
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Line Weaver: Importance-Driven Order
Enhanced Rendering of Dense Line Charts

T. Trautner and S. Bruckner

University of Bergen, Norway

a b c d e f

Figure 1: Line weaver was inspired by techniques from textile production where multiple threads are interwoven to form fabrics. If the
blending order is (a) ignored or naively used, essential visual information is lost, even if (b) outlines and halos are added or (c) clusters are
colored. If, however, the ordering of clusters is (d) optimized, both (e) outlines and halos as well as (f) colors can help perceiving clusters.

Abstract
Line charts are an effective and widely used technique for visualizing series of ordered two-dimensional data points. The
relationship between consecutive points is indicated by connecting line segments, revealing potential trends or clusters in the
underlying data. However, when dealing with an increasing number of lines, the render order substantially influences the
resulting visualization. Rendering transparent lines can help but unfortunately the blending order is currently either ignored
or naively used, for example, assuming it is implicitly given by the order in which the data was saved in a file. Due to the non-
commutativity of classic alpha blending, this results in contradicting visualizations of the same underlying data set, so-called
"hallucinators". In this paper, we therefore present line weaver, a novel visualization technique for dense line charts. Using an
importance function, we developed an approach that correctly considers the blending order independently of the render order
and without any prior sorting of the data. We allow for importance functions which are either explicitly given or implicitly
derived from the geometric properties of the data if no external data is available. The importance can then be applied globally
to entire lines, or locally per pixel which simultaneously supports various types of user interaction. Finally, we discuss the
potential of our contribution based on different synthetic and real-world data sets where classic or naive approaches would fail.

CCS Concepts
• Human-centered computing → Information visualization; Visualization techniques; Visualization theory, concepts and
paradigms;

1. Introduction

Line charts, also known as line graphs, line plots, or curve charts,
are among the most frequently used forms of visual representation
in statistics [Spe52]. In contrast to scatter plots, where data ele-
ments are shown as a set of two-dimensional points in space, line
charts visually encode the relations between data elements. There-
fore, individual points have to be ordered, for example chrono-

logically, along an axis. Unfortunately, line charts have two major
weaknesses: First, the individual lines become harder to distinguish
and interpret with an increasing number of lines. Second, when us-
ing standard alpha blending, occlusion between lines means that
the resulting image is dependent on the rendering order. A popular
remedy to distinguish individual lines is the use of color. Unfortu-
nately, this prevents the color channel from being used to encode
any other data attributes. Considering the second problem regarding

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-4370-4393
https://orcid.org/0000-0002-0885-8402

Thomas Trautner and Stefan Bruckner / Line Weaver

rendering order, it seems that this has not received much attention
in the literature so far. In Tableau, for example, one of the most
widespread visualization tools, "the drawing order is driven by the
order of the members in the data source [Tab20]".

However, rendering order and the resulting occlusion relation-
ships among graphical elements can have a significant impact on
their perception, as indicated by the Gestalt principles. The princi-
ple of Symmetry and Order, for instance, sometimes also referred
to as Law of Prägnanz or the Law of Simplicity describes that the
human brain tends to interpret visual elements in the simplest possi-
ble way to avoid an overflow of visual stimuli. For example, when
looking at a wireframe representation of a cube, where only the
edges connecting the corner points are visible, our brain will tend
to recognize the three-dimensional cube instead of individual prim-
itives such as triangles, rectangles, or trapezoids that arise from in-
tersections of lines.

In this paper, we present a novel technique for the visualization
of line charts that avoids the issues caused by a global rendering
order by introducing the notion of a quantitative importance func-
tion that can vary locally. Using a per-pixel blending approach con-
trolled by this importance function, we provide explicit control over
occlusion relationships, allowing us to make more efficient use of
available screen space and present features such as clusters in a
more coherent manner. The main contributions of our work can be
summarized as follows:

• We introduce a new approach for displaying line-based data that
supports the use of a quantitative importance function.
• We demonstrate how this method can be used with different

types of importance functions.
• We present a simple algorithm for deriving an importance func-

tion for grouped line data.
• We show that our technique can be efficiently implemented on

modern GPU architectures for high-quality rendering of line
data.

2. Related Work

Visualization of line sets plays an important role in various do-
mains and different scientific fields, for example, in their elemen-
tary form as classic line charts, when exploring networks or graphs
to better understand their structure, when visualizing streamlines or
pathlines to analyze fluid flow, when interpreting temporal changes
of time series, when displaying multi-dimensional data as paral-
lel coordinates, or directly when researching how lines can be ren-
dered as efficiently as possible. All research fields study different
challenges but one they all have in common is that visual clutter
increases when more lines are displayed. For reasons of clarity,
this section is therefore divided into two categories with different
clutter-reduction approaches. Section 2.1 focuses on features de-
rived from line data sets and how they can be visually encoded, and
Section 2.2 presents advanced and optimized rendering techniques
for dense line and curve data sets.

2.1. Feature Encoding

One possibility for reducing visual clutter could be to visualize
a density estimate of underlying lines, instead of visualizing the

entirety of individual lines. Lampe and Hauser [DLH11b] intro-
duce an approach based on kernel density estimation (KDE), using
line kernels defined by a start and an end point. In a subsequent
step, the estimated density can then be color-coded using a percep-
tually uniform heatmap. A similar approach can be used to esti-
mate the density of curves in a continuous [DLH11a] or discrete
manner [MF18]. Unfortunately, density representations in general
are not well suited when analyzing individual lines, especially in
sparse regions. Recent work by Trautner et al. [TBSB20] presents
sunspot plots, an approach focusing on this challenge when visu-
alizing scatter plots. In case of line charts, however, the problem
remains unsolved.

Another visualization technique that suffers from visual clut-
ter are parallel coordinate plots (PCPs). Assuming the multi-
dimensional data originates from a continuous domain, continuous
parallel coordinates [WH09] represent a related approach to KDEs
and, therefore, benefit from the same advantages while also suffer-
ing from the same disadvantages. Instead of changing the visual
representation of parallel coordinates in advance, an initial step can
be reordering the axes. Blumenschein et al. [BZP∗20] recommend
that, especially with highly cluttered data sets, axes with dissimi-
lar data dimensions should be arranged next to each other, whereas
for data sets with low clutter, similar axes should be displayed next
to each other. Fua et al. [FWR99] introduce a hierarchical cluster-
based enhancement for PCPs. They propose to visually encode in-
dividual clusters as variable-width opacity bands in combination
with proximity-based coloring. The width of such a band repre-
sents the extent of the cluster. The center of each band is fully
opaque while transparency linearly decreases towards the top and
bottom edges. Unfortunately, they do not provide further specifi-
cation on the blending operator or blending order used. Novotny
and Hauser [NH06] introduce a technique specifically targeted at
outlier and trend detection within PCPs. The authors propose to
detect outliers first, providing them with a separate visual represen-
tation, and then applying aggregation techniques to the underlying
data to prevent outliers from being smoothed away. Related work
by Artero et al. [AdL04] uses image processing techniques to de-
tect clusters. Work by Johansson et al. [JLJC06] introduces transfer
functions to highlight different properties of clusters in PCPs. In the
end, however, lines are rendered in a given order mostly using the
non-commutative Porter-Duff [PD84] over operator for blending,
neglecting that it is not order independent.

Under the assumption that lines can be viewed as three-
dimensional trajectories or networks, Kwon et al. [KMLM16] in-
troduce edge bundling using a spherical graph layout and depth
routing for edges to improve legibility of graph visualizations. Sub-
sequently, line bundles are emphasized by global illumination us-
ing real-time ambient occlusion approaches similar to the work by
Eichelbaum et al. [EHS13]. Here, it is important to mention that
we do not consider edge bundling as a competing approach but as a
possible pre-processing step. The resulting line bundles could sub-
sequently be displayed using our technique.

Additional inspiration comes from the work of Nakayana and
Yano [NY10] who combine classic space-time cubes with KDEs by
using a spatio-temporal kernel for 3D point data to emphasize both
the temporal duration as well as the spatial extent, visualized using

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

volume rendering. Subsequently, Demšar and Virrantaus [DV10]
built upon this idea and applied 3D density estimations to three-
dimensional polylines. The interpretation of line sets as volumes
[SM04] allows for the use of transfer functions, which inspired us
to use importance functions without having to convert the under-
lying data to a volume. Moritz and Danyel [MF18], for example,
suggest normalizing the contribution of a curve to the density esti-
mation by its arc length, correcting for the higher numbers of pixels
that are needed to render strongly fluctuating curves. Instead, we
use the arc length as a derived geometric property, describing cur-
vature and frequency. This enables us to optimize overall visibility
and reduce visual clutter by displaying curves with more variabil-
ity in the back and less fluctuating curves in front. However, many
other properties such as visual complexity, as described by Ryan et
al. [RMCW18], geometric features derived from families of curves
by Konyha et al. [KLM∗12], or statistical features could be used
instead.

2.2. Line Rendering

Before the development of more advanced line rendering tech-
niques, Spear [Spe52] recommended creating multiple graphs us-
ing the same unit scale and comparing them, for example, using
juxtaposition in case the data set was too cluttered. This is still a
common practice when current techniques reach their limits. Build-
ing on that, Cleveland et al. [CMM88] recommended that an aver-
age angle of 45 degrees should be kept between adjacent line seg-
ments. In the literature, this is often referred to as "banking to 45
degrees". Furthermore, line smoothing techniques can be applied,
for example as proposed by Rosen and Quadri [RQ21], to initially
remove high frequencies or noise from the data, which we consider
an optional pre-processing step to our approach.

Rendering smooth lines in OpenGL is a basic functionality that
has yet to be supported by all graphics cards. Kilgard’s [Kil20] po-
lar stroking technique is a recent approach which uses the arc length
of a curve for texturing or dashing. A general overview of different
CPU and GPU rendering techniques for transparent 3D line sets
is provided by Kern et al. [KNM∗20]. Similar to our method, an
A-buffer [Car84] combined with multi-layer alpha blending can be
used to approximate transmittance and color of fragments. While
rendering, A-buffers store additional fragment information, for ex-
ample, by using per-pixel linked lists together with a global atomic
counter, as suggested by Yang et al. [YHGT10]. A modification of
A-buffers are K-buffers, introduced by Bavoil et al. [BCL∗07]. In-
stead of blending all fragments, only a fixed number of fragments
are stored and blended. An enhancement of such a K-buffer is used
by Groß and Gumhold [GG21] who introduce a GPU-based ray
casting approach supporting ambient occlusion and transparency
by using a billboard proxy geometry.

In their work, Hagh-Shenas et al. [HSKIH07] compare the ac-
curacy of two distinct strategies for visualizing multivariate data
using different colors, namely weaving and blending. Weaving, as
presented in the work by Luboschik et al. [LRS10], refers to the
selection of one colored item, such as a part of a line, which is
then exclusively rendered on top at a given location. Blending, on
the other hand, refers to the mixing of multiple colors, for example
assigned to multiple lines which all overlap. Our approach can be

a

b

Figure 2: Juxtaposition of illustrations of (a) plain weaving and
(b) weft knitting in comparison to visualizations retrieved with our
approach (right column). Note how both examples cannot be repro-
duced using classic alpha blending and a globally defined render
order, i.e., depth per thread.

seen as a hybrid between both, as we use blending to combine con-
tributions of lines with similar importances, but since importances
may vary along lines, their overall appearance will be reminiscent
of a "weaving" pattern. Our method is related to approaches for
smooth composition by Luft and Deussen [LD06] and Bruckner et
al. [BRV∗10]. In addition, we want to highlight the work of Everts
et al. [EBRI09] on depth-dependent halos to emphasize line bun-
dles. Their work inspired us to use halos, implemented using the
unsharp masking approach proposed by Luft et al. [LCD06].

Other related strategies consider the rendering of lines as global
optimization problem. Günther et al. [GRT13] suggest rendering
only a globally optimized selection of lines that are indispens-
able when visualizing important features, thus preventing visual
clutter that would arise from rending all lines. This approach has
later on been refined in order to ensure coherence in 3D time-
dependent flow visualizations [GRT14] and to support not only
lines but transparency optimization in combination with points and
surfaces [GTG17].

3. Line Weaver

Our approach addresses the fact that in many cases, not much atten-
tion is paid to the order in which lines are drawn in a chart. When
rendering only solid single-colored and fully opaque lines, this does
not make a significant difference, but as soon as transparency is in-
troduced or more advanced stylization approaches such as halos are
applied, it becomes important – depending on the blending operator
– to also consider the effects of the rendering order.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

The algebraic model for visualization design proposed by Kindl-
mann and Scheidegger [KS14] explicitly refers to such considera-
tions. They illustrate this by using a plot of taxi pick-up and drop-
off locations, which they consider as a set of points without an
inherent order, and argue that using an order-dependent blending
operator (such as the common over operator) in this case consti-
tutes a failure of representation invariance, which they refer to as
"hallucinator", i.e., a deficiency where differences in the images
may arise from representational or algorithmic choices (such as the
rendering order) without reflecting changes in the underlying data.
Order-independent operators will, by definition, always generate
the same result irrespective of the rendering order, and in their ex-
ample Kindlmann and Scheidegger propose to use additive blend-
ing as a possible resolution. In additive blending, the contributions
of all elements to a pixel are averaged and hence their order is ir-
relevant. The drawback of this approach is that it completely elim-
inates occlusion which in fact can be a powerful cue. As already
mentioned, we have learned from the Gestalt principles such as
continuity, closure, and figure-ground that human perception at-
tempts to complete missing or occluded image regions.

In our approach, we therefore propose to preserve these cues by
still using a blending operator that exhibits occlusion, but instead
providing explicit control over occlusion relationships by introduc-
ing an importance function. While this may at first glance look like
a minor semantic distinction (replacing the term order by the term
importance), it opens up several interesting and, as we will demon-
strate in the remainder of this paper, advantageous avenues for im-
proving the visualization of line-based data.

We regard line data as set D = {L1,L2, ...,LN} of N polylines
with its members Li = (P1,P2, ...,PM) represented as tuples of M
ordered two-dimensional points Pi = (xi,yi). The resulting para-
metric curve li(u) of each member is normally a polyline generated
by linear interpolation between its associated points P1,P2, ...,PM ,
but of course other interpolation functions are equally possible.
We choose this formulation since it is general enough to represent
common visualizations such as time-series charts and parallel co-
ordinate plots, which simply constitute different mappings between
the underlying data set and the x and y coordinates of the individ-
ual points. Our importance function βi(u) ∈ [0,1] now associates a
scalar importance value with every position along each curve li(u)
and has two major properties that distinguish it from order. First,
our importance function is quantitative in nature, not just ordinal.
This means that it is possible that two lines may have very similar
or even the same importance value. Second, importance does not
need to be constant along a line, but it may vary. These attributes
should be represented in the resulting visualization. Specifically,
our approach is based on the following requirements:

• The contributions of individual lines should be independent of
their order in the data set or the order in which they are rendered.
• Line segments with similar importance contributions should con-

tribute similarly to the pixels they cover in the final image.
• When the importance differs significantly, line segments with

higher importance should occlude line segments with lower im-
portance.

We can draw an analogy to the textile industry, for example,
when comparing weaving or knitting techniques as illustrated in

Figure 2. Instead of a global ordering of individual threads, they are
locally woven to interleave forming an intricate pattern that is dis-
cernible to human observers. In the same way, our aim is to thread
lines in a meaningful pattern, instead of simply pasting them on top
of each other. Our approach, therefore, enables the importance of
individual lines to vary along their trajectory, but without imposing
an ordinal relationship among them.

3.1. Importance-Based Blending

In computer graphics, the term order-independent transparency
commonly refers to techniques that aim to enable the rendering of
transparent polygons using the Porter-Duff [PD84] over operator in
a way that it does not require prior sorting of the primitives. This
can occur in an exact manner producing the same results as primi-
tive sorting, e.g., by still performing sorting but rather at the frag-
ment level (using data structures such as an A-buffer [YHGT10]) or
in an approximate manner, e.g., by using different (typically depth-
based [BM08]) blending operators that attempt to mimic the results
of the over operator as closely as possible. Our goal here, however,
is different. We are seeking a blending operator that allows us to vi-
sually reflect the properties of our importance function, i.e., by con-
veying its quantitative nature as well as its variability over polyline
primitives. The latter can be resolved by changing the granularity at
which the blending is performed. Switching from a per-primitive to
a per-pixel resolution, as it is done in A-buffer based approaches,
allows us to freely vary the importance function across a primi-
tive. The former, however, is more challenging as the decision of
whether one element is in front of another in the classic over oper-
ator is inherently binary and therefore prone to artifacts.

A good illustration for this is z-fighting, caused by two primitives
with differences in depth that are close to the numerical precision
of the z-buffer, resulting in visible artifact patterns. As stated pre-
viously, we instead want our blending to have a well-defined and
meaningful behavior when importance values are equal or similar.
When blending together multiple elements with equal importance
values, the result should correspond to the average value of all con-
tributing elements, while when importance values are far apart, we
want to indicate higher importance values using occlusions. As im-
portance values can vary continuously, we further want to avoid
abrupt changes between these behaviors. Such smooth transitions
can be achieved using a blending approach inspired by the works
of Luft and Deussen [LD06], and Bruckner et al. [BRV∗10].

Conceptually, this works by having the color contribution of one
element (e.g., a pixel color) influencing the contributions of other
elements whenever they are within a certain importance range, us-
ing a continuous falloff function such that the contributions are
equal when the respective importance values are the same. The
individual contributions (which then include those of other ele-
ments within the influence range) are next blended in sequence of
their importance using the conventional over operator. The adjusted
color of an element c′i is computed as follows:

c′i =

∑
∆(βi,β j)>0

c j∆(βi,β j)

∑
∆(βi,β j)>0

∆(βi,β j)
, (1)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

Figure 3: Pairwise comparison of two lines, each with varying im-
portance, blended on top of each other: (a) red and turquoise, (b)
brown and turquoise, and (c) red and brown, wherein red has a
step function, turquoise a sine function, and brown a tent function
as importance, using a smoothness of t = 0.15. Note that the visual
result depends purely on the blending and not the render order.

wherein c j are the opacity-weighted color contributions of the other
elements, βi, β j are the respective importance values, and ∆ is a
falloff function that gradually decreases to zero with the absolute
difference of its arguments. In practice, we define ∆ based on a Her-
mite polynomial, similar to the common smoothstep function, such
that it is 1 if the two importance values are the same and becomes
zero as their difference exceeds a threshold value:

∆(a,b) =

0 if |a−b| ≥ t

2
(
|a−b|

t

)3
−3
(
|a−b|

t

)2
+1 otherwise

, (2)

wherein t is the user-defined threshold that specifies the range of
contributions to be considered.

This approach now allows us to flexibly vary the importance
function along individual lines. If the respective importances vary
continuously, two polylines may pass through each other without
abrupt changes. In regions where the importances are equal, each
contributing element will contribute equally. The behavior of our
blending approach with different importance functions is illustrated
in Figure 3. We show how the blending result of two completely
overlapping lines varies based on their importance functions (a step
function, a sine function, and a tent function).

3.2. Rendering and Stylization

For high-quality rendering of our polyline sets with variable thick-
nesses, we use a method that combines a geometric approach with
signed distance functions (SDFs). This means that instead of gen-
erating geometry to define the exact outline, which can be difficult
and expensive both due to the potentially high geometric complex-
ity (e.g., when rounded joins between line segments are desired)
as well as issues with numerical precision, we instead rasterize the
line geometry conservatively and then evaluate an SDF for each
fragment in order to determine the exact coverage.

In this method, we create a polygonal scaffolding for each indi-
vidual polyline by extruding it on the fly into a triangle strip such
that all potential pixels of the line are covered, similar to the proxy
billboards used by Groß and Gumhold [GG21]. To avoid gaps in

the pixel coverage, it is important to ensure that neighboring seg-
ments are extended such that the endpoints of their outline meet
at the bisector between the two segments. Then, for each fragment
of the resulting geometry, we evaluate an SDF determining inside
and outside of a line segment. The distance from a point P to a line
segment connecting points A and B can be written as:

d(P,A,B) =
∣∣∣ ~AP−h · ~AB

∣∣∣−w, with (3)

h = clamp

(
~AP · ~AB
~AB · ~AB

,0,1

)
, (4)

wherein w is the thickness of the line segment. Note that the bound-
ary of the line is located at the zero level set of d and negative values
correspond to positions inside the line segment. Figure 4 shows an
illustration of the resulting SDF. To ensure proper handling of joins,
we need to take into account the distance to the previous, current,
and next line segment. This can be achieved by using different op-
erators combining the respective distances. Per default, we use the
minimum operator which results in rounded joins, but other types
such as miter and bevel are equally possible. Thus, our distance
function di for the i-th segment of a polyline is defined as follows:

di(P) = min(d(P,Pi−1,Pi),d(P,Pi,Pi+1),d(P,Pi+1,Pi+2)) . (5)

At the same time, this approach enables easy stylization of our
lines, as the distance can be flexibly mapped to different color
and/or opacity profiles. Furthermore, per-fragment derivative func-
tions available in common APIs such as OpenGL or DirectX can be
used to perform anti-aliasing. For all the images in this paper, we
use solid lines with a darkened outline, generated in the described
manner. In addition, we use the unsharp masking approach by Luft
et al. [LCD06] to generate halos.

Figure 4: Calculating the distance from all points P in space to a
line defined by the two points A and B results in an SDF. Note how
its contour lines converge to a circle as distance d increases. The
SDF can then be utilized to render anti-aliased lines with variable
thicknesses, as well as additional outlines, halos, or join types.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

a b

Figure 5: Juxtaposition of a synthetic data set containing sine as well as cosine functions with varying amplitude and frequency. The line
charts are rendered using (a) the order in which the individual lines are specified within the data set, and (b) a global ordering dependent on
the overall length of the lines implicitly encoding curvature and complexity. It can be seen that (a) high-frequency curves can easily obscure
low-frequency curves with a low amplitude, whereas (b) an optimized order allows for all curves to remain visible.

Once the color and opacity of a line fragment has been deter-
mined, we store it in a per-pixel linked list. To determine the final
pixel color, the list is subsequently sorted based on importance and
blended using the approach described in the previous Section 3.1.

3.3. Importance Functions

In principle, there are many different ways of how to define an im-
portance. First, and most naturally, the importance value itself may
be part of the underlying data. For instance, in case of time-series
data there may be a confidence measure associated with each data
point. If the resulting visualization should then prioritize high con-
fidence values, this would be an appropriate choice. Another exam-
ple could be the numerical result of a feature detection algorithm.
In many cases, however, such domain-specific, explicit importance
measures may unfortunately not be available.

In this case, we may instead want to use more fundamental prop-
erties of our lines themselves. Our goal is to minimize the amount
of overdraw in a heuristic manner, by assigning lower importance
values to those lines that take up screen space. A simple way to
achieve this is by specifying the importance based on the arc length
of each line. The impact of this simple yet powerful geometric
property is shown in Figure 5. Extending this idea and exploit-
ing the fact that importance values may vary locally, we propose
an approach to generate importance values for the common sce-
nario where lines grouped into different sets are depicted in a sin-
gle chart. Examples include the depiction of time series grouped
by a categorical variable, but our method equally applies to cases
where the grouping has been established by other means, such as
the application of a clustering method. In this case, each line has
an associated group identifier and our goal is to reduce the amount
of overdraw by assigning importances based on an estimate of the
amount of screen space taken up by all the lines of a group along
the dependent axis of the graph. For instance, if our chart depicts
time series, the values for a particular group may vary consider-
ably for one time step but may fall within a much narrower range
as time progresses. Another group may exhibit an inverse behavior.
In such a case, the importance values for each group should corre-
spond to the estimated amount of screen space taken up by its lines
at each time step, such that groups that take up less space receive
higher importance values. Our blending method is well-suited for

this purpose as it allows us to interpolate between the assigned im-
portance values along the ordinate of our graph in order to avoid
discontinuities.

We propose a simple algorithm to compute the importance val-
ues for such a weaving pattern using a greedy approach (see Algo-
rithm 1). For each value along the independent axis of the graph,
we first compute the minimum and maximum values of each group,
i.e., the interval on the dependent axis covered by lines belonging to
this group. This allows us to determine the envelope of all lines as-
sociated with a group by connecting two subsequent intervals along
the independent axis forming a trapezoid (for the last value on the
axis, we simply duplicate the interval), and compute their areas. We
then iterate over the calculated areas along the independent axis
with the goal of establishing an ordering of all groups according
to a cost function. The cost value for a group corresponds to the
sum of the intersection areas with all other groups multiplied by
the area covered by the group itself. Initially, all groups are marked
as active. Using the computed envelope areas, we next determine
the area of intersection between all other active groups. Then, we
select the group with the lowest cost value among the active groups
and mark it as inactive. We then repeat recomputing the cost val-
ues and select the group with the lowest cost until no active group
remains. The importance values are then assigned based on this se-
quence of selection, i.e., the first selected group receives the highest
importance, etc.

4. Implementation

Our approach was implemented in C++ and OpenGL. Loading as
well as pre-processing the data, such as either deriving the impor-
tance based on arc length if no external importance is provided, or
executing Algorithm 1 from Section 3.3, are performed on the CPU
while the rendering itself runs in parallel on the GPU. However, it
would be equally possible to calculate or modify importance val-
ues on the GPU allowing for dynamic data. The selection of the
data set to be visualized as well as additional user-dependent pa-
rameters, such as line color or width, were implemented using an
ImGui [Cor20] user interface. Our approach consists of the follow-
ing phases:

Line rasterization: The input of our rendering pipeline are
three buffers containing the x and y coordinates, and the impor-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

Algorithm 1: Weaving Loom
input : A set of groups G = {G1,G2, ...,GK}
output: Ordering for each value on the dependent axis

1 for all values x on the independent axis do
2 compute group coverage areas A(Gi) ∀Gi ∈ G
3 compute group intersection areas I(Gi,G j) ∀Gi,G j ∈ G
4 mark all groups as active: P← G
5 initialize order to zero: o← 0
6 while P 6= ∅ do
7 compute cost values:
8 C(Gi)← A(Gi) ∑

i 6= j
I(Gi,G j) ∀Gi,G j ∈ P

9 select group with minimal cost:
10 S← argmin

Gi∈P
C(Gi)

11 output and increment order, update active groups:
12 Ox(S) = o
13 o← o+1
14 P← P\S

tance per tuple. It is, however, unimportant in which order the lines
are allocated within the buffers as they are sorted in the blend-
ing phase. In a geometry shader, based on the desired line thick-
ness, we construct the line scaffolding as triangle strips by using
the GL_LINE_ADJACENCY primitive type, which provides the
shader with access to neighboring vertices without requiring dupli-
cation. In the fragment shader, we evaluate the SDF from Equa-
tion 5 in order to determine the fragments covered by the line seg-
ment and evaluate their colors. The result, together with its impor-
tance value, is then added to a per-pixel linked list. We use an image
object to store the index of the last list entry for each pixel, as well
as a shader storage buffer object (SSBO) to store the fragment data.
This buffer contains a single counter for the total number of allo-
cated entries, as well as an array of the actual list entries.

Fragment blending: We render a screen-filling quad to traverse
the linked list for each pixel, performing blending as described in
Section 3.1. We use bubble sort to sort the list entries based on
their importance and then use our blending operator to determine
the final combined pixel color. If halos based on the method of Luft
et al. [LCD06] are enabled, this step is preceded by an additional
blurring pass which is then used as secondary input to darken sur-
rounding pixel regions.

Our complete source code is available at:
https://github.com/TTrautner/LineWeaver.git

5. Usage Examples

In this section, we now demonstrate the strength and versatility of
line weaver based on three real-world data sets and one artificially
generated data set. Each data set has a different number of lines
(between 20 and 1,200) and a varying number of clusters (between
3 and 5). We further illustrate the properties of our approach by us-
ing diverse types of charts such as parallel coordinate plots (PCPs),
Andrews plots [And72], and time series plots. Finally, we show

that even user interaction can be efficiently implemented by pre-
senting a usage example of a magic lens [SFB94] for focus+context
[Hau06] exploration and angular brushing [HLD02].

5.1. Global Importance

To the best of our knowledge, there are no studies that analyze
the blending order and its impact on line charts. Blumenschein el
at. [BZP∗20] evaluated different axis reordering strategies in par-
allel coordinates and found that intersections of line bundles can
help identifying clusters in cluttered data sets. Their benchmark
data set therefore serves as a reasonable first test case for our tech-
nique. It allows us to compare their suggestions to our insights,
e.g., that the z-ordering has a significant impact and that both or-
derings (axis and depth) are not independent. Figure 6 shows data
set 4C.6-150N-Sim from their study. The authors concluded that
this similarity-based axis arrangement tends to be less appropriate
when identifying clusters. As shown, it is difficult to distinguish
clusters, even when different colors are assigned to each of them.
This also does not change when lines are additionally highlighted
with halos. When using a global importance, i.e., per line, the ex-
act shapes of the clusters become visible even without using colors.
There are four clusters within a relatively noisy data set. The impor-
tance of each line is determined by the cluster it belongs to. Apart
from noise, the cluster with the most lines is considered as most
important. Within each cluster, the importance of the lines is then
determined by their arc length, whereby the shortest line is rendered
on top. Although the analysis of clusters using this similarity-based
axes arrangement has so far been considered unsuitable, it can now
be done expressively using line weaver.

Figure 6: Visualization of benchmark data set 4C.6-150N-Sim
[BZP∗20] consisting of four clusters: brown (50 lines), dark blue
(49 lines), turquoise (48 lines), red (46 lines), and beige noise (150
lines). From left to right, we compare the result of a randomized
rendering order with outlines and additional highlights with halos,
to our approach using an importance function depending on cluster
size and arc length, including a monochrome version of it.

5.2. Local Importance

To demonstrate our technique for locally varying importance func-
tions, we first use a PCP of the MPG [DG21] data set from the
UCI Machine Learning Repository containing properties of cars,
such as origin, number of cylinders, weight, horsepower, etc. from

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/TTrautner/LineWeaver.git

Thomas Trautner and Stefan Bruckner / Line Weaver

a b

Figure 7: Juxtaposition of parallel coordinates plots using (a) a randomized order and (b) line weaver of the Auto MPG [DG21] data set
consisting of three clusters: brown (79 lines) Japanese cars, red (68 lines) European cars, and turquoise (245 lines) American cars.

cars produced between 1970-1982. We apply our weaving loom al-
gorithm from Section 3.3 using the origin variable to define three
groups. As shown in Figure 7, Japanese and European car mod-
els have similarly low displacement, horsepower, and weight, and
therefore longer acceleration times, whereas American cars cover a
much wider spectrum. In contrast to the rather compact and there-
fore stricter ordering, looking at model year, for example, all three
clusters are equally broad and therefore averaged instead. As can be
seen by comparing Figure 7 (a) and (b), the randomized order re-
sults in the almost complete occlusion of the more compact group
of Japanese cars, while they remain clearly visible using our ap-
proach.

Apart from classic PCPs, there are various other visualization
techniques for high-dimensional data. Another well-established
form of visualization are Andrews plots [And72] which are also
referred to as smooth PCPs in the literature. Each n-dimensional
data point x = {x1,x2, ...,xn} is defined as a finite Fourier series,
visualized as curve fx(t) within the interval [−π < t < π]:

fx(t) =
x1√

2
+ x2 sin(t)+ x3 cos(t)+ x4 sin(2t)+ x5 cos(2t)+ ...

(6)

To display different facets of both the plot and our technique,
Figure 8 shows the result of such a transformation using a synthet-
ically generated data set, which was also used as our paper teaser
in Figure 1. In contrast to the global importance, occlusion rela-
tionships between line bundles may change, resulting in a weaving
pattern. The determining factor is the area of each bundle and how
much it locally occludes other clusters. Due to this optimization,
the most compact beige cluster becomes visible. Notice how its
color and opacity are averaged when it overlaps the turquoise clus-
ter with almost identical width. A similar phenomenon can be seen
with the dark blue and brown clusters. In contrast, the less compact
red cluster is alternatively woven from front to back and vice versa.
Each of these changes is smooth which avoids hard cuts and discon-
tinuities, enabling the viewer to better understand the entirety of the
visualized data set.

As third example, we present time series data from Tan et
al. [TWP17] derived from high-resolution satellite images, each

Figure 8: Andrews plot of synthetic data showing two compact
beige (100 curves) and turquoise (100 curves) clusters rendered
over the wider dark blue (300 curves) and brown (250 curves) clus-
ters which are in turn interwoven with the red (250 curves) cluster.

containing 1 million pixels, with one pixel corresponding to a geo-
graphic area of 64 m2. In total, 46 images were taken over time and
corrected so that each pixel corresponds to the same geographic
region. Next, the temporal change of each area was analyzed con-
sidering 24 different category classes including corn, wheat, wa-
ter, sunflower, etc. We selected four classes for our visualization:
soy (class 10), grassland (class 12), poplar (class 21), and mineral
surface (class 22), each containing 300 time series which in turn
consist of 46 time steps each. The result comparing three different
rendering orders is shown in Figure 9: (a) random, (b) as stored in
the file, and (c) line weaver using local importance. With random
order, chance decides which lines are rendered last and are there-
fore best visible to the user, or how well individual outliers are pre-
served. Using an order defined by the data set, classes are perceived
as individual bundles since they have been saved one after the other.
Unfortunately, the class that was rendered first will be the least vis-
ible and the class rendered last will be visible best. Line weaver, on
the contrary, works independently of the storage and rendering or-
der, providing the same visual result even when these orderings are
changed. Note that this time, the comparably high smoothness of
the blending, i.e., averaging of clusters, guarantees that individual
bundles are easy to identify (similarly to using a randomized order)
while preserving outliers, irrespective of chance.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

a b c

Figure 9: Comparison of four classes of the Crop data set from Tan et al. [TWP17] rendered using (a) random line order, (b) the sequence
individual lines were stored, and (c) line weaver using local importance. When using (a) random order, the outliers of the dark blue cluster,
otherwise in the middle of the beige cluster, are lost. An ordering that is dependent on (b) the data set results in coherent cluster bundles
rendered from back to front starting with class 10 (red), followed by class 12 (beige), class 21 (turquoise), and finally class 22 (blue). This
time, the blue outliers remain visible by chance, but the red cluster bundle substantially disappears. Using (c) line weaver, both the red and
turquoise clusters are interwoven with the beige cluster and the most compact dark blue cluster is rendered on top, preserving its outliers.

5.3. Highlighting and Focus Enhancement

While the previous examples demonstrate how our technique be-
haves using different types of importance functions derived from
the data, our approach also supports dynamically changing impor-
tance values. This enables various types of user interactions that
demand variable local or global changes with arbitrary granular-
ity. Interactions that would be encoded using an attribute such as
color can instead be used to modulate importance values. To illus-
trate this, we show a simple implementation of two well-established
techniques serving as representatives of common line chart interac-
tions: a magic lens [SFB94] that enables focus+context [Hau06]
exploration and angular brushing [HLD02]. The lens, positioned at
the mouse cursor, has local influence on the importance of all lines
within and allows us to see lines that pass through a region even
though they are covered by other lines, for instance to highlight
lines with a specific axis value. Similarly, angular brushing can help
to locally pull a bundle of lines with a certain angle forward – like
a rubber band metaphor. As our approach supports quantitative im-
portance functions, this can be done in a non-binary manner based,
as is common, on smooth brushing operations.

For this example, we use the smooth subspace data set from
Huang et al. [HYX∗16] for k-means clustering of time series data.
It consists of 3 clusters, each containing 50 time series, which in
turn consist of 15 time steps per series. A distinct property of this
data set is that each cluster has a similar and compact pattern for
5 consecutive time steps, whereas all other steps are randomly dis-
tributed. For cluster 1 these are time steps 1-5, cluster 2: time steps
6-10, and cluster 3: time steps 11-15. The resulting visualization,
where each compact pattern of a cluster is locally woven to the front
once, is shown in Figure 10. Note how it additionally provides ex-
amples of (a) a focus+context lens and (b) angular brushing.

6. Performance

We conducted performance measurements using a desktop com-
puter equipped with an Intel Core i7-8700K CPU (3.7 GHz), 16 GB
RAM, a NVIDIA GeForce RTX 2080 graphics card with 8 GB of
texture memory, and a Windows 10 Home 64-bit operating system.
Overall, we analyzed two artificially generated data sets and four
real-world data sets, corresponding to the figures presented in this
paper. In addition, we made sure that all data sets have different

Figure 10: Two examples of user interaction on a time series data
set from Huang et al. [HYX∗16], using a magic lens for (a) fo-
cus+context and (b) angular brushing. The lens, centered at the
mouse cursor, can be used to, e.g., trace outliers, highlight lines
passing through a specific point, or locally change the ordering of
bundles by emphasizing lines with certain angle, e.g. −80◦.

densities and varying numbers of lines (between 20 and 1,200).
We used two representative screen resolutions (1280× 720 and
1920× 1080) and scaled each data sets so that its bounding box
filled the viewport.

In addition to measuring the rendering performance, we also at-
tempted to quantify the degree of overplotting using the following
measure:

Overplotting = 1− 1
|D| ∑

Li ε D

#visiblePixels(Li)

total Pixels(Li)
, (7)

where D is the data set the lines originate from and Li represents
a single line of which the ratio of visible to the total number of
pixels that make up this line is calculated. These are then summed
up and normalized. The calculated Overplotting measure produces
a value from the interval [0,1], where 0 refers to no overdraw. For
example, if two polylines are drawn exactly on top of one another,
this corresponds to a value of 0.5, with three lines 0.66̇, etc.

A detailed overview of all test cases is shown in Table 1. It re-
veals that our technique provides interactivity for data sets contain-
ing thousands of lines. It is therefore easily possible to interact with

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Thomas Trautner and Stefan Bruckner / Line Weaver

the visualization, for example by changing individual parameters at
runtime. The analysis furthermore shows that line weaver increases
information content by reducing clutter and overplotting and there-
fore helps to display line data in a more expressive way.

Figure Lines
FPS

1280× 720
FPS

1920× 1080
Overplotting
Random/ Figure

Sin Cos - 5 20 556.34562.68
546.85 290.53293.77

289.64 0.79/ 0.35

PCP 1 - 6 493 135.52136.12
134.87 109.34110.72

108.25 0.76/ 0.74

PCP 2 - 7 392 36.0637.01
35.63 25.1526.42

24.77 0.85/ 0.84

Andrews - 8 1,000 27.8229.65
27.58 21.9122.27

20.63 0.91/ 0.88

Crop - 9 1,200 18.4319.41
17.99 12.6313.48

11.98 0.93/ 0.84

Lens - 10 150 234.93241.47
221.16 156158.39

152.60 0.75/ 0.73

Table 1: Summary table of the analyzed test scenarios including
name and figure number, the number of lines in the data set, the
average frames per second (avgmax

min) for two common 16:9 screen
resolutions, and the result of the overplotting measure.

7. Discussion and Limitations

Line charts are a well-established form of representation, not only
in the field of visualization but also within a variety of other re-
search fields. Although we have focused on traditional line charts
such as time series plots or parallel coordinate plots in this pa-
per, our basic approach is also suitable for other types of two-
dimensional line and trajectory data. In particular, we believe that
it would be interesting to examine its application to geospatial data,
as well as circular visualizations such as radar charts. Our blending
and rendering approach can already be applied to such scenarios
in a straight forward way, but the line weaving algorithm, as pre-
sented in Section 3.3, would have to be adapted to support general
parametric curves.

Although edge bundling and line weaver are fundamentally dif-
ferent approaches (edge bundling reduces clutter by increasing
overplotting and line weaver reduces clutter by decreasing over-
plotting), it would be interesting to conduct studies on how both
techniques harmonize with each other. For example, by applying
edge bundling as pre-processing step to initially reduce the overall
number of lines, similar to techniques such as filtering or subsam-
pling, and then smoothly blending the fewer resulting bundles using
an importance function that optimizes their visibility.

We have provided examples of data sets containing up to 5 clus-
ters. As soon as the number of clusters approaches the number of
lines, for example, if lines cannot meaningfully be clustered into
bundles, the ordering degenerates to an optimization of arc length
only. In addition, it is recommended that clusters correspond to rel-
atively compact bundles. Furthermore, as is valid for all techniques
that rely on color mixing, the combination of several different col-
ors may not always be easy to interpret. However, as our approach
represents a hybrid between weaving and pure blending, the visual
continuity due to occlusion can help to better resolve such ambi-
guities. To further compensate for this, alternative blending oper-
ators such as hue-preserving color blending [CWM09] could be
used instead. In addition, it would be interesting to conduct studies
in which various data properties are compared, in order to find an

optimal and versatile importance function derived from data prop-
erties from various domains.

Throughout the paper we have used data sets with various num-
bers of lines, the largest of which consists of more than thousand
lines. Currently, all lines are treated equally. They are blended ac-
cording to the importance function and emphasized using halos.
Nonetheless, it may be advantageous to introduce an additional
level of detail for even larger data sets consisting of millions of
lines. For example, halos and blending could only be applied to the
most important clusters and less relevant ones could be averaged,
aggregated, subsampled, or only displayed as confidence bands.
This would simultaneously compensate for current limitations in
computing performance on even larger data sets.

8. Conclusion

We have presented line weaver, a novel visualization technique for
dense two-dimensional line data. Line weaver allows for an opti-
mized blending, independent of the rendering order and without
costly initial sorting. The basis of line weaver is formed by a quan-
titative importance function which either originates from external
data or is derived from (geometric) properties of the lines such as
arc length, and may vary locally. Using various synthetic as well
as real-world data sets, we have shown the advantages of "woven"
line bundles over visualizations that ignore the non-commutativity
of blending or naively assume the blending order depends on how
lines were stored in a file. Furthermore, we have shown that the use
of quantitative importance functions can offer additional degrees of
freedom for representing focus+context information in interactive
scenarios. Finally, we have demonstrated that our approach can be
implemented on modern GPU architectures to provide interactive,
high-quality visualizations of line-based data sets.

Acknowledgments

The research presented in this paper was supported by the MetaVis
project (#250133) funded by the Research Council of Norway.

References
[AdL04] ARTERO A. O., DE OLIVEIRA M. C. F., LEVKOWITZ H.: Un-

covering Clusters in Crowded Parallel Coordinates Visualizations. In
Proc. IEEE Symposium on Information Visualization (2004), pp. 81–88.
doi:10.1109/INFVIS.2004.68.

[And72] ANDREWS D. F.: Plots of High-Dimensional Data. Biometrics
28, 1 (1972), 125–136. doi:10.2307/2528964.

[BCL∗07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA J. A.
L. D., SILVA C. T.: Multi-Fragment Effects on the GPU Using the
k-Buffer. In Proc. Symposium on Interactive 3D Graphics and Games
(2007), pp. 97–104. doi:10.1145/1230100.1230117.

[BM08] BAVOIL L., MYERS K.: Order Independent Transparency with
Dual Depth Peeling. NVIDIA (2008).

[BRV∗10] BRUCKNER S., RAUTEK P., VIOLA I., ROBERTS M., SOUSA
M. C., GRÖLLER E.: Hybrid visibility compositing and masking for
illustrative rendering. Computers & Graphics 34, 4 (2010), 361–369.
doi:10.1016/j.cag.2010.04.003.

[BZP∗20] BLUMENSCHEIN M., ZHANG X., POMERENKE D., KEIM
D. A., FUCHS J.: Evaluating Reordering Strategies for Cluster Identifi-
cation in Parallel Coordinates. Computer Graphics Forum 39, 3 (2020),
537–549. doi:10.1111/cgf.14000.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/INFVIS.2004.68
https://doi.org/10.2307/2528964
https://doi.org/10.1145/1230100.1230117
https://doi.org/10.1016/j.cag.2010.04.003
https://doi.org/10.1111/cgf.14000

Thomas Trautner and Stefan Bruckner / Line Weaver

[Car84] CARPENTER L.: The A -Buffer, an Antialiased Hidden Surface
Method. ACM SIGGRAPH Computer Graphic 18, 3 (1984), 103–108.
doi:10.1145/964965.808585.

[CMM88] CLEVELAND W., MCGILL M. E., MCGILL R.: The Shape
Parameter of a Two-Variable Graph. Journal of the American Statistical
Association 83, 402 (1988), 289–300. doi:10.1080/01621459.
1988.10478598.

[Cor20] CORNUT O.: ImGui. https://github.com/ocornut/
imgui, 2020. Accessed: October.

[CWM09] CHUANG J., WEISKOPF D., MÖLLER T.: Hue-Preserving
Color Blending. IEEE Transactions on Visualization and Computer
Graphics 15, 6 (2009), 1275–1282. doi:10.1109/TVCG.2009.
150.

[DG21] DUA D., GRAFF C.: UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml, 2021. Accessed: March.

[DLH11a] DAAE LAMPE O., HAUSER H.: Curve Density Estimates.
Computer Graphics Forum 30, 3 (2011), 633–642. doi:10.1111/j.
1467-8659.2011.01912.x.

[DLH11b] DAAE LAMPE O., HAUSER H.: Interactive visualization of
streaming data with Kernel Density Estimation. In Proc. IEEE Paci-
ficVis (2011), pp. 171–178. doi:10.1109/PACIFICVIS.2011.
5742387.

[DV10] DEMŠAR U., VIRRANTAUS K.: Space–time density of trajecto-
ries: exploring spatio-temporal patterns in movement data. International
Journal of Geographical Information Science 24, 10 (2010), 1527–1542.
doi:10.1080/13658816.2010.511223.

[EBRI09] EVERTS M. H., BEKKER H., ROERDINK J. B. T. M., ISEN-
BERG T.: Depth-Dependent Halos: Illustrative Rendering of Dense Line
Data. IEEE Transactions on Visualization and Computer Graphics 15, 6
(2009), 1299–1306. doi:10.1109/TVCG.2009.138.

[EHS13] EICHELBAUM S., HLAWITSCHKA M., SCHEUERMANN G.:
LineAO—Improved Three-Dimensional Line Rendering. IEEE Trans-
actions on Visualization and Computer Graphics 19, 3 (2013), 433–445.
doi:10.1109/TVCG.2012.142.

[FWR99] FUA Y.-H., WARD M. O., RUNDENSTEINER E. A.: Hi-
erarchical Parallel Coordinates for Exploration of Large Datasets.
In Proc. IEEE Visualization (1999), pp. 43–50. doi:10.1109/
PACIFICVIS.2011.5742387.

[GG21] GROSS D., GUMHOLD S.: Advanced Rendering of Line Data
with Ambient Occlusion and Transparency. IEEE Transactions on Vi-
sualization and Computer Graphics 27, 2 (2021), 614–624. doi:
10.1109/TVCG.2020.3028954.

[GRT13] GÜNTHER T., RÖSSL C., THEISEL H.: Opacity Optimization
for 3D Line Fields. ACM Transactions on Graphics 32, 4 (2013), 120:1–
120:8. doi:10.1145/2461912.2461930.

[GRT14] GÜNTHER T., RÖSSL C., THEISEL H.: Hierarchical opacity
optimization for sets of 3D line fields. Computer Graphics Forum 33, 2
(2014), 507–516. doi:10.1111/cgf.12336.

[GTG17] GÜNTHER T., THEISEL H., GROSS M.: Decoupled Opacity
Optimization for Points, Lines and Surfaces. Computer Graphics Forum
36, 2 (2017), 153–162. doi:10.1111/cgf.13115.

[Hau06] HAUSER H. R.: Generalizing Focus+Context Visualization.
Springer Berlin Heidelberg, 2006, pp. 305–327.

[HLD02] HAUSER H., LEDERMANN F., DOLEISCH H.: Angular brush-
ing of extended parallel coordinates. In Proc. IEEE Symposium on Infor-
mation Visualization (2002), pp. 127–130. doi:10.1109/INFVIS.
2002.1173157.

[HSKIH07] HAGH-SHENAS H., KIM S., INTERRANTE V., HEALEY C.:
Weaving Versus Blending: a quantitative assessment of the information
carrying capacities of two alternative methods for conveying multivari-
ate data with color. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1270–1277. doi:10.1109/TVCG.2007.
70623.

[HYX∗16] HUANG X., YE Y., XIONG L., LAU R. Y., JIANG N., WANG
S.: Time series k-means: A new k-means type smooth subspace cluster-
ing for time series data. Information Sciences 367-368 (2016), 1–13.
doi:10.1016/j.ins.2016.05.040.

[JLJC06] JOHANSSON J., LJUNG P., JERN M., COOPER M.: Reveal-
ing Structure in Visualizations of Dense 2D and 3D Parallel Coordi-
nates. Information Visualization 5, 2 (2006), 125–136. doi:10.1057/
palgrave.ivs.9500117.

[Kil20] KILGARD M. J.: Polar Stroking: New Theory and Methods for
Stroking Paths. ACM Transactions on Graphics 39, 4 (2020). doi:
10.1145/3386569.3392458.

[KLM∗12] KONYHA Z., LEŽ A., MATKOVIĆ K., JELOVIĆ M.,
HAUSER H.: Interactive Visual Analysis of Families of Curves Us-
ing Data Aggregation and Derivation. In Proc. Conference on Knowl-
edge Management and Knowledge Technologies (2012), pp. 24:1–24:8.
doi:10.1145/2362456.2362487.

[KMLM16] KWON O.-H., MUELDER C., LEE K., MA K.-L.: A Study
of Layout, Rendering, and Interaction Methods for Immersive Graph Vi-
sualization. IEEE Transactions on Visualization and Computer Graphics
22, 7 (2016), 1802–1815. doi:10.1109/TVCG.2016.2520921.

[KNM∗20] KERN M., NEUHAUSER C., MAACK T., HAN M., USHER
W., WESTERMANN R.: A Comparison of Rendering Techniques for 3D
Line Sets with Transparency. IEEE Transactions on Visualization and
Computer Graphics PrePrint (2020). doi:10.1109/TVCG.2020.
2975795.

[KS14] KINDLMANN G., SCHEIDEGGER C.: An Algebraic Process for
Visualization Design. IEEE Transactions on Visualization and Computer
Graphics 20, 12 (2014), 2181–2190. doi:10.1109/TVCG.2014.
2346325.

[LCD06] LUFT T., COLDITZ C., DEUSSEN O.: Image Enhancement
by Unsharp Masking the Depth Buffer. ACM SIGGRAPH Com-
puter Graphic 25, 3 (2006), 1206–1213. doi:10.1145/1179352.
1142016.

[LD06] LUFT T., DEUSSEN O.: Real-Time Watercolor Illustrations
of Plants Using a Blurred Depth Test. In Proc. Symposium on Non-
Photorealistic Animation and Rendering (2006), pp. 11–20. doi:
10.1145/1124728.1124732.

[LRS10] LUBOSCHIK M., RADLOFF A., SCHUMANN H.: A New Weav-
ing Technique for Handling Overlapping Regions. In Proceedings of the
International Conference on Advanced Visual Interfaces (2010), pp. 25–
32. doi:10.1145/1842993.1842999.

[MF18] MORITZ D., FISHER D.: Visualizing a Million Time Series with
the Density Line Chart. CoRR abs/1808.06019 (2018).

[NH06] NOVOTNY M., HAUSER H.: Outlier-Preserving Focus+Context
Visualization in Parallel Coordinates. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (2006), 893–900. doi:10.1109/
TVCG.2006.170.

[NY10] NAKAYA T., YANO K.: Visualising Crime Clusters in a Space-
time Cube: An Exploratory Data-analysis Approach Using Space-time
Kernel Density Estimation and Scan Statistics. Transactions in GIS 14,
3 (2010), 223–239. doi:10.1111/j.1467-9671.2010.01194.
x.

[PD84] PORTER T., DUFF T.: Compositing Digital Images. ACM SIG-
GRAPH Computer Graphic 18, 3 (1984), 253–259. doi:10.1145/
964965.808606.

[RMCW18] RYAN G., MOSCA A., CHANG R., WU E.: At a Glance:
Pixel Approximate Entropy as a Measure of Line Chart Complex-
ity. IEEE Transactions on Visualization and Computer Graphics 25, 1
(2018), 872–881. doi:10.1109/TVCG.2018.2865264.

[RQ21] ROSEN P., QUADRI G. J.: LineSmooth: An Analytical Frame-
work for Evaluating the Effectiveness of Smoothing Techniques on Line
Charts. IEEE Transactions on Visualization and Computer Graphics 27,
2 (2021), 1536–1546. doi:10.1109/TVCG.2020.3030421.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/964965.808585
https://doi.org/10.1080/01621459.1988.10478598
https://doi.org/10.1080/01621459.1988.10478598
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
https://doi.org/10.1109/TVCG.2009.150
https://doi.org/10.1109/TVCG.2009.150
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1111/j.1467-8659.2011.01912.x
https://doi.org/10.1111/j.1467-8659.2011.01912.x
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1080/13658816.2010.511223
https://doi.org/10.1109/TVCG.2009.138
https://doi.org/10.1109/TVCG.2012.142
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/TVCG.2020.3028954
https://doi.org/10.1109/TVCG.2020.3028954
https://doi.org/10.1145/2461912.2461930
https://doi.org/10.1111/cgf.12336
https://doi.org/10.1111/cgf.13115
https://doi.org/10.1109/INFVIS.2002.1173157
https://doi.org/10.1109/INFVIS.2002.1173157
https://doi.org/10.1109/TVCG.2007.70623
https://doi.org/10.1109/TVCG.2007.70623
https://doi.org/10.1016/j.ins.2016.05.040
https://doi.org/10.1057/palgrave.ivs.9500117
https://doi.org/10.1057/palgrave.ivs.9500117
https://doi.org/10.1145/3386569.3392458
https://doi.org/10.1145/3386569.3392458
https://doi.org/10.1145/2362456.2362487
https://doi.org/10.1109/TVCG.2016.2520921
https://doi.org/10.1109/TVCG.2020.2975795
https://doi.org/10.1109/TVCG.2020.2975795
https://doi.org/10.1109/TVCG.2014.2346325
https://doi.org/10.1109/TVCG.2014.2346325
https://doi.org/10.1145/1179352.1142016
https://doi.org/10.1145/1179352.1142016
https://doi.org/10.1145/1124728.1124732
https://doi.org/10.1145/1124728.1124732
https://doi.org/10.1145/1842993.1842999
https://doi.org/10.1109/TVCG.2006.170
https://doi.org/10.1109/TVCG.2006.170
https://doi.org/10.1111/j.1467-9671.2010.01194.x
https://doi.org/10.1111/j.1467-9671.2010.01194.x
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/964965.808606
https://doi.org/10.1109/TVCG.2018.2865264
https://doi.org/10.1109/TVCG.2020.3030421

Thomas Trautner and Stefan Bruckner / Line Weaver

[SFB94] STONE M. C., FISHKIN K., BIER E. A.: The Movable Filter
As a User Interface Tool. In Proc. ACM CHI (1994), pp. 306–312. doi:
10.1145/191666.191774.

[SM04] SCHUSSMAN G., MA K.-L.: Anisotropic volume rendering for
extremely dense, thin line data. In Proc. IEEE Visualization (2004),
pp. 107–114. doi:10.1109/VISUAL.2004.5.

[Spe52] SPEAR M. E.: Charting Statistics. McGraw-Hill, 1952, pp. 39–
95.

[Tab20] TABLEAU SOFTWARE: Control the Appearance of Marks
in the View. https://help.tableau.com/current/pro/
desktop/en-gb/viewparts_marks_markproperties.
htm#draw-paths-between-marks, 2020. Accessed: October.

[TBSB20] TRAUTNER T., BOLTE F., STOPPEL S., BRUCKNER S.:
Sunspot Plots: Model-based Structure Enhancement for Dense Scat-
ter Plots. Computer Graphics Forum 39, 3 (2020), 551–563. doi:
10.1111/cgf.14001.

[TWP17] TAN C. W., WEBB G. I., PETITJEAN F.: Indexing and classi-
fying gigabytes of time series under time warping. In Proc. SIAM In-
ternational Conference on Data Mining (2017), pp. 282–290. doi:
10.1137/1.9781611974973.32.

[WH09] WEISKOPF D., HEINRICH J.: Continuous Parallel Coordi-
nates. IEEE Transactions on Visualization and Computer Graphics 15,
6 (2009), 1531–1538. doi:10.1109/TVCG.2009.131.

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.:
Real-Time Concurrent Linked List Construction on the GPU. Com-
puter Graphics Forum 29, 4 (2010), 1297–1304. doi:10.1111/j.
1467-8659.2010.01725.x.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/191666.191774
https://doi.org/10.1145/191666.191774
https://doi.org/10.1109/VISUAL.2004.5
https://help.tableau.com/current/pro/desktop/en-gb/viewparts_marks_markproperties.htm#draw-paths-between-marks
https://help.tableau.com/current/pro/desktop/en-gb/viewparts_marks_markproperties.htm#draw-paths-between-marks
https://help.tableau.com/current/pro/desktop/en-gb/viewparts_marks_markproperties.htm#draw-paths-between-marks
https://doi.org/10.1111/cgf.14001
https://doi.org/10.1111/cgf.14001
https://doi.org/10.1137/1.9781611974973.32
https://doi.org/10.1137/1.9781611974973.32
https://doi.org/10.1109/TVCG.2009.131
https://doi.org/10.1111/j.1467-8659.2010.01725.x
https://doi.org/10.1111/j.1467-8659.2010.01725.x

