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Abstract Epidemiology characterizes the influence of causes to disease and health
conditions of defined populations. Cohort studies are population-based studies
involving usually large numbers of randomly selected individuals and comprising
numerous attributes, ranging from self-reported interview data to results from
various medical examinations, e.g., blood and urine samples. Since recently,
medical imaging has been used as an additional instrument to assess risk factors
and potential prognostic information. In this chapter, we discuss such studies and
how the evaluation may benefit from visual analytics. Cluster analysis to define
groups, reliable image analysis of organs in medical imaging data and shape space
exploration to characterize anatomical shapes are among the visual analytics tools
that may enable epidemiologists to fully exploit the potential of their huge and
complex data. To gain acceptance, visual analytics tools need to complement more
classical epidemiologic tools, primarily hypothesis-driven statistical analysis.

1 Introduction

Epidemiology is a scientific discipline that provides reliable knowledge for clinical
medicine focusing on prevention, diagnosis and treatment of diseases [14]. Research
in epidemiology aims at characterizing risk factors for the outbreak of diseases
and at evaluating the efficiency of certain treatment strategies, e.g., to compare
a new treatment with an established gold standard. This research is strongly
hypothesis-driven and statistical analysis is the major tool for epidemiologists so
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far. Correlations between genetic factors, environmental factors, life style-related
parameters, age and diseases are analyzed. The data are acquired by a mixture
of interviews (self-reported data, e.g., about nutrition and previous infections)
and clinical examinations, such as measurement of blood pressure. Statistical
correlations, even if they are strong, may be misleading because they do not
represent causal relations. As an example, the slightly reduced risk of heart infarct
and cardiac mortality for elderly people reporting to drink one glass of wine every
evening (compared to people drinking no alcohol at all) may be due to the involved
low level of alcohol but may also be a consequence of a very regular and stress-free
lifestyle [14]. When something happened before an event, it is an indicator for a
causal relationship. However, care is necessary, since many things happen in the life
of an individual before, e.g., a heart attack, but do not cause it.

Thus, statistical correlations are the starting point for investigating why certain
factors increase the risk of getting diseases. Epidemiology is not a purely academic
endeavor but has huge consequences for establishing and evaluating preventive
measures even outside of medicine. The protection of people from passive smoking,
recommendations for various vaccinations and the introduction of early cancer
detection strategies, e.g., mammography screening, are all based on large-scale
epidemiological studies. Also the official guidelines for the treatment of widespread
diseases, such as diabetes, are based on evidence from epidemiological studies [14].
While this all may sound obvious, it is a rather recent development. Evidence-based
medicine often still has to “fight” against recommendations of a few opinion leaders
arguing based on their personal experience only.

The analysis techniques used so far are limited to investigating hypotheses based
on known or suspected relations, e.g. hypotheses related to observations or previous
publications. The available tools support the analysis of a few dimensions, but
not of the hundreds of attributes acquired per individual in a cohort study. Both
typical visualization techniques as well as analysis techniques, e.g., support vector
machines, do not scale well for hundreds of attributes [41]. While we are not able
to describe solutions for these challenging problems, we give a survey on recent
approaches aiming also at hypothesis generation.

Organization This chapter is organized as follows. In Sect. 2 we describe impor-
tant concepts and terms of epidemiology including observations from epidemiologic
workflows. This discussion is restricted to those terms that are crucial for com-
municating with epidemiologists, understanding requirements and for designing
solutions that fit in their process. In Sect. 3, we discuss how (general) information
visualization and data analysis techniques may be used for epidemiologic data.
Section 4 describes the analysis of image data from cohort studies and how this
analysis is combined with the exploration of non-image attribute data. This section
represents the core of the chapter and employs a case study where MRI data of the
lumbar spine are analyzed along with attributes characterizing life-style, working
habits, and back pain history.



Visual Analytics of Image-Centric Cohort Studies in Epidemiology 223

2 Background in Epidemiology

Population-Based Studies Epidemiological studies are based on a sample of the
population. The reliability of the results obviously depends on the size of that sample
but also strongly on the selection criteria. Often, data from patients treated in one
hospital are analyzed. While this may be a large number of patients, the selection
may be heavily biased, e.g., since the hospital is highly specialized and diseases are
often more severe or in a later stage compared to the general population.

Population-based studies, where representative portions of a population (without
known diseases) are examined, have the potential to yield highly reliable results.
The source population may be from a city, a region or a country. Individuals are
randomly selected, e.g., approaching data bases of population registries. The higher
the percentage of people who accept the invitation and actually take part in the study,
the more reliable the results are.

In this chapter, we focus on longitudinal population-based studies. The sheer
amount and diversity in terms of type of data makes it difficult to fully identify
and analyze interesting relations. We will show that information visualization and
visual analytics techniques may provide substantial support that complements the
statistical tools with their rather simple statistical graphics. Most epidemiological
studies were restricted to nominal (often called categorical) and scalar data, e.g.,
related to alcohol consumption, and body mass index as one measure of obesity.

Image-Centric Epidemiological Studies More recently, for example, in the Rot-
terdam study [22], also non-invasive imaging data, primarily ultrasound and MRI
data, are employed. Petersen and colleagues [32] report on six studies involving
cardiac MRI from at least 1000 individuals in population-based studies. These high-
dimensional data enable to answer analysis questions, e.g., how does the shape of
the spine changes as a consequence of age, life style and diseases? We focus on such
image-centric epidemiological studies.

Epidemiology and Public Health There are different branches of epidemiology.
One branch deals with predictions to inform public health activities. These include
measures in case of an epidemic—an acute public health problem, mostly related
to infectious diseases. The recent article “computational epidemiology” [29] was
focussed on this branch of epidemiology. Another branch of epidemiology aims at
long-term studies and at findings primarily essential for prevention. Image-centric
cohort studies, the focus of this article, belong to this second branch. The target
user group consists of epidemiologists who can be expected to have a high level of
expertise in statistics. Thus, their findings involve statistical significance, confidence
intervals and other measures of statistical power.

Healthy Aging and Pathologic Changes An essential problem in the daily clinical
routine is the discrimination between healthy age-related modifications (that may
not be reversed by treatment) and early stage diseases (that may benefit from
immediate treatment). As a consequence, elderly people are often not adequately
treated. As a general goal for epidemiological studies, better and more reliable
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markers for early stage diseases are searched for. The cardiovascular branch of the
Rotterdam study, for example, aims at an understanding of atherosclerosis, coronary
heart disease and “cardiovascular conditions at older age” [22].

Modern Epidemiology Epidemiology faces new challenges due to the rapid
progress, e.g., in genetics and sequencing technology as well as medical imaging.
Acquisition of health data thus becomes cheaper and more precise. In cohort studies,
as much potentially relevant data as possible are acquired as a basis for an as broad
as possible spectrum of analysis questions. This includes blood, urine and tissue
samples, information about environmental conditions and the social milieu.

Visual Analytics for Modern Epidemiology In the past, epidemiology primarily
dealt with hypotheses aiming to prove them, e.g., the efficiency of early cancer
detection programs in terms of mortality and long term survival [14]. Since recently,
more and more data mining is performed to identify correlations. Results of such
analyses, however, need to be very carefully interpreted. If thousands of potential
correlations are analyzed automatically, just by chance some of them will reach a
high level of statistical significance.

An essential support for epidemiology research is to define relevant subgroups.
To perform separate analyses for women and men as well as for different age
groups is a common practice in epidemiology. However, relevant subgroups may
be defined by a non-obvious combination of several attributes that may be detected
by a combination of cluster analysis and appropriate visualization.

Since the information space is growing with each examination cycle, Pearce
and Merletti [31] pointed out in 2006 that methods are needed which can cope
with this complexity and enable the analysis of underlying causes of a certain
disease. Visual analytics (VA) methods can support epidemiological data assessment
in different ways, e.g. by defining subgroups based on a multitude of attributes
that exhibit a certain characteristic. For the analysis of scalar and categorical
data, established information visualization techniques combined with clustering and
dimension reduction are a good starting point, but need to be tightly integrated with
statistic tools epidemiologists that are more familiar with. For image-centric studies,
however, new visualization, (image) analysis and interaction techniques are needed.

In the following, we define essential terms in epidemiology and give an overview
on cohort studies that employ medical image data as an essential element. Finally,
we describe how image data, derived information and other data complement each
other to identify and characterize risks.

2.1 Important Terms

Prevalence and Incidence Epidemiology investigates how often certain diseases
or clinical events, such as a cerebral stroke or sudden heart death, occur in the
population. Two terms are important to characterize this frequency. The prevalence
indicates the portion of people suffering from a disease at a given point in time. The
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incidence represents how many people suffer from a disease or event in a certain
interval, usually one year. High prevalence is usually associated with high economic
costs. Population-based studies focus on diseases with a high prevalence, such as
diabetes, coronary heart disease or neurodegenerative diseases. Even these diseases
do not occur frequently in a random population including many younger people
(where the prevalence of these diseases is low). A rare disease, such as amyotrophic
lateral sclerosis, may have a prevalence of 5 from 100,000. Thus, even in a large
population-based study probably no individual suffers from this disease.

Absolute and Relative Risks Another essential epidemiological term is the risk
for a clinical event, such as outbreak of a certain disease, severity (stage) or death.
As an example, a study related to cardiac risk may investigate angina pectoris,
myocardial infarction, atrial fibrillation depending on attributes such as age and
sex. The absolute risk characterizes the likelihood of getting a disease in life time.
The absolute risk for a woman to develop breast cancer in the Western world is
particularly high for women aged 50–60 (2.6 %) and 60–70 (3.7 %). Therefore,
for these age groups, mammography screening—aiming at early detection and thus
optimal treatment—was introduced.

The relative risk (RR) characterizes the increased risk if an individual is exposed
to a certain risk factor, e.g., smoking, excessive weight, or alcohol abuse. It is based
on a comparison with a control group not exposed to that risk factor. A value of
RR < 1 represents a factor that protects, e.g., moderate physical activity. Exciting
observations are often the combined effects of several parameters. A certain factor
may be protective for some people (younger, slim women) and is involved with an
increased risk for others. The combined risk may be significantly smaller or larger
than could be expected from individual factors.

Moreover, relationships are often distinctly non-linear or even non-monotonic.
Dose-response relationships are often non-linear. RR increases slowly (almost no
effect for a small dose) and increases much faster for higher levels of a dose, e.g.,
exposure to toxicity. A typical non-monotonic relation is U-shaped, that is both
very low and very high instances of an attribute involve an increased risk, whereas
values in between are associated with a reduced risk. Examples are weight (both
very low and very high weight are associated with an increased risk for mortality)
and sleeping time (both very short and very long sleepers have an increased risk for
developing psychiatric disorders [22]). Such relations cannot be characterized by a
global RR value. Instead, tools are necessary that support the hypothesis of a U-
shaped relation by estimating their parameters with some kind of best-fit algorithm.

2.2 Image-Centric Cohort Studies

Image Data in Epidemiology The acquisition of image data is determined by
the available time, by financial resources, by the epidemiological importance and
by ethic considerations. Epidemiological studies require approval by a local ethics
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committee. As a consequence, healthy individuals in a cohort study should not be
exhibited to a risk associated to the examinations carried out. Thus, MRI should
be preferred over X-ray or CT imaging for its non-radiation nature. Petersen and
colleagues [32] explain why cardiac CT is less feasible in a cohort study and
even MR is only used without a contrast agent in their study due to ethical
reasons. MRI data and ultrasound data are the prevailing modalities in both the
SHIP as well as the Rotterdam study. Unfortunately, MRI and ultrasound data
do not exhibit standardized intensity values (in contrast to CT data). Moreover,
MRI and ultrasound data suffer from inhomogeneities and various artifacts. Thus,
they are more difficult to interpret for humans and more difficult to analyze with
computational means. These data are used to measure, e.g., the thickness of vessel
walls, the abdominal aorta diameter and plaque vulnerability in the coronary vessels
[22]. The intensive use of MRI in epidemiological research also explains to some
extent which questions are analyzed: MRI is the best modality for the analysis of
brain structures and thus serves to explore early signs of Parkinson’s, Alzheimer’s
and other neurodegenerative diseases. Epidemiological research aims at identifying
such brain pathologies in a pre-symptomatic stage. Among the sources for such
investigations are MR Diffusion Tensor Imaging data that enable an assessment of
white matter integrity [22].

The selection of imaging parameters is always a trade-off between conflicting
goals related to quality, e.g., image resolution, signal-to-noise ratio, patient comfort,
e.g., examination time and associated costs. As a consequence, to shorten overall
examination times in cohort study examinations, not the highest possible quality is
available, i.e., a slice distance of 4 mm is more typical than 1 mm. A great advantage
of MRI is that this method is very flexible and enables to display different structures
in different sequences, such as T1-, T2- and proton density-weighted imaging. MRI
data in cohort studies often comprise more than ten different sequences.

Standardization in Image Acquisition Due to the rapid progress in medical
imaging, sequences, protocols and even (MR) scanners are frequently updated in
clinical routine (similar to the update frequency on a computer). These updates
would severely hamper the comparison of imaging results and thus the assessment
of natural changes and disease outbreak. Thus, differences in acquisition parameters
are essential confounding variables. Therefore, for one cohort and examination
cycle that may last up to several years, no updates are allowed. Moreover, all
involved physicians and radiology technicians are carefully instructed to use the
same standardized imaging parameters. This point is even more important for
longitudinal studies with repeated imaging examinations. Even if MR scanners and
protocols are not updated, the life cycle of MR coils leads to changes of image
quality that need to be monitored and compensated.
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2.3 Examples for Image-Centric Cohort Study Data

In the following, we describe selected comprehensive and on-going longitudinal
cohort studies. Both use a number of (epidemiologic) instruments that are innovative
in cohort studies and thus lead already to a large number of insights documented in
hundreds of (medical) publications. A considerable portion of these publications
employ results from imaging data. However, the full potential of analyzing organ
shapes, textures and spatial relations quantitatively is not exploited so far.

The Rotterdam Study A prominent example is the Rotterdam Study,1 initiated in
1990 in the city of Rotterdam, in the Netherlands. Similar to later studies, it was
motivated by the demographic change with more and more elderly people suffering
from different diseases and their interactions. After the initial study involving almost
8000 men and women, follow-ups at four points in time were performed—the most
recent examinations took place in the 2009–2011 period. In the later examination
cycles, also new individuals were involved leading to datasets from almost 15,000
patients [22].

The original focus of the Rotterdam Study was on neurological diseases, but
meanwhile it has been extended to other common diseases including cardiovascular
and metabolic diseases. The study has an enormous impact on epidemiological
and related medical research, documented in 797 journal publications registered in
the pubmed database (search with keyword “Rotterdam Study”, January 30, 2014).
Among them are predictions for the future prevalence of heart diseases and many
studies on potential risk factors for neurodegenerative diseases. For a comprehensive
overview of the findings, see [22] that summarizes the findings of more than 240
papers related to the Rotterdam Study. In a similar way, [23] is a significant update
of these findings with more recent data.

Norwegian Aging Study A long-term study in Norway investigates the relations
between brain anatomy (as well as brain function), cognitive function, and genetics
in normally aging people.2 In total 170 individuals (120 of them female), aged
between 46 and 77 (mean 62), were examined in Bergen and Oslo in by now
three waves (first wave in 2004/2005, next in 2008/2009, and most recently in
2011/2012) [47]. While naturally not all of these subjects could be followed through
all three waves, still most of them were subjected to an extensive combination of

1. neuropsychological tests, including tests of the intellectual, language (memory),
sensory/motor, and attention/executive function,

2. MRI data, including co-registered T1-weighted anatomical imaging, diffusion
tensor imaging, and—from the second wave on—also resting-state functional
MRI, as well as

3. genotyping (first wave only) [46].

1http://www.erasmus-epidemiology.nl/research/ergo.htm, accessed: 1/31/2016.
2http://org.UiB.no/aldringsprosjektet/, accessed: 1/31/2016.

http://www.erasmus-epidemiology.nl/research/ergo.htm
http://org.UiB.no/aldringsprosjektet/
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The substantially heterogeneous imaging and test data are used to study aging-
related questions about the modern Norwegian population, for example, how
anatomical and functional changes in the human brain possibly relate to the later
development of Alzheimer and dementia. Important findings include the relation
between hippocampal volumes and memory function in elderly women [47] and the
relation between subcortical functional connectivity and verbal episodic memory
function in healthy elderly [48].

SHIP The Study of Health in Pommerania (SHIP) is another cohort study broadly
investigating findings and their potential prognostic value for a wide range of
diseases. The SHIP tries to explain health-related differences after the German
reunion between East and West Germany. It was initiated in the extreme northeast
of Germany, a region with high unemployment and a relatively low life expectancy.

In the first examination cycle (1997–2001) 4308 adults of all age groups were
examined, followed by a second and a third cycle that was finished at the end
of 2012. The instruments used changed over time with some initial image data
(liver and gallbladder ultrasound) available already in the first cycle and others,
in particular whole body MRI, added later. The use of whole body MRI was
unique in 2008 when the third examination cycle started. Breast MRI for women
is performed, whereas for men MR angiography data are acquired, since men suffer
from cardiovascular diseases significantly earlier than women [43]. In addition, a
second cohort (SHIP-Trend) was established comprising 4420 adult participants.

Diagnostic reports are created by two independent radiologists who follow strict
guidelines to report their findings in a standardized manner. The pilot study to
discuss the viability and potential of such a comprehensive MR exam is described
by Hegenscheid and colleagues [20]. The overall time for the investigation is
two (complete) days with 90 min for the MR exam. The SHIP helped to reliably
determine the prevalence of risk factors, such as obesity, and diseases. Major
findings of the SHIP are increased levels of obesity and high blood pressure
(compared to the German population) in the cohort. The MR exams alone identified
pathological findings in 35 % of the sample population. More than 400 publications
in peer-reviewed journals are based on SHIP data (January 2014).

UK Biobank The UK Biobank represents a comprehensive approach to study
diseases with a high prevalence in an aging society, such as hearing loss, diabetes
and lung diseases. Half a million individuals will be investigated in one examination
cycle from which 100,000 receive an MRI from 2014 onwards. The rationale for the
number of individuals to be included is explained by Peterson and colleagues [32]:
they aim at a reliable identification of even moderate risk factors (RR between 1,3
and 1,5) for diseases with a prevalence of 5 %. The prospective study should have
a comprehensive protocol of cardiac MRI, brain MRI and abdominal MRI. This
prospective cohort study also involves genetic information.3

3http://www.ukbiobank.ac.uk, accessed: 1/31/2016.

http://www.ukbiobank.ac.uk
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The German National Cohort The recently started “German National Cohort”
in Germany is based on experiences with a number of moderate-size studies, such
as SHIP, and examines some 200,000 individuals over a period of 10–20 years.
Individuals will be invited in three waves to characterize changes. Due to the large-
scale character, imaging is distributed over five cities. Thus, the subtle differences
in imaging within different scanners have to be considered.4 It explicitly aims at
improvements in the treatment of chronic diseases and involves a variety of tissue
samples, e.g., lymphocytes. Imaging in 30,000 individuals is again performed with
MRI, comprising whole body, brain and heart.

2.4 Epidemiological Data

Epidemiological data are huge and very heterogeneous. As an example, in the UK
biobank 329 attributes relate to physical measures, such as pulse rate, systolic and
diastolic blood pressure, and various measures relate to vision or hearing. 471
attributes relate to interviews (socio-demographics, health history, lifestyle, : : :).

The data that are stored per individual is standardized but not completely
the same, e.g., childbirth status and menstrual period are available for women
only. Image data and derived information, e.g., segmentation results, significantly
increased both the amount and complexity of data. Longitudinal cohort study data
are time-dependent. While some instruments, such as blood pressure measurements,
are available for all examination cycles, others were added later or removed.
Individuals drop out, because they move, die or just do not accept the invitation to a
second or third examination cycle. It is important to consider also such incomplete
data but to be aware of potentially misleading conclusions.

The great potential of image-centric studies is that image data and associated
laboratory data as well as data from interviews are available. An epidemiological
study, such as the SHIP, has a large data dictionary that precisely defines all
attributes and their ranges. While laboratory data are scalar values, most data from
interviews are nominal or ordinal values. In particular, data from interviews exhibit
an essential amount of uncertainty. Self-reports with respect to alcohol and drug
use, cigarette smoking and sexual practices may be biased towards “expected or
socially accepted” answers. Epidemiologists are not only aware of these problems
but developed strategies to minimize the negative effects, e.g., by asking redundant
questions. After data collection, experts spend a lot of effort to improve the quality
of the data. Despite these efforts, visual analytics techniques have to consider
outliers, missing and erroneous data.

Geographic Data Geographic data play a central role in public health where
the dynamics of local infections are visualized and analyzed (disease mapping).

4http://www.nationale-kohorte.de/, accessed: 1/31/2016.

http://www.nationale-kohorte.de/
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Chui and colleagues [8] presented a visual analytics solution directly addressing
this problem by combining three dedicated views. Also in cohort study data,
geographic data are potentially interesting to understand local differences in the
frequency and severity of diseases as an interaction between environmental factors
and genetic differences. This branch of epidemiology is referred to as spatial
epidemiology. Beale and colleagues [4] investigated differences between rural
and urban populations. In their comprehensive survey, Jerrett and colleagues [24]
considered spatial epidemiology as an emerging area. However, we do not focus
on spatial epidemiology since cohort study data typically comprise rather narrow
regions and thus may not fully support such analysis questions.

2.5 Analysis of Epidemiological Workflow

The following discussion of observations and requirements for computer support
is largely based on discussions with epidemiologists as well as the inspiring
publication by Thew and colleagues. According to [40]

• epidemiological hypotheses are mostly observations made by physicians in
clinical routine,

• corresponding attributes are chosen based on the observations and further
experience, and

• regression analysis is frequently used to determine whether the investigated
attribute is a risk factor or not.

Major requirements for an epidemiological workflow (again based on [40])
are:

• Results have to be reproducible. Due to the iterative data assessment, methods
need to be applied to new data sets as well and the results need to be comparable
between different assessment times to characterize the change. User input needs
to be monitored all the time to enable reproducible results.

• A major result of an epidemiological analysis is whether certain factors influence
a disease significantly. Relative risk (as a measure of effect size) and p-values as
statistical significance level are particularly important.

Although these requirements neither consider image data nor visual analytics,
they have to be considered also in these more innovative settings. Reproducibility,
for example, means that clustering with random initialization is not feasible.
Moreover, reports must be generated that clearly reveal all settings, e.g., parameters
of clustering algorithms that were used for generating the results.
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Fig. 1 A Kaplan-Meier
curve indicates how many
patients survive at least a
certain time. The more
patients pass away, the larger
is the confidence interval
indicated by the dotted lines.
The crosses mark each time a
patient dies to further provide
information on the reliability
of the data that decreases over
time (courtesy of Petra
Specht, University of
Magdeburg)

Fig. 2 The relative risk for
cholelithiasis in men
associated with a high level of
a certain type of cholesterol
slightly increases with a low
BMI, but decreases for
individuals with high or very
high BMI. This multifactorial
situation is depicted in an
interaction term (inspired by
[42])

Since statistical analysis plays such an important role, statistics packages, such as
SPSS,5 R6 and STATA7 dominate in epidemiology. They provide various statistical
tests also in cases where assumptions, such as a normal distribution, are not valid.
Also the peculiarities of categorical data are considered. Visual analysis, so far, plays
a minor role. As an example, Figs. 1 and 2 illustrate two graphical representations
frequently used in epidemiology: Kaplan-Meier curves and interaction terms.

5http://www-01.ibm.com/software/analytics/spss/products/statistics/, accessed: 1/31/2016.
6http://www.r-project.org/ accessed: 1/31/2016.
7http://www.stata.com/, accessed: 1/31/2016.

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www.r-project.org/
http://www.stata.com/
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A Kaplan-Meier curve shows the survival of patients, often as a comparison between
different treatment options.

3 Visual Analytics in Epidemiology

The visualization of correlations in the epidemiological routine is largely restricted
to scatterplots with regression lines and box plots to convey a distribution. Scatter-
plots may be enhanced, e.g., by coloring items according to certain characteristics,
e.g., a diagnosis or by adding results from cluster or Principal Component Analysis
(PCA) [38]. The frequency related to a particular combination of values is often
encoded by adapting saturation or darkness of colors.

Visual analytics methods can complement the statistical analysis and provide
methods to explore the data. Efficient methods are essential to cope with the large
amount of data and provide rapid feedback that is essential for any exploration
process.

One of the first attempts to employ information visualization techniques for
medical (image and non-image) data was realized in the WEAVE system [19].
The system incorporated parallel coordinates as well as real time synchronization
between different views. Another essential tool, inspired by the WEAVE system,
was presented by Blaas and colleagues [6]. They enabled feature derivation tech-
niques and incorporated segmentation techniques providing a powerful framework
for heterogeneous medical data. Later work by Steenwijk and colleagues was
more focussed on epidemiology. They provided an exploratory approach to analyze
heterogeneous epidemiological data sets, including MRI [38]. They consider param-
eters on normalized and not normalized domains, while only normalized domains
are comparable between subjects. Normalization means, for example, to register
MRI brain data to an atlas to compare individual differences.

Mappers are used to project data into normalized domains. As an example, in
brain analysis, a mapper defines the relation between an individual brain and a
brain atlas that contains normalized and averaged information derived from many
individual data. Feature extraction pipelines can be build visually by using a pipeline
of mappers. The visualization is realized through multiple coordinated views which
either represent scalar data or volumetric images. Different techniques to color
code data, to align them and add further information are provided to enhance
scatterplots. Steenwijk and colleagues evaluated their tools with specific examples
from neuroimaging and questions related to a neurological disease where relations
between clinical data (anxiety-depression scales, mental state scales) and MR-
related data are analyzed (Fig. 3). Normalized data domains are represented using
scatterplots and parallel coordinated views. Dynamic changes are visualized using
a time plot. The selection is linked between views and allows for multi-parameter
comparison of clusters.

Zhang and colleagues [49] build a web-based information visualization frame-
work for epidemiological analysis through different views. They divide the analytics
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Fig. 3 Left: A scatterplot relates magnetic transfer ratios to age. Items relating to the same patient
(over time) are connected via a line. Colors indicate a diagnosis. Right: An enhanced scatterplot
with PCA results for three subgroups overlaid (courtesy of Martijn Steenwijk, VU University
Medical Center Amsterdam)

process in batch analytics and on-demand analytics. Batch analytics steps are
performed automatically as a new subject is added to the data set and aim to create
groups by means of a certain condition. On-demand analytics are performed by user
requests. Subjects are visualized using treemaps, histograms, radial visualizations
and list views. However, neither filtering and grouping nor the interaction between
the views are explained.

Recently, Turkay and colleagues [41] described a framework to analyze the data
of the Norwegian aging study, aiming particularly at hypothesis generation. For
this purpose, they give an overview on the dimensions in their dataset that conveys
statistical properties, such as mean, standard deviation, skewness and kurtosis.
The two latter measures characterize how asymmetric the data distribution is.
Scatterplots display pairwise measures related to all dimensions. Deviation plots,
a new technique, enables grouping and supports a comparison of measures for a
subgroup to the whole cohort.

The possibilities of VA tools can be summarized as follows:

• Manual/automatic definition (brushing) of interesting parameters and ranges of
values in attribute views,

• Linking of attribute views for identifying relations,
• Analysis across aggregation levels, parameters and subjects,
• Definition of groups either interactively by means of (complex) brushes, or semi-

automatically by means of clustering, and
• Visual queries and direct feedback enable easy exploration

While having different applications in mind, the Polaris system of Stolte and col-
leagues also employs multiple coordinated views to validate hypotheses [39]. It uses
a variety of different information visualization techniques to map ordinal/nominal
or quantitative data of a relational data base. The system itself formulates data base
queries and the mapping to create visualizations for the requested attributes. They
choose the visualization mapping automatically based on the attribute types that are
viewed in context with each other. This allows for a fast visualization of different
attribute combinations in order to drill down to the information of interest. General
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visual analytics tools, such as Polaris and Weaver, in principle support some of the
requirements for epidemiology. The use of coordinated views, brushes and switches
is advantageous [44]. However, they are not designed to cope with the special
requirements of cohort study data and do not directly support epidemiological
workflows. In particular, no support for a combined assessment of image data and
other epidemiological data is available.

Commercial Visual Analytics Systems There are a number of commercial soft-
ware tools specialized on data visualization. As an example, Tableau [28] provides
an interface for creating different visualizations based on attribute drag-and-drop.8

These approaches deliver fast results with respect to visualizing different attributes.
However, it is not supported to derive new data, such as scores for diseases,
body mass index and other data that is relevant in epidemiology. QLikView is
a similar tool for visualizing data associations. The user can design a frontend
where associations can be assessed using multiple information visualizations. Thus,
the user can drill down to the desired information. Statistics features regarding
epidemiological key figures are limited.

Spotfire/IVEE [1] is able to handle more complex analysis of data sets and
allows for interactive filtering of attributes. It can be linked to the statistical
computing programming language R, which makes it versatile in comparison with
its competitors. However, users need to be familiar with the R syntax.

Commercial systems cannot be enhanced or embedded in another system with
hassle-free data exchange. The focus of commercial data visualization tools is
business intelligence yielding a focus on quantitative data sources. At the same time
they excel at incorporating user collaboration by including comment sections and
share filters or entire setups of a dashboard.

4 Analysis of Medical Image Data for Epidemiology

Medical images are not by themselves useful for epidemiological analysis, since the
semantics of image elements (pixel, voxels) is too low. The resulting extremely high-
dimensional feature space would be unsuitable for visual analysis. Hence, image
data is sequentially aggregated and reduced. The different steps of this process
i.e. image analysis, shape analysis of extracted objects and subsequent clustering
are characterized and discussed in this section. Throughout the section, we often
refer to one case study, where MRI data from the lumbar spine is analyzed. The
representation of assumptions on the lumbar spine shape and location as well as the
object detection scheme used are examples of viable and common approaches. We
do not claim that these techniques are better than any other approaches.

8http://www.tableausoftware.com/, accessed: 1/31/2016.

http://www.tableausoftware.com/
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4.1 Medical Image Analysis

One of the major purposes of image analysis for a cohort study is to quantify
anatomy, e.g., by volume, shape or spatial relations between structures. Quantifi-
cation may be used to establish a range of normal values for different age groups
and to characterize variations. Such variations may also confirm a disease and thus
add to data derived from clinical tests. Thus, the use of image data enables more
reliable conclusions w.r.t. the incidence and prevalence of diseases. As discussed
in Sect. 2.2, MRI is particularly interesting because of the wide range of different
information represented in these data. Thus, the examples discussed in the following
relate to MRI data although the principles are more general.

Due to the wide range of image analysis tasks, the techniques should be adaptable
to different analysis goals. The parameterization of an image analysis technique
should be intuitive and the interaction should be kept to a minimum. The latter
aspect is particularly important, since often several thousand datasets need to be
analyzed. While largely manual approaches are acceptable in some clinical settings,
such as radiation treatment planning, they are not feasible in the evaluation of cohort
study data. The reduction of interactivity is not only a matter of effort, but also to
meet the essential goal of reproducible approaches.

Detection and Segmentation of Anatomical Structures A modular system is
a possible means to meet the central requirement of image analysis in cohort
study data. An example of a cohort study is the liver segmentation of [17],
where concurrent detection and localization processes are combined for initial
segmentation that is then fine-tuned in a model-driven segmentation step and
finalized by a data-driven correction process. It has been shown that processes can
be re-used and re-combined to solve a different segmentation task on similar data
(kidney segmentation in MRI [18]). Alternatively, the necessary domain knowledge,
related to expected size, basic shape, position and grey values, can be separated
from the detection and segmentation module. This strategy is attractive, since the
user has not to care about the detection process when changing the application. Two
problems have to be addressed in this case:

• What is the expectation about the data support integrated to fit a model?
• How is the with-class variation of the object in search separated from the

between-class variation?

Point distribution models (PDM) [30] address the second question by training on
sample segmentations. Model fitting is realized by a registration step. When training
is not feasible, a prototypical model may be used instead. It is associated with
restricted input about variation (a few parameters only) and qualitative knowledge
about configuration or part-relationship.

In the following, we describe the linear elastic deformation of a finite element
model (FEM) as a common method to model shape variation. The user specifies the
average shape and two elasticity parameters: Young’s modulus defines how much
external force is needed for a deformation and Poisson’s ratio describes how the
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deformation is transferred orthogonal to the direction of an incident force [35]. The
decomposition of the prototypical shape into finite elements bounded by nodes and
specification of the elasticity parameters results in a stiffness matrix K that relates
the node displacement u to incident forces f [Eq. (1)]:

Ku D f (1)

Different kinds of nodes may be specified that are attracted by different kinds of
forces. Boundary nodes are attracted by the intensity gradient and inner nodes are
attracted from expected intensity or texture. For letting an FEM move and deform
into an object in an image, deformation is made dependent on time t. Behavior then
also depends on mass M of the FEM and object-specific damping D [Eq. (2)].

M Ru.t/ C DPu.t/ C Ku.t/ D f .t/ (2)

M represents the resistance of the moving FEM to external forces and allows
the model to move over spurious image detail (e.g., gradients caused by noise).
Damping D avoids oscillation of the FEM. The system of differential equations is
decoupled by solving the following generalized eigenproblem.

KE D ME� with ETKE D � and ETME D I

where � is the diagonal matrix with real-valued eigenvalues and I is the identity
matrix.

After projecting the data on the eigenvector matrix, the differential equations can
be solved fast and in a stable manner. Moreover, the projection on the eigenvectors
(called modes of vibration, see Fig. 4) separates deformation into components
representing rigid transformation, major deformation modes and remaining minor
deformation modes. The vibration modes can be used similar to the variation modes
of an ASM to derive a quality-of-fit formulation for a fitted model instance. Since
only a few anatomical objects have such a specific shape that it can be described by
a simple deformation model and since training of additional information should
be avoided, it is useful to complement simple deformation with pre-specified
information on part-relationships. Part-relationships may describe the configuration
of the object of interest w.r.t neighboring structures or may represent decomposition
into parts (see [33]).

Extending the FEM to a hierarchical model requires the introduction of a second
layer FEM. Each sub-shape is represented by an FEM on the first layer and sub-
shape FEMs are connected to the second layer. The type of connection regulates
dependencies between sub-shapes and may range from distance constraints to co-
deformation. FEMs for the first and second layer are created and assembled in the
same fashion than elements are assembled for the sub-shape FEM [35].
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Fig. 4 Vibration modes 7–9 of a lower spine model. Vibration modes 1–6 represent rigid
transformations (courtesy of Marko Rak, University of Magdeburg)

Case Study: Analysis of Vertebrae Back pain and related diseases exhibit a high
prevalence and are thus a focus of the SHIP (recall [43]). Specific goals are

• to define the prevalence of degenerative changes of the spine,
• to identify risk factors for these changes,
• to correlate degenerative changes with actual symptoms, and
• to better understand the progress from minor disease to a severe problem that

requires medical treatment.

Epidemiologists hypothesize that smoking, heavy physical activity and a number
of drugs that are frequently used are risk factors for back pain. Based on clinical
observations, epidemiologists suggested to focus on the lumbar spine—the lowest
part of the spine comprising five vertebrae. As a first step, the spine and lumbar
vertebrae should be detected in T1-weighted and T2-weighted MRI data from SHIP.

Although local optimization could be complemented by stochastic global opti-
mization [11], Rak and colleagues used only local optimization, since the initializa-
tion is simple for the given data. The user places a model instance in a sagittal view
on the middle slice of the image sequence which is then transformed based on local
image attributes. The model is constructed according to the appearance of vertebrae
and spine in a sample image sequence. Vertebra sub-shapes were connected with a
spine sub-shape by a structural model on the second level.

The spine model supported proper localization of the vertebrae. Since its most
discriminate aspect was the cylindrical shape, it was represented by a deformable
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Fig. 5 Examples for initialization and convergence of model instances applied to the MRI data
(courtesy of Marko Rak, University of Magdeburg)

cylinder consisting of inner nodes only. The vertebrae shape was represented
indirectly by inner nodes as well, since reliability of the intensity gradient was
low. For each of the two shape models, the vertebra and the spine, a weighted
combination of the T1-weighted and the T2-weighted image was computed as
appearance input. Weights for each of the two models were determined a priori and
produced a clearly recognizable local minimum for vertebra and spine appearance,
respectively. The user placed a model instance in the vicinity of the object on a
sagittal slice. Computation time until convergence was between 1.1 and 2.6 s per
case. The method was evaluated on 49 data sets from the SHIP. The detection
was considered successful if the center of each vertebra sub-shape was in the
corresponding vertebra in the image data, which was achieved in 48 of the 49 cases
(see Fig. 5 for examples and [35] for further details).
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4.2 Shape Analysis

Epidemiologists are used to work with numerical and categorical data which then is
tested for statistic validity. Medical image data also allows to consider characteristic
object shapes. As an example, the shape of the liver may depend in a characteristic
manner on infections (hepatitis), alcohol consumption, or obesity. Eventually, shape
characteristics may change even before a disease becomes symptomatic. If this turns
out, shape changes may be employed as an early stage indicator.

While the quantitative analysis of shapes or parts thereof (morphometrics) is a
recent trend in epidemiology due to the availability of image data, it is established
in anatomy and evolutionary biology.

Shape analysis requires that different shapes are transformed in a common space,
typically by a rigid transformation (translation and rotation). The parameters of
this rigid transformation are determined in an optimization process that minimizes
the distances of corresponding points. A major challenge is to determine these
corresponding points that serve as landmarks. In particular for soft tissue structures
there are not sufficient recognizable landmarks and therefore a parameterization
is necessary to define these points. Without going into detail, we assume that this
process is applied to many individual shapes Si, say livers in a cohort study. Then,
for each Si an optimal non-rigid transformation to a reference shape R defines a
deformation with displacement vectors for each landmark.

For use in epidemiology, a large set of displacement vectors is not the right
level of granularity. Instead, a few dimensions are desirable that characterize major
differences. Thus, typically a dimension reduction technique, such as PCA, is
employed to characterize the directions that represent the major differences. This
process may be adapted to specific analysis questions by assigning individual
weights to the landmarks expressing a strong interest in particular displacements
[21]. Thus, epidemiological hypotheses may be incorporated.

While the establishment of point correspondences is often a major challenge,
recently alternative approaches were developed. The GAMES algorithm (Growing
and adaptive meshes) [13] creates a data structure to represent the shape variance
if no pairwise correspondence between points is given. However, it can be prone to
errors since it requires a prior registration of segmentation masks.

Shape analysis, of course, may also be supported by appropriate visualizations
that enable pairwise comparisons and emphasize differences. In this vein, [7]
presented a system for shape space exploration based on carefully designed multiple
coordinated views.

4.3 Analysis of Lumbar Spine Canal Variability

In Sect. 4.1, we introduced a case study related to the analysis of the lumbar spine
in cohort data and explained how the spine and the vertebrae are detected in MRI
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data from the SHIP. Here, we extend this discussion by the analysis of the spinal
canal and non-imaging attributes related to back pain. In the SHIP, attributes related
to back pain history, e.g., working habits, physical activities, size and weight, are
available to identify and analyze potential correlations with findings from the MRI
data. After careful discussions, we selected 77 attributes (60 are ordinal or nominal
and 17 scalar) to investigate back pain [26]. Ordinal data are primarily results of
multiple choice questions. The epidemiologists suggested to focus on the overall
shape and curvature of the spine in that region instead of individual vertebrae. This
overall shape is well characterized by the lumbar canal. Thus, correlations between
the shape of the lumbar spine, attributes of back pain history and activities both in
leisure and working time may be analyzed.

Klemm and colleagues [25] extracted, clustered and visualized spine canal
centerlines. Image segmentation of 493 MRI data sets was carried out automatically
using tetrahedron-based finite element models of vertebrae and spinal canal [35].
Using barycentric coordinates of the tetrahedrons, a centerline consisting of 93
discrete points was extracted for each segmentation, as seen in Fig. 6 (left, middle).
They served as input for an agglomerative hierarchical clustering which created
groups of subjects based on differences in shape. This special clustering technique
was chosen, since it produces meaningful results in the clustering of similar
structures, such as fiber tracts derived from MR-Diffusion Tensor Imaging data [25].

The cluster visualization in Fig. 6 (right) displays each cluster representative as
ribbon in a sagittal plane. The representative is the centerline with the smallest sum

Fig. 6 Lumbar spine visualization of 243 female subjects. Left: Tetrahedron-based finite element
model from Rak and colleagues [35]. The dashed purple line indicates the lumbar spine canal
centerline Middle: Model used to detect lumbar spine canal in an MRI scan Right: Agglomerative
hierarchical clustering of 243 centerlines yields seven clusters. Their representatives are visualized
as ribbons mapping cluster size to width. The ribbon color encodes the distance to the semi-
transparent plane orthogonal to the view direction (lower inset). Shadow projections (upper inset)
provide an additional visual hint on the curvature extent [25]
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of distances to all other centerlines, i.e., the centroid line of the cluster. The width
of the ribbon encodes the cluster count and the color encodes the distance to the
sagittal plane. Shadow projections also (redundantly) convey the distance to the
sagittal plane. This allows to assess the 3D shape in a 2D projection. The results of
the clustering can be used in different ways.

• Outlier detection: Extraordinary shapes yield clusters of small size that differ
strongly from the global mean shape. This can point to pathologies or errors in
the segmentation process.

• Hypothesis generation: Shape groups serve as a starting point for an exploratory
analysis to analyze disease-related correlations. The usual workflow requires
epidemiologists to define groups, e.g., age ranges. Groups calculated solely using
shape information can be analyzed to detect statistically relevant associations in
other expositions which can lead to new hypotheses.

• Hypothesis validation: Clustering based on non-image related features can be
used to analyze if these clusters are correlated to characteristic shapes, e.g., a
strongly bent spine canal representative.

Calculating curvature on groups created according to body height starting from
150 cm in 10 cm steps was performed. Klemm and colleagues found that taller
people have a more straight spine compared to small people. They also found
multiple clusters of people 10 years above average age across all groups that exhibit
a strong “S” shape of the spine, which was the starting point for new investigations
using expert chosen spine-related attributes. This method was extended to integrate
the relevant information for identifying correlations. Thus, for a selected cluster,
information related to the distribution of attributes, such as the back pain history
(frequency and intensity of back pain), may be displayed as a tool tip. The initial
observations show, that a box plot summarizing the distribution is more suitable than
the full histogram. For routine use in epidemiology, the lumbar spine visualization
(Fig. 6) has to be complemented with at least simple statistics to answer questions,
such as: Is there a statistically significant difference between the curvature of the
lumbar spine canal and back pain frequency? If so, what is the effect size?

4.4 Cluster Analysis and Information Space Reduction

A crucial task in epidemiology is the definition of groups of subjects. Differences
and similarities among groups are investigated and control groups are defined to
detect and assess the impact and interaction of risk factors to define the relative risk.
A straightforward approach is the manual definition based on study variables and
ranges of interest. A data-driven extension is the automatic detection of potentially
relevant subgroups in the often high-dimensional data by means of clustering
algorithms [26]. In particular, the generation of new hypotheses, which may be
tightly connected to the identification of new groups, benefits from the latter.
In clustering, subjects, being similar with respect to a certain similarity metric,
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are grouped in clusters with a low intra-cluster and a high inter-cluster variance.
Particular challenges in the cluster analysis of cohort study data are:

• Missing data, e.g., denied answers to inconvenient questions [10]
• Mixture of scala and categorical study variables [2]
• Time-varying variables in longitudinal studies [15]

As a consequence of the first problem, it should be reported to the user how many
datasets were actually used for clustering. Depending on the chosen attributes, this
may be a subset of the overall amount of data. Incomplete datasets may and should
be used when the relevant data is available. It is essential to use similarity metrics
that consider also ordinal or categorical data. Usually, the following convention is
used: The distance between datasets equals 1 if their categorical data is different
and 0 if it is the same. With ordinal data, more care is necessary. The difference
between “strongly agree” and “strongly disagree” on a Likert scale is larger than
the difference between “agree” and “disagree”. However, the precise quantification
is not straightforward. As a first step to explore the SHIP data, a parallel coordinate
view is combined with scatterplots and clustering (Fig. 7).

With respect to clustering algorithms, it is essential that the number of resulting
groups has not to be specified in advance. Moreover, algorithms are preferred
that allow outliers instead of forcing all elements to be part of a cluster. Outliers
may be particularly interesting and thus serve as a starting point for further
investigation. Of course, they may also indicate a bad quality of some data. In
our experiments, density-based clustering with DBSCAN [12] produced plausible
results when applied to non-image data of the SHIP study. The DBSCAN result
is sensitive to the minPoints parameter that determines the minimum size of a
cluster. Some cycles of clustering are necessary to make a suitable choice. In this
process, an appropriate visualization is essential to easily understand the results. A
visualization that conveys the location, size and shape of clusters is difficult in case
that clustering is applied to more than two-dimensional data. A recently developed

Fig. 7 A parallel coordinate view enables the selection of a relevant subset (here persons with a
weight larger than 120 kg). The scatterplots represent correlations between age, size and weight.
The elements are color-coded according to a clustering result that yields three clusters. The
encircled elements correspond to the selection in the parallel coordinates view
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approach enables 3D visualizations of clustering results with very low levels of
occlusion [16].

The majority of cohort-studies are restricted to non-image data, i.e., categorical
and scalar data, which may directly serve as input for a clustering algorithm. In
[3], 176 patients with lower back pain have been monitored over six months via
text messages describing their bothersomeness. All patients received chiropractic
treatment. A hierarchical clustering of the individual temporal courses of bother-
someness revealed groups of patients who responded differently to the therapy,
which may improve the optimal individual treatment selection. Hypotheses about
the differences between paternal age-related schizophrenia (PARS) and other cases
of schizophrenia were generated in [27]. A k-means clustering of demographic
variables, symptoms, cognitive tests and olfaction for 136 subjects (34 with PARS)
delivered clusters containing a high concentration of PARS cases. Significant
characteristics of these clusters may give a hint on features of PARS improving
its dissociation of other cases of schizophrenia.

In analyzing image-centric cohort study data, besides categorical and scalar
data, images may be clustered for group definition. Image intensities, segmentation
results, e.g., the surface of the segmented liver or the centerline of the spinal canal
(recall Sect. 4.3) and derived information, e.g., liver tissue texture, liver volume
and spinal canal centerline geometry, may serve as input. In [37], the anatomical
variation of the mandibles is assessed across a population. For treating mandible
fractures, subjects with similar characteristics are grouped in clusters and a suitable
implant is designed per cluster. The clustering algorithm k-means is applied to
transformation parameters of a locally affine registration between all mandible
surfaces segmented in CT data. A cohort of 50 patients with suspicious breast
lesions was investigated by means of dynamic contrast enhanced MRI (DCE-MRI)
in [34]. Each lesion was clustered according to its perfusion characteristics by means
of a region merging approach. Perfusion is represented by the temporal course of
the DCE-MRI signal intensities. The clustering itself did not generate groups of
patients here, but based on each individual number of clusters and their perfusion
characteristics, two groups of lesions could be defined: benign and malignant. These
groups were then compared to histological results from core needle biopsy.

Investigating high-dimensional non-image cohort study data often benefits from
an information space reduction, e.g., by means of PCA. Plotting the data for
inspection in a lower dimensional space while capturing the greatest level of
variation, e.g., a scatterplot of the first two principal components, as well as
detecting trends in the data and ordering them according to the variance they
describe are important applications of PCA. In [36], symptom data gathered in
interviews of 410 people with Turret syndrome was investigated in order to specify
homogeneous symptom categories for a better characterization of the disease’s
phenotype. First, clusters of symptom variables were generated using agglomerative
hierarchical clustering. Then, for each cluster and each participant a score was
computed equal to the sum of present symptom variables in the cluster. These
scores were the input for PCA, which produced homogeneous symptom categories,
sorted according to their percentage of represented symptomatic variance. In [38],
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scatterplots of variables from cohort study data are extended by superimposing
PCA ellipses. The ellipses are computed per group of subjects and illustrate its
global distribution with respect to the two opposed variables. They are spanned by
the principal component axes of a groups data points and centered at their mean.
Optionally, their transparency is adjusted with respect to the groups confidence, i.e.
the number of contained subjects.

4.5 Categorical Data

Cohort study data sets comprise many categorical data such as answers to ques-
tionnaires or categorizations that may result from binning continuous data, such as
intervals of income or age groups. These data are discrete and exhibit a low range.
While data resulting from binning or from answers marked at a Likert scale have an
inherent order (ordinal data), often no inherent order exists. Standard information
visualization methods like scatterplots and parallel coordinates are designed for
continuous data and thus not ideal for displaying categorical data, since many data
points occlude each other.

Categorical data are often visualized using boxes where the width is scaled to
frequency [45]. These approaches use much space and are also not well suited for
encoding multidimensional relationships. Parallel sets, introduced by Bendix and
colleagues, comprise the same layout as parallel coordinates, “but the continuous
axes were replaced with sets of boxes : : : scaled to the frequency of the category”
[5] (see Fig. 8). Selecting an attribute will map each category to a distinct color so
that they can be traced through all visualized dimensions. Highlighting a category
may be realized by drawing the selected category in a higher saturation leading to
a pop-out effect. It is also useful to display a histogram for the selected category
annotated with statistical information. Selecting a category will only display the
particular box on an axis and make more room for connections to other axes. This
is especially helpful if the number of categories for one dimension is large. In
case of data without inherent order, reordering of axes is possible and supports the
exploration by providing more comprehensible layouts.

5 Concluding Remarks

A variety of large prospective cohort studies are established and ongoing. They
generate a wealth of potentially relevant information for assessing risks, for
estimating costs involved in treatment and thus inform health policy makers with
respect to potentially preventive measures or cost-limiting initiatives. Despite the
great potential of data mining and interactive visualization, none of these studies
included such activities in their original planning. The role of computer science,
so far, was limited to database management and data security. Visual analytics has



Visual Analytics of Image-Centric Cohort Studies in Epidemiology 245

a great potential for exploring complex health-related data, as recently shown by
Zhang and colleagues [50] for clinical applications, such as treatment planning.
Similar techniques may be employed to address epidemiology research. In contrast
to clinical applications, where a severe time pressure leads to strongly guided
workflows, epidemiology research benefits from powerful and flexible tools that
enable and support exploration. Currently, existing and widespread information
visualization and analytics techniques are employed and adapted to epidemiologic
data. The high-dimensional nature of these data, however, also requires to develop
new techniques.

The specific and new aspect discussed in this paper was the integration of
image data, information derived from image data, such as spine curvature-related
measures, and more traditional socio-demographics data.

Future Work So far, visual analytics research and software was rarely focused
on epidemiology. Thus, to adapt visual analytics to epidemiology and to integrate
the solutions with tools familiar to epidemiologists is necessary. In epidemiology,
national studies are prevailing, which is due to the large amount of legislative
conditions to be considered. International studies would enable to explore diseases
with lower prevalence, subtypes of diseases that occur rarely, e.g., cancer in early
age, and specific questions of spatial epidemiology. The SHIP Brazil study will
provide such information. It was recently initiated to perform a study in Brazil

Fig. 8 Parallel sets are designed to explore categorical data. Parallel sets are based on the parallel
coordinates layout, but it maps frequency of the data instead of rendering them just as data points.
The user can interactively remap the data to new categorizations as well as highlight entries
to examine their distribution along other mapped dimensions. The displayed data set shows the
distribution of passengers of the RMS Titanic and whether they survived the sinking of the ship [9]
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according to the standards and experiences gained in the German SHIP study.
A nasty but essential problem of image-based epidemiologic study is quality
control. Research efforts are necessary to automatically check whether image
data fully cover the target region, whether the alignment of slices, e.g., in heart
imaging, is correct and whether severe artifacts appear, e.g., motion artifacts. This
chapter discussed exciting developments related to the combined use of radiologic
image and more classical epidemiological data. The next wave is already clearly
recognizable: genetics information will be integrated in the search for early markers
associated with risks for diseases.
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