1942

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 11,

NOVEMBER 2012

Unified Boundary-Aware Texturing for
Interactive Volume Rendering

Timo Ropinski, Member, IEEE, Stefan Diepenbrock,
Stefan Bruckner, Member, IEEE Computer Society,
Klaus Hinrichs, Member, IEEE Computer Society, and
Eduard Gréller, Member, IEEE Computer Society

Abstract—In this paper, we describe a novel approach for applying texture mapping to volumetric data sets. In contrast to previous
approaches, the presented technique enables a unified integration of 2D and 3D textures and thus allows to emphasize material
boundaries as well as volumetric regions within a volumetric data set at the same time. One key contribution of this paper is a
parametrization technique for volumetric data sets, which takes into account material boundaries and volumetric regions. Using this
technique, the resulting parametrizations of volumetric data sets enable texturing effects which create a higher degree of realism in
volume rendered images. We evaluate the quality of the parametrization and demonstrate the usefulness of the proposed concepts by
combining volumetric texturing with volumetric lighting models to generate photorealistic volume renderings. Furthermore, we show the

applicability in the area of illustrative visualization.

Index Terms—Volumetric texturing, interactive volume rendering

1 INTRODUCTION

N the past years, much effort has been undertaken in the

field of volume rendering to generate more compelling
images. Many of the current advances could be achieved by
transferring or adopting techniques which have been proven
useful when rendering polygonal models. Texture mapping,
however, which is heavily used when rendering polygonal
data, has received only limited consideration in the area of
volume rendering. Only little effort has been undertaken so
far to unleash the full potential of texture mapping in the
context of volume graphics. One commonly used technique
assigns 3D textures to a volumetric data set according to the
current voxel’s position (e.g., Lu et al. [38] or Satherley and
Jones [50]). While 3D texturing is sufficient for altering the
overall appearance of an object, it is not suitable for
controlling the display of surface details. As illustrated in
Fig. 1, 3D textures can be assigned to volumetric regions and
give the impression that the object has been carved out of a
block of material (Fig. 1a), while 2D textures can be assigned
to surfaces in order to display information on material
boundaries (Fig. 1b). Since volumetric regions and material
boundaries are both considered as equally important

e T. Ropinski is with the University of Linkoping, Kungsgatan 54,
Norrkoping 60233, Sweden. E-mail: timo.ropinski@liu.se.

e S. Diepenbrock and K. Hinrichs are with the University of Muiinster,
Einsteinstr. 62, Muenster 48149, Germany.
E-mail: {diepenbrock, khh}@uni-muenster.de.

o S. Bruckner and E. Groller are with the Vienna University of Technology,
Favoritenstrasse 9-11/E186, Wien A-1040, Austria.
E-mail: {bruckner, groeller}@cg.tuwien.ac.at.

Manuscript received 15 Feb. 2011; revised 18 Nov. 2011; accepted 2 Dec.
2011; published online 7 Dec. 2011.

Recommended for acceptance by P. Cignoni.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2011-02-0035.
Digital Object Identifier no. 10.1109/TVCG.2012.285.

1077-2626/12/$31.00 © 2012 IEEE

features within a volumetric data set [25], [33], in many
cases a unified 2D and 3D texturing approach is desired.

In this paper, we present a volumetric parametrization
model as well as an interactive rendering approach in order
to allow a unified integration of 2D and 3D texture mapping
into the volume rendering process. By enabling 2D
texturing, the whole spectrum of 2D texturing effects as
known from polygonal rendering can be used for volume
rendering (see Fig. 2). To do so, we had to face two
challenges. First, a meaningful parametrization of volu-
metric objects has to be found. While useful 2D surface
parametrization algorithms have been developed (e.g., see
Floater and Hormann [14]), almost no efforts have been
undertaken to parametrize volumetric data sets. Since in
most cases, users are not only interested in the volumetric
nature given by homogeneous regions, but also in material
boundaries, a straightforward parametrization neglecting
the topology and only considering the voxel coordinates
would not be sufficient. While the overall structure of
material boundaries contained in a volumetric data set is
given by the data, the actual position may shift depending
on the selected rendering parameters, e.g., the transfer
function. Thus, a parametrization has to be appropriate for
the potentially shifting surfaces of interest and still has to be
meaningful for nearby structures. The second major
challenge when texture mapping volumetric data sets is
the actual rendering. In contrast to polygonal models,
volume objects are composed of several nested layers. Each
layer may have its own texture. Sometimes, it may be
desirable to interpolate between the textures assigned to
these layers, and sometimes, when distinct material
boundaries are preferred, no interpolation is necessary.

In this paper, we present a novel concept for the
parametrization of volumetric data sets of genus 0. When
exploiting the resulting parametrization, the unified applica-
tion of 2D and 3D texturing at the same time becomes

Published by the IEEE Computer Society

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

(a) (b)

Fig. 1. A volume data set rendered with a 3D brick texture (a), and with
an additional 2D grass texture (b). While 3D texturing results in a carved-
out effect, 2D texturing can be used to depict surface details.

possible. Our approach is different in spirit to existing
approaches, which aim at local parametrizations of specific
surfaces within a volume data set [4], [48] or exploit two-part
mapping techniques [1], [54]. It is, to the best of our
knowledge, the first boundary-aware method which has
been explicitly developed for real-world volumetric data sets
and therefore allows to entirely capture their volumetric
nature. Throughout this paper, we refer to a boundary as the
interface between two volumetric materials, which can be
either extracted through segmentation or classification, e.g.,
by using 2D transfer functions. To support interactive
unified 2D and 3D texture mapping for volumetric objects,
we additionally propose GPU-based rendering techniques
which exploit the features of current graphics hardware. By
using GPU-friendly data structures and access functions, we
are able to assign multiple layers to each parametrized object
interactively. We will show that due to the interactive frame
rates it becomes possible to apply interaction techniques
working with textures, e.g., sculpting and carving.

Due to the simplicity of the described rendering
techniques, the proposed concepts can be integrated into
existing volume rendering pipelines and thus open up new
avenues in the quest for illustrative as well as photorealistic
volume graphics. At this point, we would like to reempha-
size that by exploiting the proposed algorithms, we are able
to transfer most of the concepts known from surface
texturing to volumetric objects without requiring an
intermediate polygonal surface extraction. Hence, all
renderings shown throughout this paper are volume
renderings, and no tessellations have been generated except
for comparison reasons.

2 RELATED WORK

Volumetric texturing so far has only been applied to
volume rendering by using 3D textures or by exploiting
local parametrizations, i.e., only selected surfaces in a data
set are partially parametrized. Satherly and Jones applied
hypertexturing to volumetric data sets [50]. Miller and
Jones have extended these concepts and realized hypertex-
turing of volumetric objects in real time by exploiting
modern graphics hardware [41]. They perform isosurface
rendering while applying texturing or hypertexturing. Shen
and Willis proposed a data-dependent triangulation meth-
od combined with a two-part mapping in order to map 2D
textures to isosurfaces extracted from volumetric data [54].
They also addressed how to use 2D textures in volume
rendering. Instead of exploiting the layered nature for more
advanced rendering effects, they use an interpolation of

1943

(@ (b d (o) ® (®

Fig. 2. Application of different texture mapping techniques to a volumetric
cylinder data set (a). Color mapping in combination with Phong shading
(b), bump mapping (c), bump mapping and color mapping in combination
with specular lighting (d), displacement mapping with diffuse shading (e),
displacement mapping with color mapping and bump mapping in
combination with specular lighting (f) and the application of tonal art
maps to achieve a non-photorealistic effect (g).

the texture in-between two isosurfaces. In a follow-up
paper, Shen and Willis described how to interactively
position textures on the extracted surfaces [53].

Some papers describe how to exploit texturing in the
context of volume rendering to achieve non-photorealistic
rendering effects. Treavett and Chen have proposed a
technique based on mathematically derived, non-photorea-
listic solid textures [58]. Baer et al. adopted a cube-map
parametrization approach to allow non-photorealistic vo-
lume rendering through stippling textures [1]. A similar
approach is the TileTree data structure, which employs an
octree to manage the texture to be mapped [32]. Bruckner
and Groller used style transfer functions based on sphere
maps for illustrative volume rendering [3], which allows
stylized lighting. Similar to Treavett and Chen [58], Lu et al.
used synthesized 3D textures based on Wang Cubes to
achieve an illustrative style when rendering volume data
[38]. A similar approach was employed by Kabul et al. [23],
who generate anisotropic solid textures based on 2D
examples. While these approaches allow to transfer the
overall appearance from medical text books, they do not
allow to integrate 2D textures to depict surface details. The
same is true for the texture transfer-function approach
presented by Manke and Wuensche, which allows to assign
3D textures to intensity ranges within a volumetric data set
[39], or the work by Dong and Clapworthy which attempts to
orient anisotropic structures along the main object axis [10].

Volume parametrization is necessary to allow the same
richness of texturing effects as known from polygonal
rendering. Kurzion et al. [30] developed an approach for
mapping textures to volumetric isosurfaces and parametric
surfaces. Another recent approach uses triplanar texture
mapping to map textures onto surfaces found in volumetric
data sets [29]. Besides other techniques directly developed
for polygonal rendering [19], Zwicker et al. proposed a
parametrization for point-based models [63]. In recent
years, concepts have been proposed which explicitly
address the parametrization of volumetric data. Patel et
al. [44] developed a parametrization for seismic data sets,
which allows to apply 2D textures to illustrate seismic
horizons. In a follow-up paper, they improved their
technique to allow more sophisticated texturing effects on
seismic slices [43]. To map textures with textual annota-
tions onto boundary materials within a volumetric data set,
Ropinski et al. proposed an image-based technique ex-
ploiting Bézier patches [48]. This approach as well as the

1944

interactive volume editing technique presented by Biirger
et al. [4] only provides a local parametrization. Li et al.
presented harmonic volumetric mapping, which estab-
lishes a bijective correspondence of two solid shapes
having the same topology [35], [36]. They also demon-
strated the use of their technique for 3D texture synthesis.
However, they assume that a <u,v> parametrization of the
outer surface is already given, which is propagated toward
the interior. Unlike our approach, their method does not
consider multiple surfaces of interest contained in a
volumetric data set and is therefore not boundary aware.
In a recent extension [37], they showed how to compute the
correspondence between two given objects of the same
topology by considering multiple surfaces, which is more
efficient and accurate and supports adaptive refinement.
While this technique is similar in spirit to our approach, the
resulting parametrizations are not suitable for the texturing
effects presented in this paper. Since our approach is a true
volumetric algorithm which is based on volumetric cuts,
we are able to generate parametrizations with consistent
<u,v> mappings. In contrast, Li et al.’s approach expects
decoupled <u,v> parametrizations as input for all con-
sidered surfaces and thus does not support a <u,v>
synchronization which is essential for many texturing
effects, e.g., the interactive cutaways shown in Fig. 10. Ju
et al. [22] and Martin et al. [40] presented more general
approaches which interpolate information in the interior of
closed triangular meshes. Owada et al. [42] introduced a
technique which allows to synthesize textures for the
interiors of polygonal models. In contrast to our approach,
their focus is mainly on the texture synthesis and the user
interface. A similar technique was presented by Pietroni et
al.,, who synthesize internal textures for polygonal objects
based on special cross-sectional input photographs [45].

Our parametrization technique is motivated by the
layered structure exhibited by many objects. This observa-
tion has also been exploited in the context of polygonal
techniques. Cutler et al. presented a scripting-based model-
ing approach for generating layered objects [8]. The shell
map approach allows to obtain a parametrization of a thin
layer around the surface of a polygonal object by generating
a tetrahedral mesh, which is parametrized using barycentric
coordinates [46]. Zhou et al. proposed an alternative low-
distortion shell parametrization allowing mesh quilting,
which is based on a surface aligned mesh synthesis [62].
Takayama et al. presented the concept of lapped volumetric
textures, where 3D textures are mapped to a mesh to
capture the outer and the inner appearance [57]. In contrast
to our approach, the technique utilizes a tetrahedral mesh
and relies on 3D textures as input. Although these can be
synthesized with recent approaches [28], [11], [56], the fine-
grain control of surface details on different boundaries is
not possible with lapped volumetric textures.

3 PARAMETRIZING VOLUME DATA SETS

In this section, we present the concepts necessary to achieve
a boundary-aware volume parametrization, which allows
unified 2D and 3D texturing. Since nowadays many volume
data sets are acquired using medical scanners, the pre-
sented parametrization model is inspired by anatomical

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 18, NO. 11,

NOVEMBER 2012

Fig. 3. Our parametrization model is characterized by nested layers,
which are aligned around its skeleton-tree (left). In the cube-shaped
parameter space, layers are stacked (right).

models found in medicine. Many organs and tissues as
described in anatomic atlases consist of several nested
layers [18]. Human skin, for instance, consists of the
hypodermis, dermis, and epidermis layers. For an extremity
such as the arm, the existing layers are nested around the
corresponding bone. Another example for the layer concept
found in anatomy is the bone structure. Each bone consists
of several layers—the endosteum, different lamellae layers,
and the periosteum—which are nested around the bone
marrow. Similar analogies can be found for many other
natural objects. As shown in Fig. 3, the nested layers of an
object of genus 0 are arranged in the <u,v,w> parameter
space, where the <u,v> coordinates correspond to the
surface parametrization of this layer, while the w coordinate
depicts the layer’s depth. Obviously, it is not possible to
generate a distortion-free parametrization for all parts of the
object. Instead, the goal is to focus on features of interest,
which are given either automatically by material bound-
aries [25], [33] or which are extracted manually through
segmentation. Thus, it becomes possible to generate a global
parametrization, which is optimized for these features,
while still achieving meaningful results for the remaining
parts of the object. The latter is important, since in volume
rendering parameter changes can have a drastic influence
on the visualized structures. When for instance changing
the transfer function or the iso-value, these changes may
result in shifting boundaries. It is not possible to consider all
these boundaries during parametrization, and just comput-
ing parametrizations for a selected set of isosurfaces would
not be sufficient. Within this paper, we refer to a global
volume parametrization as a parametrization which assigns
3D texture coordinates to each voxel within the volume data
set. Such a parametrization preserves the volumetric nature
of a data set and thus also allows to incorporate
homogeneous regions. There are three major differences,
when comparing a volumetric parametrization to a surface
parametrization. First, in volume data, no knowledge about
the connectivity along a surface is present, and thus
coherence is harder to achieve. Second, in contrast to
polygonal rendering, surfaces in volume data are not fixed.
They may change depending on the current rendering
parameters. Third, volumetric cuts are needed, which
penetrate the whole volume in order to be able to map it
into the cube-shaped parameter space. For polygonal
models, sophisticated algorithms for surface cutting exist,

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

NG @) loutput__gm ™

] 1

[} 2 I

3 1]

I iy L 2 |

skeleton-tree §S-spring) volumetric |

__ extraction / _ relaxation / : parametrization :
} 1

(5) N ! hes !

1 |

I I

A 4) > 1

cut geometry layer and cut wdi ﬁﬁution : texture :
_computation / \ parametrization/ \ __adaption _/ \ application /

Fig. 4. The workflow of our approach is divided into five subsequent
steps. First, a skeleton-tree is computed, which serves as the basis for
the innermost parametrization layer (1). Based on the skeleton-tree, we
compute the cut geometry (2), used to enable unfolding. After the
volume has been cut, a parametrization is generated for the boundary
features and the voxels adjacent to the cut (3). Then, the interior of the
volume is parametrized using mass-spring relaxation (4). Finally, we
correct the initial w coordinate distribution, which results from a higher
number of springs toward the outer surface (5). This processing results
in a parametrization volume, which can be for instance exploited to
achieve texturing effects.

e.g., the seamster algorithm [52], but no algorithms have
been proposed yet for generating volumetric cuts.

Fig. 4 illustrates the workflow of the presented parame-
trization approach. In step 1, we compute a skeleton-tree,
which is used to represent the innermost layer’s interior of
the nested layer model introduced above. To be able to
unfold the nested layers coherently and fit them together
with the volumetric regions into the parametrization volume
as shown in Fig. 3(right), we perform a volumetric cut in step
2 by using the shown cut geometry. The <u, v> parametriza-
tion is performed in step 3 by exploiting a mass-spring
model. Using a mass-spring model has two main advan-
tages. First, it enables us to use the same approach for
boundaries and volumetric regions which permits the
incorporation of the same parametrization constraints.
Second, the parametrizations of all boundaries are synchro-
nized, which is essential for our nested layer model. Thus,
after we have generated the initial <u,v> parametrization in
step 3, the resulting model is augmented by inserting masses
and springs in the interior, which are relaxed in step 4 to
achieve the parametrization of volumetric regions in-
between the layers of interest. To ensure that the boundary
parametrizations remain planar, their w coordinate is not
affected during this relaxation. In general, the outermost
surface of a volume contains more voxels than the centerline.
This results in an uneven distribution of springs, which
directly influences the achieved w distribution. To prevent
this, we apply a w distribution adaption in step 5. The output,
shown in the rightmost box in Fig. 4, is the volumetric
parametrization. The color coding in the top inset applies a
subset of the rainbow color map to the w coordinate, where
blue/green is associated with small w, while red is associated
with large w. The bottom inset shows the <u,w> parame-
trization by applying a checkerboard texture to the outer-
most surface at w = 1.0.

Thus, the workflow depicted in Fig. 4 allows us to
consider several boundaries, which can have been extracted
through segmentation or classification, as well as volu-
metric regions in order to support unified 2D and 3D
texturing. In the following sections, we will discuss all steps
shown in Fig. 4 in greater detail.

1945

3.1 Skeleton-Tree Extraction

As shown in Fig. 4, we first need to derive a center
representation for our nested layer model in step 1. A 3D
curve-skeleton of an object is a stick-like figure or centerline
representation of the object [7]. This definition makes the
curve-skeleton an appropriate candidate to be used as the
center of the nested layers. Cornea et al. list the following
properties of curve-skeletons as desirable: homotopic,
invariant under isometric transformations, allowing recon-
struction of original, thin, centered, reliable, componentwise
differentiation, robust, efficient to compute, and hierarchical
[6]. For the application case described in this paper, we only
need a subset of these relevant properties. The curve-
skeleton should be thin, i.e., one voxel thick (except at
joints). Furthermore, in order to improve parametrization
quality, the curve-skeleton should be reliable, i.e., every
surface point is visible from at least one curve-skeleton
location. Since we deal with real-world volume data, which
is often subject to noise, the curve-skeleton should also be
robust, i.e., a centerline of a noise-free object and the same
object with noise should be similar. Because the parame-
trization is a preprocessing step, efficiency is not crucial.
From the sophisticated curve-skeleton algorithms known,
we have chosen to exploit the potential-field approach
proposed by Cornea et al. [7], since it best complies with the
properties listed above [6]. The algorithm places point
charges on the boundary of the object to calculate a repulsive
force field over the volume data. Sinks within this field are
then connected, using a force following algorithm. By
considering topological characteristics of the resulting
vector field, such as critical points and critical curves, a
hierarchy of increasingly detailed curve-skeletons can be
extracted. The four subsequent steps of the algorithm can be
summarized as follows: First, identify the boundary voxels,
place a charge at each boundary voxel, and calculate the
resulting force field for each inner voxel. We allow to define
this boundary manually by exploiting a step transfer
function. This mask is then used to derive the force field
as described in [7]. In the second step, a level 0 skeleton is
obtained by connecting critical points in the force fields
through pathlines which are seeded at saddle points and,
following the direction of the force field, moved in small
steps until they reach other critical points or pathlines. In the
third step, the level 0 skeleton is transformed into a level 1
skeleton by attaching pathlines from points with low
divergence. Because divergence measures the rate of flow
leaving a point, points with low divergence indicate a sink.
Since this step can be computed interactively, it is usually
controlled manually, enabling the user to interactively
increase or decrease the number of points added. This is
the step in the skeleton extraction, where the level of detail
can be controlled. To show the impact of this step on the
level of detail, we provide a visual comparison of different
divergence thresholds in Section 5.1. In the fourth step,
points on the boundary with high curvature are detected
and connected to the existing skeleton in order to obtain a
level 2 skeleton.

The four steps described above reflect the curve-skeleton
algorithm as it has been originally proposed by Cornea
et al. [7]. However, since in our case the requirements
slightly vary, we also employ some modifications to the

1946

,seam-node-.g___

) seam-tree # T
ST

éut-geometry

Fig. 5. An illustration of the volumetric cutting. Based on the skeleton-
tree (red nodes), we compute a seam-tree on the surface (green nodes).
The volume is cut based on the dotted cutting lines derived from the two
tree structures (left) and unfolded into the parameter cube (right).

algorithm. For our skeleton-tree data structure, we incor-
porate the computed level 1 curve-skeleton segments as
well as the critical points. Since these level 1 curve-
skeletons are already abstractions of the center line, no
pruning is necessary. Level 2 skeletons include several
additional connections to the outer surface, and are
therefore inappropriate for our cuttings algorithm de-
scribed in the next section. Furthermore, since we work
on voxel data for rendering, subvoxel precision is not
needed. Additionally, in order to be able to generate a
single cut geometry, we need to build a skeleton-tree from
the critical points and the pathlines, which are originally
treated as separate entities. To merge them into one tree
structure, we use a modified version of Prim’s minimal
spanning tree algorithm. Therefore, segments and critical
points are interpreted as vertices in a fully connected graph
using the euclidean metric as edge weights. A starting
segment is chosen and the closest segment or critical point
is added until the tree is complete. If one end of a segment
is closest to the incomplete tree, it is added as a whole,
adding two new leafs.

Skeleton-tree computation is an active field of research,
and while the curve skeleton seems to be the most
promising approach for our algorithm this might change
in the future when new skeleton extraction algorithms are
proposed. However, in our approach, the skeleton extrac-
tion portion of the pipeline can be easily replaced in order
to incorporate future advances in this area.

3.2 Volumetric Cuts

When dealing with surface parametrizations, cutting is
required to be able to embed an arbitrary surface into the
plane. Similarly, a volume has to be cut in order to embed it
into the cube-shaped parameter space as shown in Fig. 3. To
generate the required volumetric cut in step 2 of our
algorithm, we take into account the computed skeleton-tree,
and generate a seam-tree on the outermost surface of the
volumetric object. This outermost surface is the same one as
used for the skeleton-tree extraction.

Intuitively, the cut geometry is generated by introducing
planar geometry between each corresponding segment of the
skeleton-tree and the seam-tree. Therefore, as seen in Fig.
5(left), the seam-tree having green nodes and the skeleton-
tree having red nodes have to be isomorphic in order to
generate the cut geometry. Therefore, the generation of the
seam-tree raises two problems to be solved. First, the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 11,

NOVEMBER 2012

placement of one seam-node for each leaf and fork of the
skeleton-tree, and second, connecting these seam-nodes to
obtain a seam-tree which is isomorphic to the skeleton-tree.
The whole process of generating a volumetric cut starts at
one leaf of the skeleton-tree and generates cut geometry
breadth-first along the skeleton-tree. During each step, a
seam-node is calculated, before the cut geometry is gener-
ated to connect the new seam-node to the already existing cut
geometry. In the following paragraphs, we first describe how
to determine the seam-nodes, before explaining how to
connect them in order to obtain the seam-tree and finally
generate the cut geometry, which is used to cut the mass-
spring model before relaxation.

Seam-node placement. To obtain a seam-tree which is
isomorphic to the skeleton-tree, one seam-node is placed on
the outermost surface for each node in the skeleton-tree.
The procedure for finding these seam-nodes is different for
inner nodes and outer nodes of the skeleton-tree. For the
outer nodes (depicted by red discs in Fig. 5(left)), we extend
the adjacent skeleton-tree segment toward the outer surface
and choose the nearest intersection with the surface as
seam-node. For the inner nodes of the skeleton-tree
(depicted by red diamonds in Fig. 5(left)), we choose those
points on the outer surface as seam-nodes, which are close
to the corresponding inner skeleton-node with the goal that
the length of the seam-tree connecting all seam-nodes
becomes minimal. This does not mean that the cuts along
the surface have to fulfill this minimality property. As
discussed further below, different metrics can be used to
select an appropriate cut.

When placing the seam-nodes, three different cases need
to be distinguished: placing the first seam-node, placing
seam-nodes for outer nodes of the skeleton-tree and for inner
nodes of the skeleton-tree. We start with the first seam-node,
which is always associated with an outer node of the
skeleton-tree. Surface voxels are only suitable to be chosen as
seam-node when they are visible from the corresponding
skeleton-tree node, i.e., there is no other surface voxel
between the centerline and this voxel. By using two or more
voxels from the end of a skeleton-tree branch, the direction in
which the seam-node should be located can be estimated.
Placing seam-nodes for other outer nodes of the skeleton-tree
works the same way as the first seam-node, except that the
connectivity with the previous seam-node is taken into
account as described above. Due to this dependency, the
seam-tree changes slightly when another starting skeleton-
tree node is selected. Placing seam-nodes associated with
inner nodes of the skeleton-tree is done by using the distance
to the inner node as well as the distance to the previous
seam-node again. In the special case where the skeleton-tree
is degenerated to only one node representing the center-
point of a segment, e.g., of a spherical segment, we choose
two surface points lying across from each other as seam-
nodes. These nodes are then connected as any other two
adjacent seam-nodes.

Seam-tree generation. To generate a seam-tree based on
the chosen seam-nodes, several considerations have to be
made. As in surface parametrizations, long cuts should be
avoided. Especially, when dealing with semi-transparent
transfer functions, potentially revealing the whole volume,

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

S it —T B
N N
I‘ A
Conterine e

- Certerine

(a) Initial positions (b) Cursor positions (¢) Complete triangle
with movement alter- after first move. strip with movement
natives (red, blue). order.

Fig. 6. Generation of triangle strips representing the cut geometry is
achieved by marching along the seam-tree and the skeleton-tree in a
synchronized manner.

longer cuts could be more easily spotted. Therefore, we
connect the seam-nodes by using Dijkstra’s shortest path
algorithm on the surface voxels (stippled gray line in
Fig. 5(left)). However, the length of the seam is not the only
criteria, and we modify the edge weights to prevent cutting
through voxels with low curvature or high visibility, which
both would result in unwanted visual effects. To prevent
self intersection of the seam-tree surface, voxels already
traversed during the seam-tree generation can only be
traversed once. In contrast to the rest of the parametrization,
the seam-tree is fixed on one particular outer surface, while
all internal surfaces in volumetric data sets might shift based
on the chosen rendering parameters. Choosing these voxels
for the seam generation is necessary to obtain a parametriza-
tion for the entire data set. In cases where this outermost
surface is subject to noise, morphological operators can be
applied to adapt it accordingly.

Cut-geometry generation. The actual cut geometry is
represented by a triangle strip between all skeleton-tree
segments and the corresponding seam-tree segments.
Segments of the skeleton-tree and the corresponding
segments of the seam-tree typically do not have the same
length. To account for this, some voxels on the curve-
skeleton are connected to multiple voxels on the cut to form
a triangle fan with them and vice versa. Our algorithm used
to generate the triangle strip can be illustrated by two
cursors, one marching along the skeleton-tree and one along
the seam-tree. The cursors start at one end of the segment
and at each iteration one of them moves one voxel forward
until both reach the other end. To synchronize their
movement, a move which results in a shorter distance
between the cursors is preferred. Fig. 6a shows the initial
position of both cursors and illustrates the alternatives for
the first move. Moving the cursor along the seam-tree results
in a shorter distance (red) than moving the cursor along the
skeleton-tree (blue). If both alternatives result in an equal
distance, the cursor associated with the seam-tree is moved
forward. Fig. 6b shows the result of the first iteration. The
seam-tree cursor is moved one step forward and a triangle
(light blue) is created from the old and the new position as
well as the position of the skeleton-tree cursor. As soon
as one cursor reaches the end of its segment, the geometry is
finalized by a triangle fan. After step 4 in Fig. 6c, the
skeleton-tree cursor has finished and steps 5 and 6 create a
triangle fan around this end of the centerline.

3.3 Volume Parametrization

To compute the actual parametrization, we exploit a mass-
spring model, one of the first approaches used for surface
parametrization [19]. We have chosen this model, because it
can be applied to volume data without major changes.

1947

While more sophisticated surface parametrization techni-
ques may be also extendable to volume data, this approach
has the benefit that it can be used for both 2D and 3D
parametrizations without any modification. Thus, we can
parametrize boundary features as well as volumetric
regions with the same parameters. This enables a coherent
transition of <u,v> coordinates between the incorporated
layers, which allows to achieve a nested layer effect when
applying textures also to intermediate layers not considered
during the parametrization. To our knowledge, our
approach is the first to allow this coherency. Furthermore,
mass-spring models enable us to easily integrate the
constraints required for a boundary-aware parametrization.

Within our mass-spring model, each mass represents a
voxel of the original volume data set and is connected to the
18 neighbors (the direct neighbors plus the 12 diagonal
neighbors lying in the same plane) by rest-length zero
springs, and all masses have the same constant weight. The
volumetric cut is performed by removing all springs
intersecting the cut geometry. To comply with our layer
model (see Fig. 3), we place the masses representing
skeleton-tree voxels in the w =0 plane, and those repre-
senting voxels of the outermost surface in the w = 1 plane,
which results in a layout as shown in Fig. 5(right). While
both trees are still isomorphic with respect to the outer
nodes (green and red discs), this does not hold for the inner
nodes (green and red diamonds). Since each inner node of
the seam-tree lies directly on the cut geometry, it is split into
several nodes. The dotted green lines in Fig. 5(right)
indicate, which inner nodes of the deformed seam-tree are
associated with the same original inner node. As it can be
seen, the number of result nodes is given by the number of
segments meeting in the original inner node.

The actual mass-spring relaxation is performed in steps 3
to 5 as depicted in the workflow shown in Fig. 4. In step 3,
the <u,v> coordinates are computed for the outermost
surface as well as the voxels adjacent to the volumetric cut.
Next, based on the thus achieved mass-spring setup, <u,v>
coordinates are computed for the interior as well as w
coordinates for the voxels adjacent to the volumetric cut in
step 4. Finally, in step 5, the w distribution is adapted to
deal with the fact that the mass-spring system contains
more masses for w = 1 than w = 0. In the following, we will
provide details on these three steps.

For the <u,v> boundary parametrization computed in
step 3, we exploit the virtual boundary approach [31],
which is known to result in a mass-spring parametrization
with reduced distortion properties. This results in a
parametrization hull as shown in step 3 in Fig. 4.

After step 3 is completed, the masses of all inner voxels
are still at their original position. To distribute them
appropriately within the regions defined by the layers,
and to synchronize the <wu,v> parametrizations across
layers, the parts of the mass-spring system between layers
of interest is activated in step 4. During this relaxation step,
we set some of the masses associated with already
computed coordinates to infinity in order to keep the
results. While for the masses representing the outer surface,
we fix all <u,v,w> coordinates, we fix only the <u,v>
coordinates for those masses representing voxels adjacent to

1948

the cut. One benefit of the mass-spring parametrization
approach is that layers of interest can be integrated easily.
When incorporating layers of interest, we need to exploit a
technique which assigns w coordinate values to the layers of
interest. One approach is of course to assign these w
coordinate values manually. However, in order to automate
the whole parametrization process, the w coordinate values
can be derived from the distance d to the skeleton-tree.
Therefore, the w coordinate values can be set to w = #,
where d; is the average distance of all voxels on the layer o
interest and d, is the average distance of all voxels on the
outermost surface. To identify the boundary features
different approaches are possible. One approach could be
to use isosurfaces which have a large gradient magnitude.
These are typically considered as material boundaries and
thus more likely to be present in a visualization of the data
[26]. However, in most cases a manual extraction will be
used. Within our implementation, we support the selection
based on isovalues or on a segmentation. It should be
pointed out that the extracted layers of interest are still
assumed to be of genus 0 and comply with the nested onion
peel model in order to obtain parametrizations of good
quality. Once a w coordinate for the layers of interest has
been chosen, this stays fixed during the relaxation in step 4.
Thus, for the boundary of layers of interest, we have fixed
<u,v,w> coordinates, while the interior of such a layer has
fixed w coordinates only. This behavior allows us to achieve
a synchronized parametrization of adjacent layers, which
are connected through interior springs. During the relaxa-
tion, Hooke’s law would be the physically correct way to
model most springs. However, using other relationships
between elongation and force can lower the distortion. The
idea is to penalize extension over the normal length more
than by using Hooke’s law and to reduce the force exerted
by springs shorter than their normal length. This can be
achieved by using a polynomial function of a higher degree
instead of a linear function. Thus, the large forces generated
by heavily distorted springs modeled with the cubical
function favor an even distribution of the distortion over all
springs. After step 4 is finished, we have a <u,v,w>
parametrization for all voxels.

In step 5, we then adapt the output of the mass-spring
model to the distribution of the masses, which is of higher
density toward the outermost surface. Since the distribution
of the springs is directly related to the distribution of
voxels, we are able to suppress this effect. Therefore, we
take into account that the presented parametrization has
been developed for objects of genus 0. Our w distribution
adaption is based on the observation that for objects of
genus 0 the density of masses is roughly distributed
according to the ratio of a sphere’s radius to its surface,
i.e., quadratically. Therefore, we can apply the square root
function to every w coordinate in order to achieve a
uniform distribution.

4 VOLUME TEXTURING

Boundary-aware parametrizations of volumetric data en-
able the interactive application of several effects which
previously were impossible or very difficult to achieve in
the context of volume rendering. According to our nested

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 11,

NOVEMBER 2012

layer model (recall Fig. 3), we have a parametrization which
assigns an <u, v, w> coordinate to each voxel in the volume.
The <u, v> values can be used to perform a lookup in a 2D
texture, while the w coordinate can be used for specifying
the texture layer to be fetched. For all texture coordinates,
standard texture coordinate transformations can be applied.
Thus, it becomes not only possible to change the size and
orientation within one <u,v> plane, but also control the
density of texturing layers along the w axis. Since these
transformations are highly application dependent, they
need to be user-controlled, which can be done interactively
during rendering. Alternatively, it is possible to discard the
w coordinate and assign textures to intensity ranges
through a texture transfer function. At the same time, the
w coordinate can be exploited to extract information about
the distance to a boundary of interest.

Texturing functionality. Fig. 2 shows the application of
different texturing effects as commonly used for polygonal
rendering. While classical direct volume rendering (DVR)
has been applied in Fig. 2a, Fig. 2b shows the application of
a color texture, which modifies the diffuse color as fed into
the Phong illumination model. As shown in Fig. 2c, bump
mapping now also becomes possible in the context of
volume rendering, which has been combined with color
mapping and specular highlights in Fig. 2d. Finally, Figs. 2e
and 2f illustrate the use of displacement mapping to
increase the degree of realism. The displacement is realized
by adding the displacement vector to the 3D texture
coordinate used to access the volume. This idea was
proposed before. Kniss et al. have used 3D noise volumes
to modify the location of the data access [27]. In their case,
three components of the noise volume form a vector which
is added to the volume texture coordinates. However, due
to the lack of a parametrization, the perturbation volume is
repeated for the whole volume. In contrast, in our case the
perturbation can be altered at specific locations. To
demonstrate the usefulness of our approach in the context
of non-photorealistic rendering, we have also integrated
tonal art maps [47] into our volume rendering framework
(see Fig. 2g).

All techniques just need one additional 3D and one
additional 2D texture fetch for each sample, with the
exception of the displacement mapping technique, which
requires one additional 2D and two additional 3D texture
fetches. The second 3D texture fetch is required to get the
intensity at the new displaced position. While the other
techniques can be applied exactly as known from polygonal
rendering, again the integration of displacement mapping
requires a little extra effort. Based on the displacement
texture, displacement mapping results in an additional
volume texture fetch at the displaced position. Applying
this technique to a thin structure, as for instance to a visible
inner layer having a small w coordinate, may result in
the disappearance of the structure. Therefore, we modulate
the amount of displacement with the w coordinate, resulting
in larger offsets for larger w coordinates. In addition to the
effects shown in Fig. 2, all concepts known from polygonal
texture mapping, e.g., texture coordinate transformation,
detail texturing and clamping, can be applied easily.

Additionally, since we have a true volumetric parame-
trization, we can exploit the w coordinate to achieve a

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

(a) (b)

Fig. 7. A texture mapped spherical volume data set without (a) and with
(b) applying a modified trilinear filter for the texture coordinate lookup.
The adapted filtering results in smoother transitions along the seam.

unified combination with 3D texturing. Samples close to the
surface may be 2D textured using our parametrization.
Samples further away might use a conventional 3D texture
lookup based on their spatial coordinates. A smooth
transition between these samples can be employed to avoid
discontinuities. An example is shown in Fig. 1b, where a
brick solid texture is used for the interior of the object
(visible on the planar cut) while a surface-aligned 2D
texture is employed near surface regions.

Similar to polygonal rendering, where texture coordi-
nates are specified for vertices and are interpolated across a
polygon, our volumetric texturing approach requires an
interpolation of texture coordinates between voxels. How-
ever, using trilinear filtering results in artifacts for sampling
points lying on different sides of the seam, as can be seen in
Fig. 7a. These artifacts result from the fact that the seam
represents a discontinuity in the <u,v> coordinates, where
one coordinate is 0.0 on one side and 1.0 on the other side.
When applying texture filtering, this results in interpolated
values between 0.0 and 1.0 for the respective coordinate,
which become visible as artifacts. We can avoid this by
using a modified trilinear filter, which detects discontinu-
ities in the <u,v> space and only takes neighboring voxels
on the same side of the seam into account (Fig. 7b). Since
current graphics hardware enables such custom filtering
mechanisms, we are able to implement this approach within
a fragment shader.

Fig. 8 shows some effects we are able to achieve by
applying the introduced concepts to real-world data. Fig. 8a
shows the application of cross hatching to the skin layer in
combination with a conventional texture applied to the
bones, since when depicting surface details with strokes, the
spatial comprehension of semitransparent surfaces can be
improved [20], [24]. Fig. 8b shows an example of a seamless
integration of 2D and 3D textures, where a 3D wood texture
is combined with a 2D leaf texture.

Photorealistic rendering. The appearance of organic
materials is heavily influenced by light interactions below
the surface [16]. To achieve a realistic depiction of these
materials, numerous approaches for modeling subsurface
scattering have been proposed [12], [17], [21]. An advantage
of using a sampled volumetric representation is that the
data set contains information about the structure of an
object below its surface. In combination with our para-
metrization, 2D textures can be employed to introduce
subtle variations of material properties along the surface of
a volumetric structure. A texture transfer function allows

1949

Fig. 8. CT scan of a hand using different texturing techniques. Cross-
hatching (a) and the integration of a 3D wood texture with a 2D leaf
texture (b).

the assignment of different 2D textures to regions in a
volume data set based on the measured property (e.g.,
density in Hounsfield units in case of CT data). For each
sample point along a viewing ray, its material properties
are determined by a lookup in the assigned 2D texture
using the texture coordinates established through our
parametrization. Alternatively, in low-resolution cases
where adjacent layers cannot be distinguished based on
the measured properties, the w coordinate can be employed
to achieve the layered appearance.

The augmentation of a volumetric illumination model
with conventional 2D textures can lead to a more convin-
cing depiction with little additional effort. To demonstrate
this, we employ a variation of the direct volume illumina-
tion model presented by Schott et al. [51]. This method uses
a specialized conical phase function suitable for real-time
rendering. Additionally, we combine this approach with the
forward-scattering approximation proposed by Kniss et al.
[27]. The outcome of this process is shown in Fig. 9, where
we have applied a photographic skin texture to a CT scan of
a human head, while soft tissue below the skin uses a
different red-toned texture. We show a comparison of
Phong shading without textures (a), Phong shading with
textures (b), volumetric illumination using the same texture
for soft tissue and skin (c), and volumetric illumination with
different textures for soft tissue and skin (d). Due to the
layering of skin and soft tissue in the CT scan, a more
convincing appearance of the skin is achieved in Fig. 9d
without employing a specialized skin shader.

Illustrative rendering. Besides leveraging the degree of
realism, the unified texturing approach is also beneficial for
achieving illustrative rendering effects. Often in volumetric
data, objects of interest may be occluded by less important
objects. Cutaway illustrations address this problem by
omitting parts of the occluding objects. For polygonal data,
specialized techniques are required to generate these cut-
away illustrations (e.g., Burns and Finkelstein [5]). In contrast
to existing approaches presented for illustrative volume
rendering, our parametrization can be used to generate
voxel-precise cutaways interactively without any specific
adaption. This is only possible because our parametrization
achieves a synchronized <u,v> mapping for all present
layers, which allows to peel away structures layerwise in a
consistent way. Fig. 10 shows two such cutaway illustrations,

1950

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,

VOL. 18, NO. 11, NOVEMBER 2012

Fig. 9. Volume data set rendered using Phong shading without textures (a), Phong shading with textures (b), volumetric illumination using the same
texture for soft tissue and skin (c), and volumetric illumination with different textures for soft tissue and skin (d). The insets show the used textures

and the underlying parametrization.

which have been generated interactively by exploiting alpha
mapping. Fig. 10a does not incorporate any translucency.
In Fig. 10b, the skin layer has been rendered using
translucency to depict the volumetric nature of the data. To
achieve a more volumetric effect of the cutting edges, we
have modulated the alpha value of the texture with the w
texture coordinate. It would be much more difficult to
achieve a similar effect using a polygonal representation,
especially considering that the cuts can be interactively
modified by drawing with the mouse in an intuitive manner.

Volume annotation. In addition to the possibilities
presented above regarding volume visualization, the
proposed parametrization also facilitates interactive anno-
tation of volumes. These annotations are often required in
medical diagnosis [29] or to communicate the findings
made in scientific data sets [43]. As described in Section 2,
several authors have proposed specific annotation techni-
ques, e.g., for adding textual labels [48]. With our technique,
we are able to simulate the behavior of many of the
discussed techniques.

For demonstration purposes, we have implemented a 3D
labeling extension as well as a color brush. Both techniques
directly interact with the parametrization, which is used to
position the annotation with respect to the data. To obtain

(b)

Fig. 10. Our technique allows to generate voxel-precise cutaways by
combining textured volume rendering with alpha painting applied to
individual textures (a). To emphasize the volumetric nature of the data
set, the skin has been rendered translucently (b). The insets show the
used textures and the parametrization.

the mapping between the annotation and the volume, we
exploit an additional framebuffer object, into which we
render the <u,v,w> texture coordinates of the first hit
points. Thus, we can read back the <u, v, w> coordinates to
be modified based on the current mouse position. To apply
a 3D text label, the user has to first set an anchor point by
simply clicking on the rendering. Then, text can be entered,
which is directly rendered into the selected texture layer at
the position denoted by the read back <u, v, w> coordinate.
Since our parametrization aligns the texture with the visible
features, a 3D labeling effect is achieved (see Fig. 14a).
Painting with a brush within the volume can be done in a
similar way. However, since we want to achieve a more
volumetric paint effect, we render the brush foot print with
different sizes in several adjacent layers. A result of such a
painting process is shown in Fig. 14b.

5 PARAMETRIZATION ANALYSIS

5.1 Skeletonization Parameters

When transforming the level 0 skeleton into a level 1
skeleton by attaching pathlines from points with low
divergence, the level of detail of the skeleton can be
controlled. To show the impact of this step on the level of
detail, we provide a visual comparison of different
divergence thresholds as applied to different synthetic data
sets with varying shapes in Fig. 11. Each row represents one
data set and shows how the centerline and the final cut
geometry vary when different divergence thresholds are
used. The data sets have been synthesized such that they
are continuously changing from spherical to branching
structures. From left to right, a value for m and the
divergence percentage have been set to (m =6,45%),
(m =6,55%), (m=06,60%), and (m = 10,45%). As it can
be seen, the difference becomes increasingly visible with
more branching structures, though the thresholds need to
be adapted to the data set. While for instance (m = 6,45%)
is appropriate for sphere-like and branching structures,
intermediate structures may require a different threshold.
However, since the thresholds can be set interactively and
direct visual feedback is provided, the user can choose the
values to be optimal for the specific case.

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

r 4 7

i I 7]
/ / /
&,}?ﬁ} Q%% > i, ﬁ\é

y 4 ;§@:¢% J S ﬁ%’“

(4 7

= 3 fﬁs 7 $ Mgy @“
gﬂ% o, %W%W ggxmf» 5&1»*?“ ey

4 7

4
l
d
&
=

Fig. 11. Comparison of different orders m of the force field as well as the
percentage of additional seeds with high divergence (from left to right:
(m = 6,45%), (m = 6,55%), (m = 6,60%), and (m = 10,45%)) and their
influence on the resulting cut geometry for data sets with varying shape
properties. The second value can be controlled interactively to obtain the
desired results.

In Fig. 12, we show color-coded <u,v,w> parametriza-
tions for various data sets used within this paper. While in
some cases as for instance with the head data set, quite
simple skeleton-trees are sufficient, depending on the
structure of the object more complex skeleton-trees might
be needed. In the case with the hand data set, the structural
similarity of the skeleton-tree and the discontinuity in the
<u,v,w> parametrization along the cut can be seen quite
well. However, when dealing with multiple layers of
interest, the structure formed by these layers may vary. In
some cases, the skeleton-tree of the outermost surface may
not entirely lie within the innermost layer of interest. In
these cases, the skeleton can be computed for the innermost
layer of interest instead. To investigate the influence of such
a variation on the results of our algorithm, we have
generated synthetic data sets reflecting extreme cases. The
most difficult scenario would be of course, if the genus of
the nested objects was different. Since our algorithm has not
been developed for those cases, as the cut-geometry
generation does not support circles in the skeleton-tree
(see Section 3.1), we attempted to simulate this scenario as

Fig. 12. Color-coded <u,v,w> parametrizations for various data sets
used within this paper. From left to right (head, tooth, hand), the
structure of the skeleton-tree becomes more complex. The color coding
has been achieved by directly mapping <u, v, w> to <r, g, b>.

1951

Fig. 13. To demonstrate the limitations of our algorithm, we have
applied it to data sets containing nested layers of interest with
increasingly varying shape. From left to right, the difference between
the shapes of the two considered layers increases. As it can be seen,
this results in an increasing distortion. The same color mapping has
been used as in Fig. 12.

close as possible. Therefore, the data we apply our
technique to are formed by an almost closed torus contain-
ing another torus segment (see Fig. 13). Due to the
mentioned limitations of the skeleton matching, we were
not able to entirely close the outer torus. Nevertheless, the
data sequence resembles a topology difference as good as
possible. As it can be seen in Fig. 13, the parametrization
leads to appropriate results for the first few cases, which is
reflected by the fact that the color-coded parametrization
spans over the whole data set. However, when the shape
differs too much, larger areas are homogeneously colored,
which represents similar <u,v,w> parameters. This be-
comes also present when showing the texture application in
the bottom row.

5.2 Distortion Analysis

To be able to compare the quality of surface parametrization
algorithms, several conformity criteria exist. These criteria
usually describe the edge, area as well as angle preservation
of the underlying triangles [61]. As no distortion-free
parametrization is possible for general surfaces [19], this is
also true for volumetric objects. However, since no compar-
able parametrization technique for volumetric data exists,
no measures have been established to quantify the volu-
metric distortion. Measures for evaluating surface parame-
trization algorithms are the result of several years of
research. Therefore, it would be out of the scope of this
paper to build up a full theoretical foundation for evaluating
volumetric parametrizations. Instead, we have transferred

(b)

Fig. 14. The presented approach supports interactive volume annota-
tion. Volumes can be annotated by adding text labels (a), or by drawing
with a paint brush (b).

1952

TABLE 1
Parametrization Comparison of Two Layers of the
Parametrization Shown in Fig. 10

skin brain
our technique 354.433 | 200.178
Floater [15] 302.436 | 175.727
conformal [13] 303.568 | 175.935
barycentric [59] | 307.715 | 179.549
authalic [9] 301.953 | 175.625
LSCM [34] 227.205 | 106.209

The comparison is based on the L? stretch metric [49].

some of the concepts found in the surface parametrization
literature in order to estimate the quality of our parame-
trization. First, to be able to estimate the distribution of
<u,v> coordinates, we have performed a comparison with a
corresponding natural parametrization. Fig. 18 shows a
comparison of the distribution for the hand data set (see
Fig. 8) with the distribution for the most similar naturally
parametrizable object, a cylinder. For a discrete set of w
coordinates over the whole parameter range [0,1], we plot
the change of the <u,v> coordinates § = ‘L“;::;ﬁf‘ , where uv;
describes the <u, v> coordinate values at position p;, and p;
is adjacent to p;,. As Fig. 18 shows, our parametrization
achieves a mean value and standard deviation comparable
to the natural parametrization, which can be interpreted as
an indicator for a similar distortion. Although in both cases
the standard deviation increases significantly toward the
center of the objects, it should be noted that this affects only
a very limited fraction of all parametrized voxels. In Fig. 18b,
we have emphasized this fraction with the gray rectangle, it
lies below 3.8 percent of all voxels. We believe that the slight
upslope and downslope toward w = 0 and w = 1 in Fig. 18b
results from the larger outer surface to skeleton ratio of the
hand data set.

To get further insights, we have applied the stretch metric
proposed by Sander et al. [49] and compared the achieved
results with state-of-the-art surface parametrization techni-
ques. Sander et al. introduce the L? surface stretch metric fora
mesh M as L2(M) = /S0 (LT AT/ Sy A(T),
where T; is a triangle of M, A'(T;) is the surface area of the
triangle 7;, and L?(T;) corresponds to the root-mean-square
stretch over all directions.

To be able to apply this metric, we have extracted two
isosurfaces from the volumetric data set shown in Fig. 10. To
evaluate our technique, we have read back the <u,v>
coordinates for each vertex of the isosurface from the
parametrization volume, while we used the CGAL library
to generate the other parametrizations. Table 1 shows the
results which we have achieved for our parametrization as
well as for five state-of-the-art surface parametrization
algorithms. The table shows that the achieved stretch
behavior is comparable to that of the state-of-the-art
techniques, although slightly more stretch is involved.
While this is partly due to the different parametrization
technique, it is also due to the fact that we had to read back
the <u,v> coordinates from our parametrization volume.
Thus, interpolation introduces additional stretch, since the
vertices do not lie directly at grid locations. However, when
visually comparing our technique to state-of-the-art surface

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18,

NO. 11, NOVEMBER 2012

(a) (b) (©)

Fig. 15. By using our algorithm, meaningful <u, v> parametrizations can
be achieved also for surfaces not selected as boundary features. In (a),
a parametrized boundary feature is shown, while in (b) and (c) we show
the resulting <u,v> parametrization for internal boundaries not
considered during the parametrization.

parametrization algorithms similar stretch behavior is
achieved. As seen in Fig. 16, when applying a checkerboard
texture, independent of the used parametrization method a
similar variation in checker size is visible. However, only our
parametrization method allows us to apply a single model
which supports an easy derivation of parametrizations for
layers not considered before the parametrization.

When computing the <u,v> parametrizations by more
sophisticated approaches, which is definitely possible, it is
still necessary to derive meaningful w coordinates. While
there have been some efforts undertaken into this direction
[37], a synchronized consideration of multiple <u,v>
mappings was not possible, yet. This synchronized con-
sideration is the main benefit of a global volume parame-
trization, where coherency is desired between several
nested layers. Therefore, we have also taken into account
how the parametrization behaves for the remaining
structures and have analyzed the <u,v> parametrization
of different surfaces within the volume, which are implicitly
extracted through an appropriate transfer function. Fig. 15
shows the comparison of three of these surfaces, as
extracted from the nucleon data set. In this data set, we
have chosen the surface shown in Fig. 15a as boundary
feature during step 3. The images in Figs. 15b and 15¢ show
the results for two other boundaries not taken into account
when computing the parametrization. Even in the pre-
sented cases, where the surface geometry is considerably
different (torus- versus sphere-shaped), meaningful results
can be achieved when applying the checkerboard texture.
By simply interpolating the <u,v> coordinates of adjacent
layers, this would not be possible.

While the previous analyses only allow to draw conclu-
sions regarding the <u,v> mapping, the w coordinate
distribution also requires some inspection. Therefore, we
have compared our approach to the harmonic volumetric
mapping [36] as well as the improved harmonic volumetric
mapping technique [37], which also allow to derive w
coordinates and thus are the most similar approaches. As
described in Section 2, harmonic volumetric mapping is
used to propagate a surface parametrization into the
interior of a polygonal model. One of the differences to
our technique is that no knowledge about the layers of
interest can be incorporated. The effect of this difference
becomes clear in Fig. 17, where different hues are used to
depict the w texture coordinates. Since with our approach
shown in Fig. 17a the brain surface has been incorporated as
layer of interest, textures can be applied to it (see Fig. 10).
This is not possible when using harmonic volumetric
mapping as shown in Fig. 17b.

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING

(a) our technique (b) Floater

(e) authalic

(d) barycentric (f) LSCM

Fig. 16. Comparison of <u,v> parametrizations on an isosurface
derived from our volume parametrization (a), Floater parametrization
[15] (b), conformal mapping [13] (c), barycentric mapping [59] (d),
authalic mapping [9] (e), and least squares conformal mapping [34] (f).

When working with our results, we did not experience
any parameter cracks as discussed by Yoshizawa et al.
[61]. This leads to a smooth texture application, as
indicated by the checkerboard texturing examples pre-
sented throughout this paper.

5.3 Stability Remarks

Finally, we would like to make some stability remarks. We
have investigated all steps of our workflow depicted in
Fig. 4. The first source of potential instability is the skeleton-
tree extraction. However, Cornea et al. have evaluated
different algorithms and were able to show that the
potential-field curve-skeleton algorithm achieves the best
results [6]. This complies with our experience, since we
were able to obtain a meaningful curve-skeleton for all
tested data sets. Once a skeleton-tree had been generated,
we could also always identify a seam-tree with the same
connectivity and thus were able to perform the volumetric
cut. Regarding the stability of step 3 observations from
classical mesh parametrization apply, since the mass-spring

Fig. 17. w coordinate distribution as achieved by our feature-driven
approach (a) and harmonic volumetric mapping [36] (b). The color
coding has been adapted according to [36], i.e., applying a rainbow color
map, where small w are mapped to red and large w are mapped to blue.

1953

o 3B% —r

(a) (b)

Fig. 18. The change é of <u,v> coordinate values along the w axis is
similar, when comparing a natural parametrization (a) with a parame-
trization achieved by using our algorithm (b). As indicated by the gray
rectangle, not only the mean values but more importantly the standard
deviations are comparable for more than 96 percent of the data.

approach could also be replaced by other surface parame-
trization techniques. However, step 4 depends on a mass-
spring system, and in general mass-spring systems might
suffer from instability issues. Since mass-spring systems are
frequently used in other areas, i.e., virtual surgery and cloth
simulation, sophisticated extensions are available to guar-
antee stability [2]. While we did not experience any
instability effects in step 4, one of the existing extensions
could be integrated to deal with this issue.

6 CONCLUSIONS AND FUTURE WORK

We have proposed a novel approach, which allows a unified
2D and 3D texture mapping of volumetric objects. To
achieve this, we have generated a volumetric parametriza-
tion, exploiting the curve-skeleton of volumetric objects as
well as a novel 3D seam generation algorithm. By taking into
account relevant boundary layers within the data set, we are
able to provide a reasonable parametrization for both
volumetric regions as well as material boundaries. This is
the first approach allowing a unified application of 2D and
3D textures. The proposed parametrization algorithm is the
first global volume parametrization concept for arbitrarily
shaped data sets of genus 0. Using this parametrization, we
have shown how interactive volume visualization can
benefit from texture mapping. We have successfully applied
various texturing techniques, e.g., bump mapping and
displacement mapping, to volumetric objects. Similar to
texture mapping of polygonal objects, this increases the
realism of volume graphics. Furthermore, we have applied
the presented techniques in the area of interactive illustra-
tion by demonstrating the construction of interactive cut-
aways as well as performing volume annotation.

In the future, we would like to further extend the
presented parametrization by exploiting contour trees,
which have already been employed in the field of volume
rendering [55], [60]. Thus, it might be possible to facilitate a
fully automatic extraction of the features of interest.
Furthermore, the generation of seamless textures for a given
parametrization is an interesting area for further research.

ACKNOWLEDGMENTS

This work has been supported by SFB 656 MoBil (project
Z1) funded by the Deutsche Forschungsgemeinschaft
(DFG), by ELLIT, the Strategic Area for ICT research,
funded by the Swedish Government, and by the ViMaL
project (FWF, no. P21695). The presented concepts have
been integrated into the Voreen volume rendering engine
(www.voreen.org).

1954

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 11,

REFERENCES

(1]

(2]

B3]

(4]

(5]

o]

(7]

8]

]

(10]

(1]

[12]

(13]

(14]

[15]

[10]

(7]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(23]

A. Baer, C. Tietjen, R. Bade, and B. Preim, “Hardware-Accelerated
Stippling of Surfaces Derived from Medical Volume Data,” Proc.
IEEE/EG Symp. Visualization, pp. 235-242, 2007.

Y. Bhasin and A. Liu, “Bounds for Damping that Guarantee
Stability in Mass-Spring Systems,” Medicine Meets Virtual Reality
14, pp. 55-60, IOS Press, 2006.

S. Bruckner and M.E. Groller, “Style Transfer Functions for
Illustrative Volume Rendering,” Computer Graphics Forum, vol. 26,
no. 3, pp. 715-724, 2007.

K. Biirger,]J. Kriiger, and R. Westermann, “Direct Volume
Editing,” IEEE Trans. Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1388-1395, Nov./Dec. 2008.

M. Burns and A. Finkelstein, “Adaptive Cutaways for Compre-
hensible Rendering of Polygonal Scenes,” ACM Trans. Graphics,
vol. 27, no. 5, pp. 124:1-124:9, 2008.

N.D. Cornea, D. Silver, and P. Min, “Curve-Skeleton Properties,
Applications, and Algorithms,” IEEE Trans. Visualization and
Computer Graphics, vol. 13, no. 3, pp. 530-548, May/June 2007.
N.D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian,
“Computing Hierarchical Curve-Skeletons of 3D Objects,” Visual
Computer, vol. 21, no. 11, pp. 945-955, 2005.

B. Cutler, J. Dorsey, L. McMillan, M. Miiller, and R. Jagnow, “A
Procedural Approach to Authoring Solid Models,” Proc. ACM
SIGGRAPH, pp. 302-311, 2002.

M. Desbrun, M. Meyer, and P. Alliez, “Intrinsic Parameterizations
of Surface Meshes,” Computer Graphics Forum, vol. 21, no. 3,
pp- 209-218, 2002.

F. Dong and G. Clapworthy, “Volumetric Texture Synthesis for
Non-Photorealistic Volume Rendering of Medical Data,” Visual
Computer, vol. 21, no. 7, pp- 463-473, 2005.

Y. Dong, S. Lefebvre, X. Tong, and G. Drettakis, “Lazy Solid
Texture Synthesis,” Computer Graphics Forum, vol. 27, no. 4,
pp- 1165-1174, 2008.

C. Donner and H.W. Jensen, “Light Diffusion in Multi-Layered
Translucent Materials,” Proc. ACM SIGGRAPH, pp. 1032-1039,
2005.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W.
Stuetzle, “Multiresolution Analysis of Arbitrary Meshes,” Proc.
ACM SIGGRAPH, pp. 173-182, 1995.

M.S. Floater and K. Hormann, “Surface Parameterization: A
Tutorial and Survey,” Advances in Multiresolution for Geometric
Modelling Mathematics and Visualization, pp. 157-186, Springer,
2005.

M.S. Floater, G. Kos, and M. Reimers, “Mean Value Coordinates in
3D,” Computer Aided Geometric Design, vol. 22, pp. 623-631, 2005.
P. Hanrahan and W. Krueger, “Reflection from Layered Surfaces
due to Subsurface Scattering,” Proc. ACM SIGGRAPH, pp. 165-174,
1993.

X. Hao, T. Baby, and A. Varshney, “Interactive Subsurface
Scattering for Translucent Meshes,” Proc. ACM Symp. Interactive
3D Graphics (13D), pp. 75-82, 2003.

The Guild Handbook of Scientific Illustration, E.R.S. Hodges, ed.,
second ed. John Wiley & Sons, 2003.

K. Hormann, K. Polthier, and A. Sheffer, “Mesh Parameterization:
Theory and Practice,” Proc. ACM SIGGRAPH Asia Courses, 2008.
V. Interrante, H. Fuchs, and S.M. Pizer, “Conveying the 3D Shape
of Smoothly Curving Transparent Surfaces via Texture,” IEEE
Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 98-117,
Apr.-June 1997.

H.W. Jensen, S.R. Marschner, M. Levoy, and P. Hanrahan, “A
Practical Model for Subsurface Light Transport,” Proc. ACM
SIGGRAPH, pp. 511-518, 2001.

T. Ju, S. Schaefer, and J. Warren, “Mean Value Coordinates for
Closed Triangular Meshes,” Proc. ACM SIGGRAPH, pp. 561-566,
2005.

I. Kabul, D. Merck, J. Rosenman, and S.M. Pizer, “Model-Based
Solid Texture Synthesis for Anatomic Volume Illustration,” Proc.
EG Workshop Visual Computing for Biology and Medicine, pp. 133-
140, 2010.

S. Kim, H. Hagh-Shenas, and V. Interrante, “Conveying Three-
Dimensional Shape with Texture,” Proc. ACM Symp. Applied
Perception in Graphics and Visualization (APGV), pp. 119-122, 2004.
G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of
Transfer Functions for Direct Volume Rendering,” Proc. IEEE
Symp. Vol. Visualization, pp. 79-86, 1998.

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(30]

(371

(38]

(39]

(40]

[41]

[42]

[43]

(44]

[43]

[40]
(47]

(48]

(49]

[50]

[51]

NOVEMBER 2012

J. Kniss, G. Kindlmann, and C. Hansen, “Interactive Volume
Rendering Using Multi-Dimensional Transfer Functions and
Direct Manipulation Widgets,” Proc. IEEE Visualization (VIS '01),
pp- 255-262, 2001.

J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson, “A
Model for Volume Lighting and Modeling,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 9, no. 2, pp. 150-162, Apr.-June 2003.
J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-T.
Wong, “Solid Texture Synthesis from 2D Exemplars,” Proc. ACM
Trans. Graphics, vol. 26, no. 3, pp. 2:1-2:9, 2007.

A. Kriiger, C. Kubisch, G. Straufs, and B. Preim, “Sinus
Endoscopy—Application of Advanced GPU Volume Rendering
for Virtual Endoscopy,” IEEE Trans. Visualization and Computer
Graphics, vol. 14, no. 6, pp. 1491-1498, Nov./Dec. 2008.

Y. Kurzion, T. Moéller, and R. Yagel, “Size Preserving Pattern
Mapping,” Proc. IEEE Visualization, pp. 367-373, 1998.

Y. Lee, H. Kim, and S. Lee, “Mesh Parameterization with a Virtual
Boundary,” Computers & Graphics, vol. 26, no. 5, pp. 677-686, 2002.
S. Lefebvre and C. Dachsbacher, “Tiletrees,” Proc. ACM Symp.
Interactive 3D Graphics and Games (I3D), pp. 25-31, 2007.

M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer
Graphics and Applications, vol. 8, no. 3, pp. 29-37, May 1988.

B. Lévy, S. Petitjean, N. Ray, and]. Maillot, “Least Squares
Conformal Maps for Automatic Texture Atlas Generation,” Proc.
ACM SIGGRAPH, pp. 173-182, 2002.

X. Li, X. Guo, H. Wang, X. Gu, and H. Qin, “Meshless Harmonic
Volumetric Mapping Using Fundamental Solution Methods,”
IEEE Trans. Automation Science and Eng., vol. 6, no. 3, pp. 409-
422, July 2009.

X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin, “Harmonic
Volumetric Mapping for Solid Modeling Applications,” Proc.
ACM Symp. Solid and Physical Modeling (SPM), pp. 109-120, 2007.
X. Li, H. Xu, S. Wan, Z. Yin, and W. Yu, “Feature-Aligned
Harmonic Volumetric Mapping Using Mfs,” SMI "10: Proc. Int’l
Conf. Shape Modeling, 2010.

A. Lu, D.S. Ebert, W. Qiao, M. Kraus, and B. Mora, “Volume
Mustration Using Wang Cubes,” ACM Trans. Graphics, vol. 26,
no. 2, article 11, 2007.

F. Manke and B.C. Wuensche, “Texture-Enhanced Direct Volume
Rendering,” Proc. Int'l Conf. Computer Graphics Theory and
Applications (GRAPP), pp. 185-190, 2009.

T. Martin, E. Cohen, and M. Kirby, “Volumetric Parameterization
and Trivariate b-Spline Fitting Using Harmonic Functions,” SPM
"08: Proc. ACM Symp. Solid and Physical Modeling, pp. 269-280, 2008.
C.M. Miller and M.W. Jones, “Texturing and Hypertexturing of
Volumetric Objects,” Proc. IEEE/EG Symp. Vol. Graphics, pp. 117-
125, 2005.

S. Owada, F. Nielsen, M. Okabe, and T. Igarashi, “Volumetric
Mustration: Designing 3D Models with Internal Textures,” Proc.
ACM SIGGRAPH, pp. 322-328, 2004.

D. Patel, C. Giertsen, J. Thurmond, J. Gjelberg, and E. Groller,
“The Seismic Analyzer: Interpreting and Illustrating 2D Seismic
Data,” IEEE Trans. Visualization and Computer Graphics, vol. 14,
no. 6, pp. 1571-1578, Nov./Dec. 2008.

D. Patel, C. Giertsen, J. Thurmond, and E. Groller, “Illustrative
Rendering of Seismic Data,” Proc. Vision, Modeling, and Visualiza-
tion, pp. 13-22, 2007.

N. Pietroni, M.A. Otaduy, B. Bickel, F. Ganovelli, and M. Gross,
“Texturing Internal Surfaces from a Few Cross Sections,”
Computer Graphics Forum, vol. 26, no. 3, pp. 637-644, 2007.

S.D. Porumbescu, B. Budge, L. Feng, and K.I. Joy, “Shell Maps,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 626-633, 2005.

E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Real-Time
Hatching,” Proc. ACM SIGGRAPH, pp. 581-586, 2001.

T. Ropinski, J.-S. Prafini, J. Roters, and K. Hinrichs, “Internal
Labels as Shape Cues for Medical Illustration,” Proc. Vision,
Modeling, and Visualization, pp. 203-212, 2007.

P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, “Texture
Mapping Progressive Meshes,” Proc. ACM SIGGRAPH, pp. 1032-
1039, 2005.

R. Satherley and M.W. Jones, “Hypertexturing Complex Volume
Objects,” Visual Computer, vol. 18, no. 4, pp. 226-235, 2002.

M. Schott, V. Pegoraro, C. Hansen, K. Boulanger, and K.
Bouatouch, “A Directional Occlusion Shading Model for Inter-
active Direct Volume Rendering,” Computer Graphics Forum, vol. 28,
no. 3, pp. 855-862, 2009.

ROPINSKI ET AL.: UNIFIED BOUNDARY-AWARE TEXTURING FOR INTERACTIVE VOLUME RENDERING 1955

(52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

A. Sheffer and]. Hart, “Seamster: Inconspicuous Low-Distortion
Texture Seam Layout,” Proc. IEEE Conf. Visualization, pp. 291-298,
2002.

P. Shen and P. Willis, “Texture for Volume Character Animation,”
Proc. ACM Int’l Conf. Computer Graphics and Interactive Techniques
in Australasia and South East Asia (GRAPHITE), pp. 255-264, 2005.
P. Shen and P. Willis, “Texture Mapping Volume Objects,” Proc.
Int’l Conf. Vision, Video, and Graphics, pp. 45-52, 2005.

S. Takahashi, I. Fujishiro, and Y. Takeshima, “Interval Volume
Decomposer: A Topological Approach to Volume Traversal,” Proc.
SPIE Conf. Visualization and Data Analysis, pp. 103-114, 2005.

K. Takayama and T. Igarashi, “Layered Solid Texture Synthesis
from a Single 2D Exemplar,” Proc. ACM SIGGRAPH Posters, 2009.
K. Takayama, M. Okabe, T. Jjiri, and T. Igarashi, “Lapped Solid
Textures: Filling a Model with Anisotropic Textures,” ACM Trans.
Graphics, vol. 27, no. 3, pp. 1-9, 2008.

S.M.F. Treavett and M. Chen, “Pen-and-Ink Rendering in Volume
Visualisation,” Proc. IEEE Visualization, pp. 203-210, 2000.

W.T. Tutte, “How to Draw a Graph,” London Math. Soc., vol. 13,
no. 52, pp. 743-768, 1963.

G.H. Weber, S.E. Dillard, H. Carr, V. Pascucci, and B. Hamann,
“Topology-Controlled Volume Rendering,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 13, no. 2, pp. 330-341, Mar.-Apr.
2007.

S. Yoshizawa, A. Belyaev, and H.-P. Seidel, “A Fast and Simple
Stretch-Minimizing Mesh Parameterization,” SMI '04: Proc. Int’l
Conf. Shape Modeling, pp. 200-208, 2004.

K. Zhou, X. Huang, X. Wang, Y. Tong, M. Desbrun, B. Guo, and
H.-Y. Shum, “Mesh Quilting for Geometric Texture Synthesis,”
ACM Trans. Graphics, vol. 25, no. 3, pp. 690-697, 2006.

M. Zwicker, M. Pauly, O. Knoll, and M. Gross, “Pointshop 3D: An
Interactive System for Point-Based Surface Editing,” Proc. ACM
SIGGRAPH, pp. 322-329, 2002.

Timo Ropinski is a professor in interactive
visualization at Linképing University, Sweden,
where he is heading the scientific visualization
group. His research is focused on volume
rendering, biomedical visualization and interac-
tive visual decision making. He is a member of
the winning team of the IEEE Visualization
contest 2010, initiator of the Voreen software

. } project (www.voreen.org), and he has held
R tutorials at Eurographics, ACM SIGGRAPH,

and IEEE Visualization. Furthermore, he is a member of the IEEE,
IEEE Computer Society, ACM, and Eurographics.

Stefan Diepenbrock received the master's
degree in 2009 from the University of
Munster. He is currently working toward the
PhD degree at the University of Munsters
Visualization and Computer Graphics Re-
search Group. His research interest include
volume rendering and medical visualization
with a special focus on interactive techniques.
He is a member of the winning team of the
IEEE Visualization contest 2010, and he is
one of the core developers of the Voreen project.

Stefan Bruckner received the PhD degree in
2008 from the Vienna University of Technology
(VUT). He is currently an assistant professor at
the Institute of Computer Graphics and Algo-
rithms at VUT. In 2009/2010, he spent one year
as a visiting postdoctoral research fellow at
Simon Fraser University, Canada. His research
interests include biomedical and illustrative
visualization, volume rendering, and visual data
exploration. In 2011, he was awarded the
Eurographlcs Young Researcher Award. He is a member of the IEEE
Computer Society, ACM SIGGRAPH, and Eurographics.

Klaus Hinrichs received the PhD degree in
computer science from the Swiss Federal In-
stitute of Technology (ETH) in Zurich in 1985. He
is a full professor of computer science and head
of the visualization and computer graphics
research group at the University of Munster,
Germany. His research interests include visuali-
zation, computer graphics, algorithms and data
structures for geometric computation, and spatial
databases. He is a member of the |IEEE.

Eduard Groller is associate professor at the
Vienna University of Technology, Austria, and
adjunct professor of computer science at the
University of Bergen, Norway. His research
interests (http://www.cg.tuwien.ac.at/research/
vis/) include computer graphics, flow visualiza-
tion, volume visualization, medical visualization,
and information visualization. He coauthored
more than 190 scientific publications and acted
‘ - ; as a cochair, IPC member, and reviewer for
numerous conferences and journals in the field. He is currently a
cochief editor of the Computer Graphics Forum journal. He is a member
of the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

