inside
(or outside) the clipping primitive. The clipping object could be dis-
placed or modified, and the surface would be updated simultaneously.

There is also a strong potential in exploiting the computed function
values, gradients and Hessian matrices. For example, they could be
used to provide non photorealistic rendering effects such as the ones
described by Kindlmann et al. [14].

Finally, notice that building blocks of our implicit circular model
are the gradient and the Hessian of the function. Therefore, our tech-
nique can be easily extended to generic implicit objects, as long as
their first and second partial derivatives can be computed.
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