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ABSTRACT

Multi-level simulation models, i.e., models where different compo-
nents are simulated using sub-models of varying levels of complex-
ity, belong to the current state-of-the-art in simulation. The existing
analysis practice for multi-level simulation results is to manually
compare results from different levels of complexity, amounting to
a very tedious and error-prone, trial-and-error exploration process.
In this paper, we introduce hierarchical visual steering, a new ap-
proach to the exploration and design of complex systems. Hier-
archical visual steering makes it possible to explore and analyze
hierarchical simulation ensembles at different levels of complex-
ity. At each level, we deal with a dynamic simulation ensemble
— the ensemble grows during the exploration process. There is
at least one such ensemble per simulation level, resulting in a col-
lection of dynamic ensembles, analyzed simultaneously. The key
challenge is to map the multi-dimensional parameter space of one
ensemble to the multi-dimensional parameter space of another en-
semble (from another level). In order to support the interactive vi-
sual analysis of such complex data we propose a novel approach to
interactive and semi-automatic parameter space segmentation and
comparison. The approach combines a novel interaction technique
and automatic, computational methods — clustering, concave hull
computation, and concave polygon overlapping — to support the
analysts in the cross-ensemble parameter space mapping. In ad-
dition to the novel parameter space segmentation we also deploy
coordinated multiple views with standard plots. We describe the ab-
stract analysis tasks, identified during a case study, i.e., the design
of a variable valve actuation system of a car engine. The study is
conducted in cooperation with experts from the automotive indus-
try. Very positive feedback indicates the usefulness and efficiency
of the newly proposed approach.

Keywords:  Interactive Visual Analysis, Simulation-Ensemble
Steering, Multi-resolution simulation

1 INTRODUCTION

Strict emission regulations and increased environmental require-
ments are the main driving forces in modern automotive design. A
modern car engine is a complex system that has many components.
It exhibits behavior that is more complex than a simple combina-
tion of the behaviors of the individual components. Engineers use
simulation models at various levels of detail when simulating en-
gines. Due to prohibitively long simulation times it is not feasible
to simulate the whole engine at the finest level of detail.

The current state of the art in simulation is to represent individ-
ual components with simplified models when studying the whole
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system, and using more detailed models of individual components
when they themselves are in the design focus. During the design
process, numerous simulation runs are computed using models of
varying complexity. It is essential that coarse simulation models
represent the designed system sufficiently well. Although visual-
ization and visual analysis are extensively used to study results from
single-model simulations, there are practically no tools to support
the analysis of multi-resolution simulations. The standard approach
is to manually compare simulation results from different simulation
models, resulting in a tedious exploration of a very large simulation
model space.

In this paper we study the challenge of complex system de-
sign. We build on results from studying a single-level simulation
model [11], extending the work to now manage multi-resolution
simulation models. The new approach, called Hierarchical Visual
Steering, is a result of a long-time collaboration of visualization,
optimization, and engineering experts. Finding such a solution is
only possible with an interdisciplinary team. In contrast to con-
ventional visualization, where data does not change throughout the
analysis, we deal with ensemble steering — new simulation runs are
started from the visualization and the data changes during the anal-
ysis session. Furthermore, and since we deal with multi-resolution
simulation models, we need to handle several, dynamically growing
simulation ensembles simultaneously.

The key challenge is to map the multi-dimensional parameter
space of one ensemble to the only partially overlapping multi-
dimensional parameter space of another ensemble (at another
level). Due to the system model’s complexity and the lack of an
analytical description of the whole system, the analytical mapping
of parameter spaces is practically impossible. We propose a novel,
interactive approach to solve this problem. We introduce an in-
teractive, semi-automatic parameter space segmentation approach.
It starts with a concave hull computation of the brushed points,
and continues (either automatically or user-triggered) by employ-
ing clustering in order to find more compact regions. Once com-
pact areas with desired behaviors are found, they can be compared.
All of this happens at the individual model level. We also intro-
duce an output-based cross-level parameter mapping approach. By
means of this mapping the compact areas of desired outputs be-
haviors from one level can be compared with the areas from other
levels. This makes it possible to check for the physical plausibility
of coarse models, before using them in the larger models.

Our solution enables the validation of the design and reveals in-
sights that can be used to develop and refine more general visualiza-
tion guidelines (patterns). The domain experts were involved from
the beginning of this research, allowing us also to leverage partic-
ipatory design in order to identify the tasks and requirements of
the automotive design process. The real-world problem addressed
here is the design of a variable valve actuation (VVA) system, i.e., a
complex system that controls the opening and closing of the intake
and the exhaust valves of a four stroke combustion engine. It in-
creases engine efficiency, decreases consumption, and reduces the
overall emissions.

The main contribution of this paper is a novel approach to the
interactive visual analysis and design of real-world complex sys-
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tems — hierarchical visual steering. Additional contributions, nec-
essary to realize the hierarchical visual steering, include: 1) Semi-
automatic and interactive parameter space segmentation. 2) Output-
based cross-level parameter space mapping. 3) Analysis procedures
and tasks, abstracted for the analysis of complex, multi-resolution
simulation results.

2 RELATED WORK

Simulation steering and exploring ensemble simulations require
multi-resolution simulation models [4] and good control over multi-
ple heterogeneous simulation runs. World lines [20] integrate sim-
ulation, visualization and computational steering to deal with the
extended solution space by representing simulation runs as causally
connected tracks, sharing a common time axis. World lines do not
support multi-resolution simulation models, in contrast to our ap-
proach. The studied model does not change during the analysis.

In each computational steering iteration the user defines a re-
gion of interest to be further explored. Additional simulation runs,
which are needed to cover this region of interest, are called a new
“simulation experiment” [10]. The design of such an experiment,
i.e., the selection of the simulation points in the region of interest,
is very important since we would like to keep the number of simu-
lation runs low, while still providing a good coverage of the region
of interest [7].

Sedlmair et al. [16] describe a conceptual framework for visual
parameter space analysis. The framework encompasses a data flow
model, four parameter space navigation strategies and six analysis
tasks. They also provide an overview of the related visual parameter
space analysis literature and identify three research gaps — the data
acquisition gap, the data analysis gap, and the cognition gap.

The approach of a user-controlled simulation is at the very core
of computational steering — still, only few corresponding solutions
exist. Very often it is impossible to acquire an optimal solution. The
user has to interactively analyze trade-offs and interdependencies
between different objectives [17, 19]. Using an analytical represen-
tation of the objective function, the values of the objective function
in the region of interest can be presented to the user [12]. These
techniques guide the user to potentially interesting parameter re-
gions, while showing the uncertainty of predictions.

Piringer et al. [13] describe an interactive approach, Hyper-
MoVal, designed to support multiple tasks related to model vali-
dation. Bergner et al. [2] introduce ParaGlide, a visualization sys-
tem for the interactive exploration of parameter spaces of multidi-
mensional simulation models. They also support parameter space
segmentation. They rely on the clustering of the output space and
depict the corresponding points in different colors in the control
parameters views. We propose a novel, semi-automatic parameter
space segmentation that uses clustering and iterative refinement. In
contrast to our approach, all approaches mentioned above only deal
with a single ensemble.

The VVA (variable valve actuation) problem domain deals with
opportunities to decrease fuel consumption in modern combustion
engines [14, 15]. Lancefield et al. [9] provide an overview of the
design solution and a description of the simulation model used for
VVA systems. Denger and Mischer [5, 6] describe an electro-
hydraulic valvetrain system, a subset of variable valve actuation
systems. Interested readers are referred to above mentioned papers
as a starting point in VVA research. A broader description of the
VVA design would go beyond the scope of this paper.

3 TASK ABSTRACTION

The overall design of a complex system, such as a car engine, starts
with a detailed design of its components. Several design teams op-
timize different components to create a coarse simulation model.
Groups of components (subsystems) are analyzed based on the
coarse simulation model used in a simulation process.

The simulation process can be represented as a function S that
maps the (control) parameters X = (xp,...,Xy) to the output values
y = (y1,...,Yn) Where m is the number of parameters and n is the
number of output values. A set of pairs (X,y), x € C (parameter
space) and y € O (output values space) is a simulation ensemble E.

During the engine design phase, the coarse subsystems are sim-
ulated together and the whole system is explored, analyzed, and
tuned. The selected system designs are validated using more de-
tailed simulation models. The main principle is always the same:
the user wants to find the coarsest model possible that is still physi-
cally plausible. A coarse model is a rough approximation, its phys-
ically plausibility has to be checked using finer models. At the very
end of this process, the production can start.

We have observed the basic tasks (and the corresponding basic
patterns) that are performed repeatedly during the analysis and ver-
ified the relevance of these tasks with colleagues from other design
groups (timing drive, driving comfort, vibration reduction, etc.). In
this paper, we focus on tasks that are specific to multi-resolution
simulation, but typical tasks for single ensemble steering [11] are
also applicable to hierarchical steering. The steering process be-
tween two levels of complexity (pair-wise ensemble comparisons)
is shown in Figure 1.

The tasks common to single ensemble steering (TS) include:

e (TS1) Output Analysis: Find combinations of control pa-
rameters that produce desired (or undesired) output values.

e (TS2) Model Reconstruction: Analyze how the outputs
change as the values of control parameters change.

e (TS3) Ensemble Growing: Add simulation runs with new
control parameters to the currently analyzed ensemble.

The tasks specific to hierarchical steering (TH), being in the partic-
ular focus of this paper, can be summarized as follows:

e (TH1) Model Refinement: Create an ensemble for a (par-
tially refined) model. Add a new ensemble with a different
control parameter space to the set of ensembles. The ensem-
ble space is growing now, in contrast to the task TS3 where
one ensemble itself grows.

[EEVEIN T83 Ts2 Ts1
Ensemble Model Output
Growing Reconstruction Analysis
‘si i /' Ensemble /
| ﬁ:m::ig::egﬁg >/ Ensemble CcMV
Visualization
*
,\;|r:d1e| No TH2 TH3 Analysis
Refinement Push-Down Pull-Up Goal

Yes

TS3

Ensemble . /  Ensemble \\\
Growing \/ cMV I
| . Visualization  /
/Simulation of an | ) TS1

| Initial Ensemble /=7 ENsemble Model

Reconstruction

Output
Analysis

Figure 1: Starting from an initial ensemble for the lower level of com-
plexity (Level 1), the analysis/steering process executes a combina-
tion of basic steering tasks to create more complex models (Level 2)
and, consequently, ensembles until the analysis goal is reached, i.e.,
subsets of the analyzed ensembles which satisfy this goal are found.



e (TH2) Push-Down: The currently identified region of inter-
est in the parameter space of an ensemble is mapped — pushed
down — to an ensemble of a finer resolution. This is realized
with a link between a coarse and a fine ensemble (multiple
links are possible). This cross-model-link enables the explo-
ration of the dependencies and correlations between two lev-
els of the model space, using “forward-mapping”. With this
pattern, it is possible to analyze how the shapes of correspond-
ing regions in one parameter space change as the values of the
control parameters in another ensemble change.

e (TH3) Pull-Up: The current state of the analysis in a fine-
level ensemble is mapped — pulled up — to the coarse-level en-
semble by establishing a link between the the two ensembles
(multiple links are possible). This cross-model-link enables
the exploration of the dependencies and correlations between
two levels, using “backward-mapping”. It is possible, e.g.,
to analyze which combinations of control parameters in the
coarse ensemble produce outputs that are similar the desired
outputs in a finer ensemble. If two ensembles share some con-
trol parameters, we compare the combinations of these control
parameters that produce similar outputs on both levels. Using
the established links between all existing fine and coarse en-
sembles we analyze the whole model space concurrently.

In order to support the above identified tasks we propose a novel
interactive solution for parameter space segmentation and output-
based parameter space mapping, as described in the following.

4 SEMI-AUTOMATIC, PARAMETER SPACE

SEGMENTATION

The task TS1, Model Reconstruction, examines which parameter
settings correspond to a desired simulation output. After an initial
simulation ensemble is computed, the exploration starts. Coordi-
nated, multiple views are used with at least one view showing pa-
rameters and at least one other view showing output values. Desired
output values are brushed, consequently the points in the parame-
ter space views are highlighted. The corresponding parameters are
studied. Regions in the parameter space that result in certain desired
outputs are in the main focus of the exploration. Figures 2a and 2b
illustrate this phase of the process. Curves of a desired shape are
selected. The selection is additionally refined in other views (not
shown in the Figure 2 due to the space constraints). The brushed
curves are shown in dark green, and the corresponding control pa-
rameters are shown in the scatterplot in Figure 2b. Note that non-
brushed points (shown in gray) are interwoven with brushed points.

The interactive segmentation process starts. A concave hull us-
ing the brushed points as input is computed. The concave hull is
used since the more usual convex hull increases the hull area sig-
nificantly in the case where outliers are present. The implemented
concave hull algorithm allows the user to set a parameter that con-
trols the smoothness of the concave hull. In most of the cases the
hull will contain non-brushed points as well. Figure 2c shows the
computed concave hull. Light green points in the concave hull
correspond to the non-brushed points within the hull. In order to
quantify results we depict the number of brushed points and the to-
tal number of points in the hull in the segmentation control dialog
(Figure 2d).

Depending on the number of non-brushed points in the hull the
user can proceed with different actions. Usually the first action is
to check the non-brushed points. To do so, the user just selects the
check option from the segmentation control dialog and the points
are implicitly brushed. The corresponding outputs are depicted in a
different color. Figure 2e shows the checked curves in light green.
Note that some of them have unwanted shapes, so we cannot keep
the whole hull as a selection. In this case the user selects to split
the hull into several smaller hulls (clusters) instead of accepting the
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hull. The user decides on the number of clusters and the clustering
algorithm creates these new clusters of the brushed points of the
hull. Each cluster is contained in the original hull. Figure 2f shows
three clusters. The control dialog shows the hierarchy of the clus-
ters, information for each cluster, and provides controls to further
check or split any of the new hulls.

In general, the new concave hulls will contain fewer non-brushed
points than the original concave hull. The user can check each hull,
accept the hull, or split it further. Some regions, with too many
non-brushed points, will be rejected and not taken into further con-
sideration. In our case, the clusters A and C are acceptable (Fig-
ure 2g shows the checked curves for cluster A). In contrast, cluster
B results in some curves with undesired shapes (Figure 2h), so the
cluster is split further (Figure 21i).

Eventually, the user identifies homogeneous regions in the pa-
rameter space corresponding to the desired outputs (if such regions
exist), and can accept the corresponding hulls as useful parameter
selections, assign them a name/label (such as “’Steep Rise”), and a
color.

If the number of points in a region drops below a certain thresh-
old, the user can request new simulation runs directly in the visu-
alization (TS3, Ensemble Growing). This highly interactive and
iterative process supports the parameter space segmentation. Fig-
ure 3 illustrates the whole process. At the end, all regions from the
analysis are added to the regions list which is stored globally. Dur-
ing the process the regions list will grow. There will be regions,
e.g., corresponding to a low engine consumption, high power, and
low emission. Each of them gets its color and can be depicted if
desired. A cross section of selected regions can also be computed
and displayed.

It is always possible to automatize the whole process to pro-
ceed automatically with splitting if there are too many non-brushed
points in a region. The user still has to cross-check regions and
approve the final regions before they are accepted. We have used
the k-means clustering that worked well since the user interventions
were minimal. Other clustering algorithms can be included and se-
lected by the user.

5 OUTPUT-BASED, CROSS-LEVEL PARAMETER SPACE MAP-
PING

After the segment action of the parameter space at different levels,
it is necessary to map segments corresponding to the same behav-
ior (low consumption, high power, ...) between the levels. As
the parameter spaces are different, i.e., the parameters overlap only
partially or not at all, and there is no explicit mathematical for-
mula describing the entire system under investigation, an analytical
mapping of parameter values is not possible. Hence we propose
an output-based, cross-level mapping between parameter spaces at
different levels of complexity. The main idea is to compare the out-
puts from different levels of complexity, and to identify parts of the
parameters spaces where these outputs are similar (according to a
user defined metric). The user selects a segment in the parameter
space of the more complex simulation model (ensemble E2), which
should be pulled up (TH3) to a less complex simulation model (en-
semble E1). A parameter space region Rgy corresponds to a subset
of output values in E2. Now, the set of output values is compared
with the corresponding set of output values in £1.

Similar output values are selected, and an implicit, cross-level
brush is created. The similar output values are brushed in £1, and
the corresponding points in the parameter space are shown. The
parameter space can be segmented again, and cross-sections with
the original segments are found. Overlapping regions indicate cor-
responding areas in the parameter spaces of different levels.

A proper metric is needed to compare output values. The control
parameters are usually numerical, scalar values. Often, however,
the output values also include time series data so that the output
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Figure 2: A typical workflow of interactive, semi-automatic segmentation. The user goes through steps a. to j. Aimost every step can be refined,
the user can go back and forth at any time. The figure illustrates the main steps without such refinement steps.

space O is no longer a subset of R"”. Since simple data tables [3]
are not sufficient, we use a two-level data model for the output data
points (Figure 4). Every output data point y* and y’j that is a data
series has a separate set of “sub-points” with its own length and
number of dimensions (we limit our discussion to two dimensions).
Such a data series is viewed as a function of one variable (time) and
represented as a curve. Hence, we have to define an appropriate
metric for both kind of output values, scalars and time series.

When dealing with scalar outputs we allow the user to set a toler-
ance g, for each scalar output dimension u that should be compared.
All output values in E1 that are within the tolerance range, as com-
pared to the corresponding values in E2, are selected. We can com-
bine several outputs using Boolean operators. We can describe the
cross-level, output-based mapping for matching scalar attributes u1
in ensemble E1 and u2 in ensemble E2 as follows:

TH3(Rg2) ={y' |y’ € ELA3y €Rpa: g —vipll <&} (D)

The metric is a bit more complicated for time series outputs.
The first idea was to use the root mean square error (RMSE)
method. This simple similarity measure does not seem to be pow-
erful enough to capture the various ways in which output curves
can be similar/dissimilar to each other. Figure 5 top depicts output

curves from two ensembles for the same output value, i.e., the valve
position, described in more detail in Section 6. The coarse model
(Figure 5 left) cannot simulate fine details such as the smooth valve
closing that is visible in the fine model curves (Figure 5 right). The
slow decrease to zero is a desired behavior which simply cannot
be simulated using a coarse model. If we would compute RMSE
differences, the errors would be large. Instead, we allow the user
to interactively specify a range of comparison r, for matching time
series dimensions and the corresponding tolerance &,. Equation 2
describes the output-based mapping for matching time series at-
tributes v1 in ensemble E£1 and v2 in ensemble E?2.

TH3(Rgy) = {y' |y’ € E1A3y/ € Rga : RMSE(y}y,v),,1) < &)}

RMSE(y! | ,¥)5,ry) is applied to curves y%, from E1 and y/, from
E?2 within the range r,. If we limit the range correctly, the RMSE
will select similar curves. Figure 5 bottom row shows similar
curves after range was limited. The user selected the desired shape
in the coarse model (Figure 5 bottom left), and similar curves in the
fine model are found (Figure 5 bottom right).

We can specify a TH3 mapping also as a combination of several
scalar and time series outputs. Equations 1 and 2 are applied to
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Figure 3: Flow chart of the interactive, semi-automatic parameter
space segmentation process. An automatic mode, based on the rel-
ative number of non-brushed points, and an interactive mode are
supported.
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Figure 4: Simulation ensemble data model: control data points, out-
put data points and comparison. Two ensembles, E1 and E2, have
only partially overlapping parameter spaces. We select a region, i.e.,
collection of output data points (orange), in the corresponding output
spaces and compare the scalar values (cyan).
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Figure 5: An example of the output-based mapping principle. The
same output curves from two different ensembles have different
shapes. The user decides which output dimension will be mapped
(X_valve in this case), and, optionally limits the x-axis range for com-
parison. The RMSE is computed and all curves that are within a
threshold (10% here) are selected in the other ensemble.

individual outputs and the resulting sets of data points in the output
space of ensemble E'1 are combined using basic set operations.

This metric proved to be useful for our case study. In some other
domains, and with different data, users will probably need differ-
ent metrics, but the main principle of the output-based mapping
remains the same. The desired outputs from one level (ensemble)
are compared to the same outputs in another level (ensemble) using
an appropriate metric. The similar outputs are then selected and the
corresponding parameters are explored. In this way, regions from
different parameter spaces can be mapped to each other and thus
compared.

6 CASE STUDY: VARIABLE VALVE ACTUATION SYSTEM

We use a car engine design case study to illustrate the proposed hi-
erarchical ensemble steering. The case study was conducted on a
single workstation (including simulation). Variable valve actuation
(VVA) is an active research field in the automotive industry and it
is closely related to the development of four-stroke engines. A pre-
cise control of the opening and the closing of the intake and the
exhaust valves is essential for an optimal engine operation. VVA
makes it possible to change the shape and timing of the opening
and closing of the valves. We deal with a hydraulically-supported,
directly operated cam-less system. Such a flexible system can en-
sure the variable feeding and dissipation of the gases involved in
the combustion process.

Our goal is to understand the system behavior, to set system pa-
rameters (valve opening curves), and to create a coarse, yet plausi-
ble, simulation model which will be integrated with other models
on a larger scale. Figure 6a. shows the simulation models, at dif-
ferent levels of complexity (case study). There are three blocks in
our complex system, the control block, the actuator block, and the
valve block. Two are refined during the analysis (one at a time),
resulting in three different simulation models, and three ensembles,
accordingly. A separate color is assigned to each model in order to
identify the related ensemble/parameters/results during the hierar-
chical visual steering process.

Once the coarsest model is tuned, we refine a component of our
choice and start the whole process over. We focus on three sim-
ulation results in our study: the hydraulic oil quantity that enters
the system (Inflow), the pressure in the actuator block (P_act), and
the valve position (X _valve). All three variables (outputs) are time
series data, i.e., functions of time, for which we also compute se-
lected scalar features. We have a complex data set, consisting of
many data points (each corresponding to one simulation run), and
many attributes per data point. The attributes are scalar values and
functions of time [8].
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Figure 6: a.The initial, low resolution model of the VVA system (left) and the two refined models were designed with AVL Boost-Hydsim [1].
Each model and the corresponding ensemble has an assigned color (bar underneath). The control parameters under investigation in our case
study are depicted in red, and three main state variables are shown in blue. b. A snapshot form a single-level analysis. The newly introduced
interactive segmentation view is shown in top left. Different other views show various control parameters and output values of the ensemble. The
data table in the bottom provides details on demand for selected runs.

Table 1: Initial Parameter Ranges for the First Two Levels

Parameter Coarse ModelFine Model
Actuator volume Size r.ab.01v.v.act 100-500 mm?>
Actuator piston area r.as.02.va.cp 4-12mm 8-12 mm

50-150 bar 80-120 bar
0.4-1.3ms 0.4-1.2 ms

Inflow pressure r.cb.o1vrip
Opening/Closing time p.cs.02.v.7w

Max. flow area p.cs.03.va.5w 5-15 mm?
Cylinder pressure p.b.o1v.re 100-500 N 100400 N
Valve mass rw.02vmv 100400 g

0.6-1.0
0.7-1.0

Port cut discharge coeff. p.us.03vmy.cur
Damper discharge coeff. r.uw.o3.vydamp

The first step is to identify relevant parameters which may be
varied (Figure 6a. shows the parameters that were varied for each
model in red). We use a Sobol sequence [18] to vary the parameters
in order to cover the whole multi-dimensional parameter space ap-
propriately. We vary seven parameters in total. We start our analysis
of the coarse model with 1,000 runs. During the analysis, the initial
ensemble grows to 2,603 runs. In the next step, we create a fine
initial ensemble consisting of 2,000 runs, which then also grows
during the analysis. Table 1 shows the initial parameter values for
the first two models.

6.1

At one particular level we support three principal tasks. We select
desired curve shapes (in the VVA system, e.g., the valves have to
open and close as fast as possible), and check the corresponding
values of the control parameters (TS1). If the control parameter
space is not sufficiently sampled we can run new simulations (TS3).
Additionally, we also often check what happens with the simulation
results as we change the control parameters (TS2).

Figure 6b. shows the coarse-level ensemble analysis. The al-
ready identified regions are shown in the top left view. There is a list
of all identified regions and the user can show or hide each of them

Single-Level Analysis

separately. The parallel coordinates plot shows the control param-
eters. Two histograms show two scalar features of the time series
outputs. Two curve views at the bottom show the time-dependent
simulation results of the current ensemble— Inflow, and X _valve.
The scatterplot shows two additional features. Each simulation run
is represented with one poly line in the parallel coordinates plot,
one point in the scatterplot, and one curve in each curve view. As
all views are linked, we can select items in each view and see the
corresponding values in all other views. The user simply selects a
desired range on one of the parallel coordinates, or draws a rectan-
gle in the scatterplot, selects bins in the histogram, or uses a line
brush [8] in a curve view. The scatterplots of the control parame-
ters support the above described semi automatic segmentation, and
several regions have already been identified.

The coarse-level analysis shows that the area of the control pis-
ton, the pressure in the cylinder, and the valve mass, apparently
influence the closing speed substantially. The inflow pressure at
the high-pressure valve and the ratio of opening and closing time at
high pressure valve influence the closing speed much less, and the
size of the actuator volume and the maximum flow area at the high
pressure valve have almost no influence. After we have tuned the
initial, unrefined model, a finer ensemble is defined and simulated
(TH1). The finer ensemble is analyzed in a similar way.

An often observed pattern in a single-level analysis is to start
with constraining control parameters to some desired values. Fig-
ure 7 shows such an example. For a fine-level ensemble, we
brushed desired curve ranges and the corresponding output values
are shown. The selections are refined as long as the output values
are not desired. Once the desired outputs are found we have a seg-
mentation of the control parameters space, and we can proceed with
a cross-level analysis.

So far we have described the separate exploration of one partic-
ular ensemble. Studying the different ensembles separately often
results in an unnecessarily large number of trials (and errors). Both
models represent the same physical system, at different levels of de-
tail — their parameter spaces are also different. The main challenge
now is how to compare the parameter spaces of different models,



Figure 7: The 2,000 initial runs for a fine level are computed and we
select the preferred control parameter ranges. The X _valve curves
are shown in the curve view and the scatterplot shows the integral of
the Inflow on the x-axis, and the maximum actuator pressure on the
y-axis.

and how to map one parameter space to the other.

6.2 Cross-level Analysis

At each level we identify interesting regions in the parameter space.
In order to compare the regions we use the above described output-
based mapping. In our case, we use the X_valve curves that are
available in both of our ensembles. They do have different shapes,
but they both represent the valve position. Therefore, we establish
the first cross-level link using these valve position curves.

For the main cross-level analysis (TH2 and TH3) we need a
cross-level link and a specially designed implicit brush to support
a cross-level parameter space exploration. The cross-level analysis
works the same for two or more levels. The main idea is to identify
curves of desired shape and the corresponding parameters in one
ensemble first. Then, we find similar curves in the other ensemble.
These curves are brushed implicitly, i.e., by means of their similar-
ity as compared to the desired curves — the corresponding runs are
highlighted accordingly. Figure 8 illustrates this process. Figure 8a
shows the control parameters and the valve position curves from
the coarse ensemble. Figure 8b shows the parameters and curves
for the fine ensemble. We interactively drill down to two curves se-
lected in the fine ensemble (Figure 8c). Now the established cross-
link finds curves in the coarse ensemble which are similar to the two
brushed curves from the fine ensemble. Based on defined similarity
metric there are 42 similar curves. They are implicitly brushed in
the coarse ensemble using the fine ensemble color (Figure 8d). In
this way we know that this selection originates from another level.
The parallel coordinates in Figure 8d show the control parameter
values for the coarse model which result in curve shapes that are
similar to the desired curves in the fine model. The analysis con-
tinues by selecting within 42 runs the setup for control parameters
using additional criteria or domain experts preferences. The model
accuracy can be determined by by checking overlapping of the pa-
rameter space regions.

7 USER FEEDBACK AND EVALUATION

The interactive hierarchical ensemble steering has been developed
in close collaboration with domain experts. We have observed their
workflow, when designing complex systems, and realized how te-
dious the whole process is. The improvements presented in this
paper are results of a common endeavor during a one-year project.
The engineers, who were involved in this project, are experienced

Figure 8: Cross-level link illustration. a) A coarse ensemble, initial
parameters (Table 1), in the parallel coordinates plot and the corre-
sponding X _valve curves. b) The corresponding views in a fine en-
semble. ¢) Three curves selected in the fine ensemble. The cross-
level link is activated, the range and threshold for the comparison are
selected. d) The corresponding curves in the coarse ensemble.

with interactive visual analysis and with interactive steering. How-
ever, they did not have any support tools for any cross-level analy-
sis. The standard workflow includes numerous manual comparisons
and requires many trials until a satisfactory design is found.

We asked three domain experts to estimate the speedup when
using the new approach. They indicated a speed-up of an order of
magnitude (under an hour versus the whole day) using the hierarchi-
cal steering over the standard workflow (manual comparisons). The
estimation from the case study confirms this. The domain experts
also emphasized that, in addition to speed-up, the new approach
also provides better insight. When ensembles are compared man-
ually, the domain experts always suspected that there is something
they did not see.

The semi-automatic parameter space segmentation using scatter-
plots is very intuitive and appreciated, but it shows only one pos-
sible 2D projection of the multidimensional parameter space. The
engineers were thus using several scatterplots in parallel. Some-
times, clear regions appear in some projections, but in others they
were comparably disconnected. Also, we were forced several times
to modify the simulation models. Although there were parameter
combinations that resulted in desired behavior, they still were con-
sidered to be very unstable. All points in their neighborhood had
undesired behavior, and it was simply too risky to continue with
such a sensitive system.

We are currently researching how to improve the support for
multidimensional parameter space segmentation. One of the en-
gineers stated that “This is, no doubt, a tremendous step forward
compared to the current state of the art, but it also made us aware
of many challenges that are yet to be solved.”

As the number of parameters grow, 2D projection becomes less
and less useful. At the same time, as the system complexity grows,
it becomes practically impossible to comprehend the overall system
behavior without the support of visual tools. During the evaluation
we have also created a toy example, consisting of two springs and
two bodies that only can move along a line. Although the analyt-
ical solution of the problem is clear, engineers had a problem to
mentally comprehend the overall system behavior as masses and
the stiffness of the springs change. While experimenting with this
simple model, one of the experienced engineers stated that “In or-
der to understand the behavior of a complex, non-linear systems,
we do need a strong mathematical support to understand the fun-
damental laws, but the addition of interactive visualization enables

95



96

us to answer some complex questions that are relevant to our en-
gineering practice. Only the combination of both can help us with
really complex tasks.”

One of the engineers (who also coauthors the paper) who is fa-
miliar with interactive visual analysis was very enthusiastic about
using this approach for the variable valve design. He stated that
“Automatic clustering as a basis for splitting and the correspond-
ing check feature are the most useful segmentation support tools
I've used up to now.” While all case studies were in automotive
design, the positive feedback from the engineers indicates the ap-
plicability to other domains.

8 DIScUSSION AND CONCLUSION

We have described a new approach to interactive visual steering, i.e.
hierarchical visual steering, that operates on a multi-level simula-
tion model space. This approach bridges the often diverging param-
eter spaces of models at different levels of complexity and enables
the exploration of ensembles from different levels without losing
the link to the overall model. Such support tools are essential for
complex systems design. As the system complexity grows, we sim-
ply need visual tools in order to comprehend the system behavior.
This is especially true for non-linear systems.

We identified main tasks in the hierarchical steering workflow
and proposed a first solution to the problem. The proposed solution
scales well with the number of data points, and with the number of
ensembles. System designers often use models of several levels of
complexity, but a pairwise comparison, if applied successively, can
cope also with a large number of ensembles.

The multi-dimensionality of the parameter space is a difficult
challenge that we are addressing with our approach. We use 2D
projections of the parameter space. As the number of parameters
grows, the number of possible 2D projections grows even faster.
The current state of the art in the parameter space exploration sim-
ply cannot cope with such high-dimensional spaces, unless their di-
mensionality can be somehow reduced prior to the analysis. Some
authors, fix all parameter values and analyze what happens when
changing only one (or two) parameters at a time. We see a great
potential for future research here.

The feedback from the domain experts confirms the usability
of the newly proposed analysis approach. For the first time, ac-
cording to our best knowledge, we support the simultaneous ex-
ploration of multiple, dynamic ensembles. The interactive visual
analysis across ensembles from different models is supported by
the cross-model link, so the consequences of refining can be in-
teractively explored by comparing the outputs/results/findings and
ranges of optimal control parameters across different models in the
model space. The heterogeneous parameter spaces are linked, so
for each (directly) brushed parameter combination in one ensem-
ble, the corresponding simulation runs from the other ensembles are
indirectly selected. The new interactive, semi-automatic segmenta-
tion, as well as the newly proposed output-based, cross-ensemble
mapping support the proposed approach.

When using conventional approaches, the complex system com-
prehension is very difficult due to its sheer complexity. It became
possible for us to optimize the entire VVA system with a very large
number of parameters due to this hierarchical divide-and-conquer
strategy. The ability to optimize individual blocks within a large
system, while still keeping the overall view onto the simulation up-
to-date, proves to be very efficient and effective. Although the ap-
proach was developed in conjunction with this VVA system design,
the very positive feedback from the involved domain experts makes
us confident that this new approach can be applied to other complex
systems as well. Future work will include a more formal evalua-
tion of the newly proposed approach, especially when dealing with
higher-dimensional parameter spaces.
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