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Fig. 1. The concept of iterative evaluation-analysis-redesign of a visualization technique is shown on a stream surface dataset.
Analysis of the perceived surface slant while using a chosen shading model – the Lambertian shading model [9] on the left leads to
a statistical model of the perceived error plotted in the middle. The statistical model of the error is then taken into account in the new
shading model which aims to compensate for it, shown on the right.

Abstract— The process of surface perception is complex and based on several influencing factors, e.g., shading, silhouettes, oc-
cluding contours, and top down cognition. The accuracy of surface perception can be measured and the influencing factors can
be modified in order to decrease the error in perception. This paper presents a novel concept of how a perceptual evaluation of a
visualization technique can contribute to its redesign with the aim of improving the match between the distal and the proximal stim-
ulus. During analysis of data from previous perceptual studies, we observed that the slant of 3D surfaces visualized on 2D screens
is systematically underestimated. The visible trends in the error allowed us to create a statistical model of the perceived surface
slant. Based on this statistical model we obtained from user experiments, we derived a new shading model that uses adjusted sur-
face normals and aims to reduce the error in slant perception. The result is a shape-enhancement of visualization which is driven
by an experimentally-founded statistical model. To assess the efficiency of the statistical shading model, we repeated the evalua-
tion experiment and confirmed that the error in perception was decreased. Results of both user experiments are publicly-available
datasets.

Index Terms—Shading, perception, evaluation, surface slant, statistical analysis.

1 INTRODUCTION

The major effort of computer graphics initially focused on the produc-
tion of synthetic scenes that are indistinguishable from a photograph.
From the visualization perspective, the user-centric aspect of render-
ing is more important than the physics-centric, and the focus is put on
3D scene understanding rather than on a physically-correct represen-
tation of a scene.

From the user-centric aspect, 3D shape and depth cues are impor-
tant. Shape perception is mostly based on local features of surfaces,
i.e., patterns of reflected light that are based on the surface orientation
and the illumination direction, and texture deformation that is based on
local curvature. Depth cues allow for correct depth ordering of struc-
tures and depth judgment. To resolve these cues, the visual system
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uses not only stereopsis, perspective and kinetic cues but also our un-
derstanding of occlusion, shadows and haze. The judgment of depth is
based on the global features of the scene while the judgment of shape
considers mostly the local properties of the objects in the scene.

The user-centric aspect of rendering has been represented by styles
that mimic techniques used in the craft of illustration. These tech-
niques claim to be more efficient in terms of visual processing than a
physics-centric representation of the same scene [12, 32]. Some ren-
dering styles abstract from the realistic scene appearance by exagger-
ating the Lambertian shading gradient transitions [29]. Even though
this approach has initially mimicked artwork, an increasing number
of techniques are now motivated by new knowledge from vision re-
search [37, 38]. Although perceptual evaluations of rendering tech-
niques have been conducted in many recent reports, they have only
rarely triggered a re-design of the original technique with the goal of
perceptual improvement [13, 27].

The shading models mentioned above have an imperative charac-
ter – an algorithm dictates the visual appearance that is displayed to
the viewer. The viewer then extracts relevant information such as sur-
face of objects, depth, and distances between them. The algorithm is
independent of how accurately the intended information is conveyed.
However, in contrast to the previous shading models, we present a
shading model that starts as a classical imperative algorithm, but is
then declaratively modified to improve the surface perception. This
can be achieved through several iterations.

In this paper we first analyze the error of perceived surface orienta-



tions from shading, utilizing a common shading model (Figure 1 left).
We perform statistical analysis on the data collected from a perceptual
study that reveals systematic errors of human visual shape perception.
This error, i.e., angular deviation between the ground-truth and per-
ceived surface normals, is color coded and mapped to the stream sur-
face in Figure 1 middle. From the statistical error description, we
define a correction scheme. Next, we re-render the scene with a cor-
rected rendering approach (Figure 1 right) and conduct another user
study to analyze the new error trend. We propose a new concept of
iterative modifications that allow the shading model to converge to a
model with accurate perception where the distal and proximal stimulus
match.

The major contributions of this paper are:

• a new concept: our work represents a next step in user-centric
shading for scientific visualization that upgrades an imperative
visualization algorithm with a declarative optimization, moti-
vated by increasing the accuracy of perception,

• new knowledge: through perceptual evaluation we obtained new
knowledge about error-distribution in shape perception accord-
ing to the scene characteristics,

• a new shading model: we obtain a new shading model from the
iterative evaluation and improvement concept that enhances sur-
face shape perception,

• a publicly-available dataset which includes results of our experi-
ment as well as the look-up map stored as a texture.

Previous approaches, even if they evaluated some perceptual error,
did not use it for any improvement scheme, which is a part of our
declarative concept. Our work presents a missing link in the visual-
ization pipeline shown in Figure 2 in red which opens a new field of
possibilities.

2 PREVIOUS WORK

For two millenia, scientists have been trying to elucidate the mech-
anisms in the human visual system (HVS) that are responsible for
3D shape perception. This topic remains an active area of multiple
research disciplines such as psychology, neuroscience, computer sci-
ence, mathematics, and physics. From the physics point of view, the
sensory information is limited to patterns of light and is confined to
their 2D projection on the retina. Using this sensory input, the HVS
extracts information about the shape and the arrangement of objects
with respect to their environment [34].

2.1 Perception of surfaces

The shape of an object is defined by the properties of its contour and its
surface which does not change under similarity transformations. De-
spite the fact that the 2D retinal projection of the object depends also
on its orientation relative to the observer, the percept of the shape tends
to remain constant. This phenomenon is called shape constancy [28].

The HVS constructs a mental image of an object from a combina-
tion of top-down cognition and sensory input. At the lower sensory
level, this includes the intensity variation of shading, texture gradi-
ents, edges and vertices. At the higher cognitive level, it includes
salient features such as occlusion contours (object-background separa-
tion) [34]. Cole et al. showed that certain shape cues can be extracted
solely from important lines, even though shape cues from shaded im-
ages are more accurate [6]. However, shading alone cannot yield the
depth structure of a scene correctly [7]. The depth cues from shad-
ing are poor when compared to the retinal disparity (stereopsis) and
kinetic cues [14].

Shading is specified by multiple parameters, i.e., the local surface
reflectance properties, the angles between the surface normal and the
direction of the light sources and the viewer. The judgment of shape
is therefore a result of observers’ assumptions regarding several pa-
rameters. The assumptions can vary between observers. Belhumeur
et al. [2] introduced the term bas-relief ambiguity; when an unknown
object with Lambertian reflectance is viewed orthographically, there
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Fig. 2. The concept of iterative evaluation and design of a rendering
technique. The original visualization pipeline contains no cycles and
ends at the stage when the image is perceived by the user. The new
concept contains a loop; The accuracy of perception is evaluated and
the original rendering method is modified based on the measured error
in perception.

is an implicit ambiguity in determining its 3D shape. For exam-
ple, in a bumpy scene casting shadows, it is not possible to distin-
guish whether the light direction is more slanted or if the bumps in
the scene are deeper. The object’s visible surface f (x,y) is indistin-
guishable from a generalized bas-relief transformation of the object
f (x,y) = λ f (x,y)+µx+νy.

There is an evidence that the pictorial relief, i.e., the imaginary re-
lief extracted from a 2D projection of a 3D scene, such as a rendering
or a photograph, is systematically distorted relative to the actual struc-
ture of the observed scene [7, 34]. The variations among observers’
judgments were revealed to be complex and thus could not be ac-
counted for by a simple depth scaling transformation. However, subse-
quent analyses showed that almost all of the variance could be roughly
accounted for by an affine shearing transformation in depth [34].

Mamassian and Kersten investigated the perception of local surface
orientation on a simple smooth object, under various illumination con-
ditions [21]. They analyzed perceived local orientations for several
points on the surface and quantified the slant and tilt of the local tan-
gent plane. By slant, we understand the angle between the surface
normal and the view vector and, by tilt, the azimuth direction of the
surface normal in the eye space [6]. This definition is illustrated in
Figure 3. Mamassian and Kersten observed that slant was underesti-
mated for slants larger than 20◦ and overestimated under this value.
This systematic error in slant perception results from the lack of visual
reference and indicates that relative slant is a more robust cue [11].
Because of the absence of binocular disparity [19] and environmental
cues, such as the presence of a frame [36], the brain receives the infor-
mation that the rendering is, in fact, flat. This information is in conflict
with cues from shading and therefore, the mental image extracted from
the rendering is flattened in a systematic fashion.

To resolve these ambiguities, the HVS tends to assume a cer-
tain light direction [24]. Johnston and Passmore suggested that the
slant discrimination declined with rotation of the light direction vec-
tor towards the viewpoint [14]. Follow-up studies indicated that this
direction is from above the viewer and 12◦ left from the vertical
axis [33, 20]. O’Shea and colleagues studied the assumed slant of the
light direction on purely diffuse surfaces with no shadows [26]. They
demonstrated that the surface slants were most accurate when the light
source was 20◦−30◦ above the viewer.

Mingolla and Todd [24] concluded that the HVS initially assumed
Lambertian reflection on all surfaces. Furthermore, they suggested
that the surface orientation was detected locally, and global shape was
determined by smoothing over local features. Fleming et al. stud-
ied mirror-material surfaces, i.e., surfaces riddled with specular high-
lights that contained no shading [8]. They concluded that the HVS
can somehow exploit specular reflections to recover three-dimensional
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Fig. 3. The slant angle θ is defined as the angle between the surface
normal N at a point P and the viewing vector V. τ denotes the tangent
plane at P and U the up vector of the viewer’s coordinate-system. σ is
a plane such that P ∈ σ and V⊥σ and ρ denotes the plane defined by
V and N. The tilt angle φ is then defined as the angle in the left-handed
system between U and A = ρ ∩σ in the halfplane (ρ,V) defined by N.

shape. The HVS treats specularities somewhat like textures, by using
the systematic patterns of distortion across the image of a specular sur-
face to recover 3D shape. Other studies also provide evidence about
the influence of specular highlight on the perception of surfaces and
demonstrate that the shininess of surfaces enhances the perception of
curvature [25, 35].

Illustrators tended to exaggerate salient features such as curvature
or important lines. Their methods have been mimicked by the graphics
community. Exaggerated shading [29], geometry manipulation [15],
light warping [37] and radiosity scaling [38] are good representatives.
These techniques, however, were not derived from prior knowledge of
a measured perceptual error. In contrast to prior work, we are pre-
senting a novel concept where the visualization technique is based on
a statistical model of the error in human perception. In particular,
we target underestimation of surface slant of diffuse shaded surfaces.
However, our concept can be applied to any self-chosen visualization
technique that yields a measurable systematic error in perception.

2.2 Psychophysical experiments

The first experiments investigating human perception of 3D shapes
were performed in the 19th century. The available information about
these experiments is very poor, and therefore one should interpret their
results with caution [34]. In the experiment of Mingolla and Todd [24],
observers judged slants and tilts of numerous regions within shaded
images of ellipsoid surfaces under varying illumination direction. The
ellipses also had various shape, orientation and surface reflectance.

The works of Koenderink et al. [17] and Todd [34] describe the
three most frequently employed experiments for probing perceived
surfaces.

Relative depth probe task: Observers are exposed to a shaded
surface. Two points on the surface are marked with dots of different
colors. The observer is asked to choose which point he or she perceives
closer in depth by pressing a dedicated key. Variations of this tasks
were employed recently to assess visualization quality [18, 32].

Gauge-figure task: This task, designed by Koenderink et
al. [16], allows one to determine the perceived orientation of a surface.

(a) (b)

Fig. 4. Example of (a) a bad placement and (b) a good orientation of a
gauge figure (red-yellow Tissot’s indicatrix) over a shaded surface.

It uses a Tissot’s indicatrix, i.e., an ellipse of distortion – a mathemati-
cal tool that characterizes distortions from a map projection. When the
indicatrix is aligned with a surface that is perpendicular to the viewing
direction, it appears as a circle. When the surface is slanted from the
viewing direction, it is seen as an ellipse. A gauge-figure consists of a
Tissot’s indicatrix and a stick perpendicular to the plane defined by the
indicatrix. On each trial, the observers’ task is to align the indicatrix
with the perceived shaded surface. At the same time, the stick should
be aligned with the surface normal at the point where it intersects the
surface. In Figure 4, we illustrate an example of a bad and a good ori-
entation of a gauge figure. This task has been employed for example
by O’Shea et al. to measure the accuracy of surface perception under
varying slant of the illumination direction [26]. Šoltészová et al. uti-
lized this test to compare the surface perception for different styles of
shadow rendering [32].

Cole et al. conducted a large-scale gauge-figure experiment, where
they compared the accuracy of surface perception from automatic and
man-made line-drawing representations of objects compared to their
fully-shaded renderings [6]. Their experiment is the most relevant for
our work. Their study was performed on 14 different images, both or-
ganic and man made. On each object, they randomly selected 90, 180
or 210 positions. In all, they collected 275K solved gauge-figure trials
accomplished by a total of 560 people and published this large dataset
including user responses, datasets, scene settings and documentation.

Depth-profile adjustment mask: On each trial, observers are
exposed to a shaded surface overlaid by aligned and equally spaced
dots. In a second separate window, these dots are presented over a
blank background and the observer is asked to adjust them so that they
fit the perceived height profile defined by the dots in the first window.

Summary: Koenderink and colleagues compared these three
tasks [17]. Coherent results can be achieved across observers and
tasks. By far, the easiest and the most natural task to perform is the
gauge-figure task. The judgment is instant, with no obvious reasoning;
observers do not have to deduce their answers from their mental im-
age. The pairwise depth-comparison task is also easy, but feels more
boring and less natural. Observers have to abstract their answer from
what they have perceived. It involves simple overt reasoning. The
cross-section reproduction tasks feel not so much unnatural as indirect.
With respect to reliability, the gauge-figure task is the most reliable.

3 PERCEPTUAL STATISTICS

In the original visualization pipeline, the data pass through the follow-
ing stages until they reach the observer. After the acquisition stage,
the data can be analyzed, filtered or processed in the data enhance-
ment stage and later mapped to visual properties. Finally, the data are
rendered and presented to the user. In some cases, the effect on per-
ception is evaluated. Even though this is a step towards the perceptual
aspect of visualization, the link from the evaluation back to the design
of the rendering technique is practically non-existent.

In Figure 2, we show our new concept. We establish a new link that
connects the results of an evaluation of a chosen rendering technique
and the rendering technique itself. Starting from the rendering stage,
the new pipeline now passes the following steps. The rendering is a
distal stimulus which yields some sensory input which is interpreted
by the HVS. This process is labelled perception. Evaluation refers to
processing of the perceived information into the signal which corre-
sponds to the ground truth and the error. Applying statistical methods
to analyze the trends of the error allows us to model this error if it is
systematic. This new knowledge is then sent to the rendering stage
again. The rendering algorithm now becomes aware of the perceptual
error it causes and can account for it.

If we see the pipeline shown in Figure 2 as a directed graph, the
new link makes the graph cyclic. This allows for the possibility to
loop between the rendering stage, evaluation and improvement. In
this paper, we present how this concept can be used to improve the
perception of surface slant in visualizations viewed on monoscopic
screens, which is systematically underestimated [7, 34].
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Fig. 5. Perceived surface slant as a function of the ground truth slant
extracted from the dataset of Cole et al. [6]. Each dot represents the
median of the entire set of trials at one sampling position. The overall
estimation curve is a polynomial curve that is fitted to the data. The
reference curve x = y indicates a perfectly accurate estimation.

3.1 Analysis of the perceived surface slant

The perception literature reports that the surface slant, as deduced from
monoscopic renderings of 3D objects viewed on a screen, is system-
atically distorted, however there is no model representing this phe-
nomenon [26, 34]. The slant angle is understood as the angle between
the surface normal and the viewing direction. We describe this effect
with a mathematical model that was obtained through the statistical
analysis of user responses. A model derived from statistical analy-
sis of user evaluation has not been available before. It has been only
attempted to model this effect as a parabolic function [26] or to use
a simple shearing transformation in depth [34]. These approxima-
tions are consistent with the general expectation of perception but not
founded on a statistical analysis of results of a perceptual study.

We obtained our model by analyzing users’ responses collected as
a publicly available dataset by Cole and co-workers as described in
Section 2.1. The dataset contained results with fully-shaded and line
drawing conditions. We analyzed only the responses for the fully-
shaded condition. The line-drawing condition was completely ex-
cluded. For each of the 1200 sampling positions, we obtained the
ground truth normal including the slant and the tilt angles and a cor-
responding set of normals estimated by the participants. In addition,
for each sampling position, the authors of the dataset published the
median of the corresponding set of estimates. They aimed to compare
surface perception of 3D object representations on flat screens using
monoscopic vision [6]. The overall dependency of the estimated sur-
face slant θE and the ground truth θG slant is approximated with a
polynomial fitting curve of the 4th degree and is shown in Figure 5.
The overall estimation curve shows the trend of how humans tend to
underestimate the surface slant. We originally computed different fit-
ting curves with various specifications and obtained their goodness of
fit (R2 value) using the curve fitting tool of Matlab [22]. For various
types of fit, we obtained the following R2 values: Fourier fit of 1st de-
gree – R2 = 0.773, Fourier fit of 8th degree – R2 = 0.780, exponential
fit – R2 = 0.774, cubic fit – R2 = 0.773, and for polynomial fits of
4th degree – R2 = 0.775, 5th degree – R2 = 0.775 and 8th degree –
R2 = 0.776. As a trade-off between the complexity of the fit and the
goodness of fit, we chose the polynomial fit of 4th degree.

However, the aggregated scatterplot in Figure 5 does not reveal a
very interesting feature that is hidden in the dataset. We have sepa-
rated the sampling positions into four groups according to the tilt φ

of the ground truth normal: normals pointing upwards or north φ ∈
(315◦,45◦]; right or east φ ∈ (45◦,135◦]; downwards or south φ ∈
(135◦,225◦]; and left or west φ ∈ (225◦,315◦]. We define tilt (con-
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Fig. 6. Approximation of slant perception in four different sectors. The
reference curve indicates a perfectly accurate perception while the sec-
tor estimation curves approximate the perception of slants in their re-
spective sectors. We also plotted the overall estimation curve which
indicates the average perception of slants in all sectors.
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Fig. 7. Functions g(θ ,φ) = θ ∗ and g−1(θ ∗,φ) = θ rendered as color-coded plots. Since f = g−1, the right plot is also the look-up map which allows
to efficiently find the slant angle θ of a normal which is perceived as θ ∗.

sistently with the work of Cole et al.) as the azimuth angle on a com-
pass where the wind directions are N = 0◦, E = 90◦, S = 180◦ and
W = 270◦.

In Figure 6, we visualize the dependencies in each sector as scat-
terplots and fitted curves. The distribution and the sector estimation
curves in the north and the south sector are very different. The slant of
normals pointing north is underestimated less than average – the fitted
curve is above the overall estimation curve. For the normals pointing
south the situation is opposite. These slants are more underestimated
than average – the fitted curve is under the overall estimation curve.
The slant of normals pointing east and west are perceived very close to
the average – the overall estimation curve. This finding is consistent
with the statement of Todd that the underestimation of slant cannot be
compensated by simple scaling in depth but by a shearing transforma-
tion in depth [34].

The crossing points of the sector estimation curves and the refer-
ence curves indicate the thresholds between over and underestimation
of slant. In our results, these thresholds correspond to approximately
15◦ − 25◦ of the ground truth slant with the exception of the south
sector. Mamassian and Kersten [21] expect this threshold to be ap-
proximately 20◦ which is consistent with our finding of 15◦−25◦.

We also considered a similar factorization of samples according to
the maximal curvature (low, middle, high) but we did not find any
remarkable dependencies between the error and curvature.

3.2 The model of surface perception

In order to model the human perception of slant, we compute a 2D
map f (θ∗,φ) = θ which predicts that the slant angle of a surface nor-
mal should be θ so that it is perceived as θ∗. We divide the samples
into bins that represent eight sectors: north, south, east, west, north-
west, north-east, south-west, south-east. To obtain this map, we pro-
ceed as follows. For each sector, we calculate a polynomial fitting
curve of the 4th degree. Four of these sector curves (north, south,
east, west) are plotted in Figure 6. These curves represent a function
gφ (θG) = θE which maps the ground truth slant θG in the sector φ

to the estimated slant θE . For each curve, we set two boundary con-
ditions: the curve must intersect points (0,0) and (90,90) since it is
expected that the estimation of these boundary values is correct. These
boundary conditions also guarantee that all curves start and end with
the same functional value of θE and that the inverse function g−1

φ
is

defined on the whole interval of slant [0◦,90◦]. For g−1
φ

, the following

condition holds: g−1
φ

(θE) = θG. In other words, g−1
φ

predicts how the

slant angle of a surface normal should be so that it is perceived as θE
and therefore f (θ∗,φ) = g−1

φ
(θ∗).

So far, we have defined g−1
φ

for eight values of tilt φ only. In or-
der to fill the missing values in the 2D map, we fit a smooth surface to
the eight g−1

φ
aligned in polar coordinates according to their respective

φ . To fit the surface, we used the surface fitting tool of Matlab [22].
Color-coded height maps of g(θ ,φ) and f (θ∗,φ) = g−1(θ∗,φ) are
shown in Figure 7. The height map f , represented as a texture, allows
for easy look-ups of the functional values of f at runtime. This texture
is publicly-available for download [31]. While this texture is the best
possible representation of our model, sometimes a functional approx-
imation of f (θ∗,φ) might be required. We found that f̃ , which is a
linear interpolation g−1

N=0◦ and g−1
S=180◦ , yields very similar, however

not identical, results. With g−1
N and g−1

S as polynomials of 4th degree
with coefficients (5.77e-6, -1.19e-3, 7.3e-3, 0.11, 0.0) and (4.21e-6,
-6.73e-4, 1.88e-2, 1.69, 0.0) respectively, we define f̃ as follows:

f̃ (θ ,φ) =| φ −180◦

180◦
| g−1

N (θ)+(1− | φ −180◦

180◦
|)g−1

S (θ) (1)

Ideally, the statistical model should be defined for each illumination
algorithm individually because different algorithms might yield differ-
ent response curves regarding the surface slant. We have obtained this
model from renderings of objects from purely diffuse and opaque ma-
terials. The mathematical model could be different for specular and
shiny or semi-transparent surfaces.

4 THE STATISTICAL SHADING MODEL

The shading information is one part of the sensory input which the
human visual system uses for constructing its mental image of the 3D
world. Indirectly, we are able to extract shape and deduce the sur-
face normals from our mental image even though we are seeing only
a 2D representation of an object, e.g., a photograph or a rendering on
a computer screen. We have now analyzed and concluded that the sur-
face normal we perceive is distorted from the ground truth normal of
the depicted scene, and we have provided a mathematical model of this
distortion. The difference between the ground truth and the estimated
surface slant is mapped to a 3D model and plotted in Figure 1. Illumi-
nation algorithms used in computer graphics were until now unaware
of this perceptual model. With this new input information, we propose
a concept of how an illumination model relying on surface normals can
be corrected so that the mental image is closer to the depicted scene.
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Fig. 8. The Lambertian shading using original normals (A) versus statistical shading model (B) shown on various datasets: I – cervical and II –
pulley [6], III – a CT scan of a mummy, IV and V are geometry representations of laser scans of a bunny and an angel, and VI – a stream surface.

A rendering of a given scene geometry (distal stimulus) using
normal-based shading, evokes its corresponding mental image (proxi-
mal stimulus) which can yield different perceived normals as those of
the original geometry. Our goal is to match the distal and the prox-
imal stimulus, i.e., to specify a shading model where the normals of
the mental image and the ground truth normals match. We achieve
this by manipulating the normals that are input into our shading model
using a perceptual model corresponding to the original shading algo-
rithm. In Section 3.2, we described how to obtain such a model and
its approximating function f (θ∗,φ) = θ . In our approach, we repre-
sented this function as a 2D look-up table stored as a texture where
each pixel with coordinates (θ∗,φ ) stores the value of f (θ∗,φ) = θ .
A color-coded representation of the look-up map and the coordinate
system are shown in Figure 7.

A surface normal n = (x,y,z) has slant θ and tilt φ given in projec-
tive space but is perceived to have wrong slant θ ′. We shade the point
with a modified normal n′ = (x′,y′,z′) which has slant θ ′′ = f (θ ,φ)
and the same tilt φ . Notice that θ = g(θ ′′,φ), i.e., θ ′′ should be ac-
cording to our theory perceived as θ . The components of the modified
normal n′ are then defined by the following equations:

x′ = sin(θ ′′)√
x2+y2

x y′ = sin(θ ′′)√
x2+y2

y z′ = cos(θ ′′)
(2)

All illumination computation that follows is then executed with the
new normalized surface normal n′

||n′|| .
The concept of adjusting surface normals according to a given per-

ceptual model is applicable to any illumination computation scheme
that is based on surface normals or gradients. To demonstrate the ef-
fect of our approach, we applied our model to Lambertian shading and
used purely diffuse-reflective materials. In all settings, the light source
conforms to the assumed light direction [26]. Figure 1 shows a stream
surface before (left-most) and after our modification (right-most). Fig-
ure 8 contains more examples. A-images show the original shading
with no modification of surface normals versus B-images showing our
statistical shading. We included both datasets defined as volumes as
well as geometry to show the general applicability of our technique.
Objects I (cervical) and II (pulley) were also used by Cole et al. in
their user experiment. Dataset III is a CT scan of a mummy visualized
using gradient-based shading. Datasets IV and V were reconstructed
from laser scans of a bunny and an angel. Dataset V is a geometry
representation of a stream surface. All surfaces were shaded using
Lambertian shading without (A) or with (B) modification of surface
normals.

On first reflection, it might seem that similar results could be ob-
tained by simply enhancing the contrast of the image [1] as in the jux-
taposed images in Figure 9. Our method changes the intensities based
on the surface normals, and therefore original intensities are mapped to
a range of intensities. In contrast, global contrast enhancement maps
the intensities to a single value. This shows that a global contrast-
enhancement is a bijective function while the statistical shading is not.
This effect is plotted in Figure 9. The standard deviation σ of global
contrast enhancement is always zero which is not the case for statisti-
cal shading. Therefore, the same results cannot be obtained by simply
enhancing the contrast of the image.
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Fig. 9. Comparison of a contrast-enhanced image and a statistically-
shaded image. We plotted the mean mapped intensities of a contrast-
enhanced image and statistical shading. The error bars represent the
standard deviation σ of the mapped values.

5 VERIFICATION

Our hypothesis is that the modification of normals causes the estima-
tion of surface slant to be closer to the ground truth. To obtain em-
pirical support for our hypothesis, we studied perceptual judgments
during the original shading condition (A) as opposed to our statisti-
cal shading condition (B). We then formally analyzed the difference in
performance between the two conditions.

5.1 The Experiment

In order to measure the effectiveness of our technique, we conducted a
new gauge-figure experiment. Instead of just relying on the results of
the experiment of Cole and co-workers [6], we again tested condition
A (original shading). This assured an appropriate control baseline,
as we used a different rendering framework. Cole et al. generated
their images with YafaRay which is a free raytracing engine [40] and
defined their source of illumination as an environment map. We em-
ployed the commonly used Lambertian shading model and directional
illumination.

We selected four distal stimuli from the experiment of Cole et al.
– one organic dataset (cervical) and three man-made datasets (pulley,
rockerarm, flange). Two of these stimuli are depicted in both shad-
ing conditions, in Figure 8 – I. (cervical) and II. (pulley). The stimuli
were viewed on a flat computer screen using the same camera settings
and viewport size as Cole et al. For each stimulus, we selected re-
spectively 41, 42, 39 and 38 sampling positions for placing the gauge-
figure from Cole’s dataset. The positions were heuristically selected
from the whole set in the following way. For each object, the ground
truth slants were best-possibly distributed over the interval [0◦,90◦]
and the numbers of positions in each of four sectors (N,E,S,W) re-
garding the ground truth tilt were also balanced. In total, we used
160×2 distinct test cases: 160 gauge-figure placing positions and two
shading conditions for each position. Each participant solved 2/3 of

EB
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θG

θE

reference curve

Fig. 10. The error areas of a selected participant for the original shading
condition A – EA(0◦,40◦) filled with pink and for our shading condition B
– EB(0◦,40◦) filled with blue.
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Fig. 11. Interaction plot between E for the two shading conditions: stan-
dard (A) and ours (B) in each of four subintervals of the curve. The
vertical bars denote the 0.95 confidence interval. We found a significant
improvement in the interval [40◦,60◦] – blue, a non-significant worsening
in [0◦,20◦] – red, and non-significant improvements in [20◦,40◦] and in
[40◦,60◦] – black.

all test cases so, in total, we collected at least 26 samples per test case
and more than 8500 solved test cases overall. The collection of user
responses is available for download [31].

Each of 40 participants attended two sessions. In each session he or
she was tested on two pairs of stimuli with a 10 minute break between
the pairs. The first pair of stimuli was presented in a different shad-
ing condition than the second. Half of the participants started with
shading condition A and the other half with the shading condition B.
The order was selected randomly in the first session, but in the second
session, the order of shading conditions was reversed. For example,
a random participant might be first presented with the stimuli cervical
and pulley, and the shading condition A, then he had a short break to
avoid fatigue and he continued with stimuli flange and rockerarm and
the shading condition B. When this participant came to the second ses-
sion, he started with the rockerarm, the flange, and shading condition
A, and continued with the cervical, the pulley, and the shading con-
dition B. The number of samples per position was balanced between
participants.

We hired 40 participants for a financial compensation of 35USD
equivalent for both sessions. The group of participants included 19
female and 21 male participants of 19 different nationalities. Par-
ticipants were 21-47 years old but 87.5% belonged to the age group
20-30. Most of the participants were university students at the bache-
lor, master or PhD level. All of them had normal or corrected vision
(lenses or glasses). 18 participants had skills with computer-assisted
3D tasks such as education in visual computing, mathematics or ex-
perience with 3D computer games. 37 participants worked on two
different days. In three cases, the first session was in the morning and
the second in the afternoon of the same day.
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Fig. 12. Probability density of the surface area error E with histograms and approximative normal distribution curves for the entire interval [0◦,90◦]
and four subintervals [0◦,20◦], [20◦,40◦], [40◦,60◦], and [60◦,80◦] and for both shading conditions. In intervals [0◦,20◦] and [20◦,40◦], the normality of
the distribution is violated which can be deduced from the histogram. The orange dotted lines indicate the difference between the mean values of
the shading conditions within the same interval.

5.2 Accuracy measurement of participants

To determine the accuracy of each participant, we approximated his
or her responses for each shading condition (A and B) by two polyno-
mial fitted curves of the 4th degree fA(θG) = θE and fB(θG) = θE . θG
and θE indicate the ground truth slant and the estimated slant respec-
tively. Each curve was computed from at least 106 samples. We define
the error measure E(a,b) at an interval of slants [a,b] as the area of
the surface enclosed by the reference curve R(θG) = θG and the user
response curve U(θG) = θE :

E(a,b) =
∫ b

a
||U(θG)−R(θG)||dθG (3)

In Figure 10, we show the estimation curves of a selected participant
for each shading condition – red for A and blue for B. The figure also
illustrates the meaning of the surface area in a selected interval of slant
angles (a,b).

5.3 Analysis

To formally test whether the shading algorithm significantly improved
participants’ accuracy, we compared the error areas E between the two
shading conditions A and B for each of the 4 intervals of the curve,
i.e., E(0◦,20◦), E(20◦,40◦), E(40◦,60◦), and E(60◦,80◦). The divi-
sion into subintervals was selected on a priori grounds. According to
previous evidence [21] and also concluding from our own analysis,
the underestimation of slant is zero at ca. 20◦ of ground-truth slant
and highest for slants 40◦−60◦ (see also Figures 5 and 6). Hence we
predicted different effects in each subinterval.

We conducted a 4× 2 repeated measures ANOVA with the curve
interval (4 levels) as one factor and the shading condition (2 levels) as
the other factor. Due to violations of sphericity according to Mauchly’s
test, reported degrees of freedom and p-values are Greenhouse-Geisser
corrected [10, 23]. The main effect of the curve interval was significant
[F(1.5, 59.8) = 68.4, p <0.00001]. A trend towards a main effect
of the shading condition failed to reach significance [F(1, 39) = 3.3,
p = 0.08], although the area between ideal and obtained curves was
numerically greater for the shading condition B (our new approach).

However, we obtained a significant interaction between the 2 fac-
tors, indicating that the beneficial effect of our shading algorithm dif-
fered for the different intervals of the curve [F(1.8, 70.9) = 4.2, p =
0.02] as shown in Figures 11 and 12. Difference contrasts showed that
a significant benefit [F(1,39) = 12.4, p = 0.001, r = 0.49] of the algo-
rithm was obtained for the interval [40◦,60◦]. Even though the error

bars indicating the 95%-confidence interval in Figure 11 do overlap, it
does not imply that the effect is insignificant at 5% level [3]. For in-
tervals [0◦,20◦], [20◦,40◦], and [60◦,80◦] respectively, p = 0.35, 0.10,
and 0.56. The effect of shading algorithm at the first 2 intervals was
re-checked with non-parametric Wilcoxon tests [39] due to violations
of normality for those distributions in a Shapiro-Wilk test [30], but still
failed to show significant differences (p = 0.23 and 0.09 respectively).
Figure 10 illustrates that the difference in surface areas between the
two user estimation curves in the intervals [0◦,20◦], [20◦,40◦], and
[60◦,80◦] is rather small compared to the interval [40◦,60◦] where the
curves were expected to be further away from each other. Mean values
and standard deviations of the error area distribution for each shading
condition and for each interval of the curve are listed in Table 1.

In summary we found a highly significant effect of shading for an-
gles in the interval [40◦,60◦]. Moreover, in this curve interval, our
shading manipulation had an effect size r = 0.49 that would normally
be regarded as impressively large within the psychological testing lit-
erature [4, 5], accounting for 24% of data variance (r2 = 0.24). Ad-
ditionally, the significance level of this effect was high enough to ex-
clude arguments that the effect was a Type I statistical error caused by
multiple sampling at different intervals.

5.4 Discussion

Based on the results obtained in our gauge-figure experiment, we cre-
ated and applied a second model of correction as described in Sec-
tion 3.2. Rendering results of this iterative process of evaluation and
re-design are illustrated in Figure 13.

We have shown that our modification of normals leads to more ac-

EA(a,b) EB(a,b)
(a,b) µ σ µ σ

(0◦,90◦) 863.82 274.06 813.34 244.78
(0◦,20◦) 93.95 73.075 104.1862 72.59458
(20◦,40◦) 126.34 58.52 114.82 44.6
(40◦,60◦) 314.9 96.6 273.54 104.15
(60◦,80◦) 284.08 136.8 275.38 127.06

Table 1. Table of mean values µ and standard deviations σ for the error
area distribution within participants for each shading condition and each
interval of the curve we analyzed.
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Fig. 13. Rendering results of a leopard gecko CT dataset of the iterative process evaluation and re-design: (a) the original Lambertian shading, (b)
the result of a modification after the first user study, and (c) the result of a modification after the second user study.
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Fig. 14. Comparison of (a) the Lambertian shading, (b) light warping, (c) exaggerated shading, (d) shearing along the z-axis and our approach
using (e) the approximating function f̃ defined in Equation 1 and (f) the precise look-up texture to solve f (θ ,φ ,).

curate perception of normals slanted 40◦− 60◦. Our technique is not
photorealistic. One could ask whether this is the case for other tech-
niques that mimic methods from illustration and visual art? Were il-
lustrators aiming to improve perception? We do not have access to a
perceptual evaluation of other existing illustrative techniques such as
light warping [37], and exaggerated shading [29]. In Figure 14, we
juxtapose these to simple shearing along the z-axis, and with statisti-
cal shading in order to allow a subjective visual comparison. The two
right-most visualization using the statistical shading model allow to
compare the result of an approximative evaluation of f (θ ,φ) as de-
fined in Equation 1 using function f̃ and precise evaluation using the
lookup map.

6 CONCLUSION

We described a new concept of the visualization pipeline which al-
lows one to update the rendering algorithm with new knowledge about
how the human visual system misperceives the shape of 2D object de-
pictions. Specifically, we studied the perception of surface slant of
Lambertian-shaded surfaces and found a systematic distortion. We
captured this effect as a function which predicts how the surface slant
should be presented so that it is perceived as the ground truth slant.
The function allowed us to modify the surface normals or gradients in
the Lambertian shading model in a manner that was shown, via empir-
ical testing, to objectively improve slant perception. Even though the
trend for improvement did not reach significance when pooled over
all slant values, we found a significant improvement in the interval
(40◦,60◦) where the distortion of the slant perception is the highest.

6.1 Lessons learned

We found that the perception of normals pointing upwards in the eye
space is clearly the most precise when compared to all other directions.
Perception of normals pointing downwards is clearly the most inferior.
Accuracy in the left and right directions is very similar. This character-
istic of perception is illustrated in Figure 7 in the plot of g(θ ,φ). This
shows that human ability to estimate surface slant is best on surfaces
where normals point upwards and worst on surfaces where normals
point downwards. We have not found a similar dependency of the es-
timation error from higher order surface derivatives such as curvature.

6.2 Limitations and future work

We studied the distortion of human surface perception using stim-
uli rendered with Lambertian shading of diffuse and opaque surfaces.
Therefore, we cannot make a statement about this distortion if a dif-
ferent rendering algorithm, e.g., shadowing or ambient occlusion, was

to be used, or if the objects were to be made of a different material,
e.g., semi-transparent or shiny. Each rendering algorithm and material
should be studied individually and provided with a perceptual distor-
tion model which is an inspiration for future research.

Since we have not evaluated the results after the second iteration,
we are not able say whether the iterations really converge to a perfect
solution. Shape cues are not formed solely from shading. Even though
shape extraction from a shaded image is more accurate, Cole et al.
showed that certain shape cues can be extracted from line drawings as
well [6]. Our method does not modify important lines since we are not
deforming the objects. Therefore, we suggest that our method can be
combined with a perception-enhancing geometry deformation in order
to achieve the best results.

We would like to raise awareness that since we modify shading, we
also modify luminance in the final appearance of objects. Since the
depth perception is affected by the luminance channel [19], it might
be worthwhile investigating how our modified shading influences the
depth cues. Even though our aim was to show the effect on shape
perception of (local) surface slant, we would like to encourage future
studies of depth perception as well.

The manipulation of shading can influence the appearance of ob-
jects’ material. The reason is that variations in shape tend to dominate
variations due to shading [38]. This effect is visible in Figure 13. As
we apply iterative modification of normals, the surface appears more
shiny. This observation opens a new interesting direction of research
to attempt to characterize a model that adjusts the cues from shading
and contours while preserving the appearance of the material.

We observed that techniques that mimic illustrators’ techniques are
pursuing the same goal and, in our qualitative judgment, yield similar
subjective effects. Speculatively, this suggests an intriguing hypoth-
esis that illustrators used exaggeration of shading to better match the
distal and the proximal stimulus.
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